CN110529208B - 一种lng冷能梯级利用控制系统及控制方法 - Google Patents
一种lng冷能梯级利用控制系统及控制方法 Download PDFInfo
- Publication number
- CN110529208B CN110529208B CN201910672938.0A CN201910672938A CN110529208B CN 110529208 B CN110529208 B CN 110529208B CN 201910672938 A CN201910672938 A CN 201910672938A CN 110529208 B CN110529208 B CN 110529208B
- Authority
- CN
- China
- Prior art keywords
- natural gas
- outputting
- temperature
- inputting
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 194
- 239000003345 natural gas Substances 0.000 claims abstract description 97
- 239000007788 liquid Substances 0.000 claims abstract description 34
- 230000009467 reduction Effects 0.000 claims abstract description 34
- 239000003507 refrigerant Substances 0.000 claims abstract description 33
- 238000000926 separation method Methods 0.000 claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 238000007599 discharging Methods 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 239000003546 flue gas Substances 0.000 claims description 37
- 239000007789 gas Substances 0.000 claims description 37
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 35
- 238000002485 combustion reaction Methods 0.000 claims description 24
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 230000005611 electricity Effects 0.000 claims description 11
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 10
- 239000010410 layer Substances 0.000 claims description 9
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 238000005187 foaming Methods 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 238000004321 preservation Methods 0.000 claims description 2
- 239000011241 protective layer Substances 0.000 claims description 2
- 239000002826 coolant Substances 0.000 claims 3
- 239000003949 liquefied natural gas Substances 0.000 abstract description 62
- 238000001816 cooling Methods 0.000 abstract description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000010248 power generation Methods 0.000 description 8
- 239000003245 coal Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000007710 freezing Methods 0.000 description 6
- 230000008014 freezing Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- -1 artificial rainfall Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0027—Oxides of carbon, e.g. CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K11/00—Plants characterised by the engines being structurally combined with boilers or condensers
- F01K11/02—Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/023—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0234—Integration with a cryogenic air separation unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
- F25J3/04266—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04527—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
- F25J3/04533—Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04612—Heat exchange integration with process streams, e.g. from the air gas consuming unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04624—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/20—Integration in an installation for liquefying or solidifying a fluid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/60—Integration in an installation using hydrocarbons, e.g. for fuel purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/80—Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明公开了一种LNG冷能梯级利用控制系统及控制方法,包括:空气分离系统,用于输入待分离空气及超低温液化天然气,用于输出一次升温后的天然气,输出液态O2;换热器H2,用于输入一次升温后的天然气,用于输入待换热的CO2,用于输出液态CO2,用于输出二次升温后的天然气;透平T1,用于输入二次升温后的天然气,用于输出一次降温降压后的天然气;换热器H1,用于输入一次降温降压后的天然气,用于输入待换热的载冷剂,用于输出换热后的载冷剂,用于输出三次升温后的天然气;透平T2,用于输入三次升温后的天然气,用于输出二次降温降压后的天然气。本发明能够合理利用LNG的冷量,可实现液化天然气冷量利用的最大化并转变成高品质的电能。
Description
技术领域
本发明属于LNG冷能梯级利用技术领域,特别涉及一种LNG冷能梯级利用控制系统及控制方法。
背景技术
根据世界一次能源的消费结构分析,石油占比32.9%,煤炭占29.2%,天然气占23.8%,其他可再生能源占2.8%,未来的发展石油消费占比将逐渐降低。我国对煤炭重度依赖,而煤炭燃烧产生的氮氧化物和烟尘将对环境造成重大的影响,与石油和煤炭相比较天然气的主要产物主要是二氧化碳和水,具有成比较低、污染物排放量小的特点。天然气资源丰富,且具有高效、热值高、洁净、污染小、可持续性等特点,随着天然气贸易的增长,超低温液化天然气(Liquefied Natural Gas,LNG)日益受到关注。LNG沸点温度为-162℃,包含冷能大约为840kJ/kg,约270(kw.h)/t,实际可用约240(kw.h)/t。2005年世界天然气消费量为2.77万亿立方米,近年来,天然气的消费占比逐年提高。
目前,中国天然气消费比重为5.9%,随着国家清洁能源可持续发展战略的推进,到2020年中国天然气在一次能源结构中占比将提高到10%,年消费量将达到3600亿立方米,目标在2030年实现天然气在一次能源消费占比重将达到15%,年消费量将达到6000亿立方米。因此,合理的利用LNG的冷能对能源的消费结构将产生显著的影响。现如今LNG大量应用于冷能发电、低温空分、低温冷冻、低温粉碎、制取干冰、海水淡化、冰雪世界、食品冷冻以及供冷等多方面冷能梯级利用。在我国提出“煤改气”的大环境下,对利用天然气的燃气蒸汽联合循环具有重要的研究意义。
综上,亟需一种新的LNG冷能利用控制系统及控制方法。
发明内容
本发明的目的在于提供一种LNG冷能梯级利用控制系统及控制方法,以解决上述存在的一个或多个技术问题。
为达到上述目的,本发明采用以下技术方案:
本发明的一种LNG冷能梯级利用控制系统,包括:
空气分离系统,用于输入待分离空气及超低温液化天然气,用于输出一次升温后的天然气,输出液态O2;其中,输入的超低温液化天然气温度范围为-162℃~-120℃;
换热器H2,用于输入所述空气分离系统输出的一次升温后的天然气,用于输入待换热的CO2,用于输出液态CO2,用于输出二次升温后的天然气;其中,一次升温后的天然气的温度范围为-110℃~-90℃;
透平T1,用于输入所述换热器H2输出的二次升温后的天然气,用于输出一次降温降压后的天然气,用于带动发电机G1发电;其中,二次升温后的天然气的温度范围为-80℃~-60℃;
换热器H1,用于输入所述透平T1输出的一次降温降压后的天然气,用于输入待换热的载冷剂,用于输出换热后的载冷剂,用于输出三次升温后的天然气;
透平T2,用于输入所述换热器H1输出的三次升温后的天然气,用于输出二次降温降压后的天然气,用于带动发电机G2发电;其中,三次升温后的天然气的温度范围为-80℃~-60℃。
本发明的进一步改进在于,还包括:冰雪世界,用于输入所述换热器H1输出的换热后的载冷剂,用于输出待换热的载冷剂。
本发明的进一步改进在于,所述载冷剂为乙二醇水溶液,其体积分数在50%~60%之间。
本发明的进一步改进在于,还包括:换热器H4,用于输入液态O2,用于输入待冷却烟气,用于输出O2气体;
多股物流换热器,用于输入所述换热器H4输出的O2气体,用于输入所述透平T2输出的二次降温降压后的天然气,用于输入空气,用于输出换热后的氧气和空气的混合气体,用于输出四次升温后的天然气;
燃烧室,用于输入所述多股物流换热器输出的四次升温后的天然气及氧气和空气的混合气体,富氧燃烧后,输出燃烧后产生的高温烟气;
燃气轮机GT,用于输入所述燃烧室输出的高温烟气,用于输出降压后的烟气,用于带动发电机G3发电;
换热器H3,用于输入所述燃气轮机GT输出的降压后的烟气,用于输入循环水,用于输出过热蒸汽;
透平T4,用于输入所述换热器H3输出的过热蒸气,用于带动发电机G4发电;
冷凝器,用于输入冷凝膨胀做功后的乏汽,用于输出凝结水。
本发明的进一步改进在于,还包括:气液分离器,用于输入待处理的烟气,用于输出冷凝水,用于输出CO2混合气体;其中,输出的CO2混合气体经过压缩机C2输入所述换热器H2进行换热。
本发明的进一步改进在于,还包括:
天然气输送管路,用于天然气的传输;所述天然气输送管路设置有加压泵和控制阀。
液态CO2收集灌,用于收集所述换热器H2输出的液态CO2;
液态O2收集灌,用于收集所述空气分离系统输出的液态O2。
本发明的进一步改进在于,透平T1的进口温度为-90℃~-60℃;透平T2的进口温度为-10℃~-20℃,透平T2的出口压力为300KPa。
本发明的进一步改进在于,换热后的载冷剂温度介于-50℃~-10℃之间。
本发明的进一步改进在于,输送载冷剂的管材采用奥氏体不锈钢;
所述管材外由内到外依次设置有保温层、防水层和保护层;所述保温层内壁与所述管材外壁之间留有间隙;所述保温层材料为硬质聚氨酯发泡塑料;
所述管材上每隔预设距离安装有膨胀节。
本发明的一种LNG冷能梯级利用控制方法,包括以下步骤:
步骤1,将待分离空气及超低温液化天然气输入空气分离系统,输出一次升温后的天然气和液态O2;其中,输入的超低温液化天然气温度范围为-162℃~-120℃;
步骤2,将待处理的CO2和步骤1输出的一次升温后的天然气输入换热器H2进行换热,输出二次升温后的天然气;其中,一次升温后的天然气的温度范围为-110℃~-90℃;
步骤3,将步骤2中换热器H2输出的二次升温后的天然气输入透平T1,用于带动发电机G1发电,输出一次降温降压后的天然气;其中,二次升温后的天然气的温度范围为-80℃~-60℃;
步骤4,将步骤3中透平T1输出的一次降温降压后的天然气和待处理的载冷剂输入换热器H1进行换热,输出换热后的载冷剂,输出三次升温后的天然气;其中,换热后的载冷剂温度介于-50℃~-10℃之间;
步骤5,将步骤4中换热器H1输出的三次升温后的天然气输入透平T2,用于带动发电机G2发电,输出二次降温降压后的天然气;其中,三次升温后的天然气的温度范围为-80℃~-60℃。
与现有技术相比,本发明具有以下有益效果:
本发明的一种LNG梯级冷量利用的控制系统,按照冷量的大小设定不同的工艺环节。控制系统中主要包含了空气分离系统环节(ASU)、透平低温膨胀做功以及碳的捕获与封存等多个环节,能够合理利用LNG的冷量,可实现液化天然气冷量利用的最大化并转变成高品质的电能。具体体现在,本发明提出了一种LNG冷能梯级的利用方式,按照冷量大小合理利用冷能,系统中构建的空分系统(ASU)分离出液氧,有效降低的制氧的成本,液氧的制取有利于在国防工业、冶金工业、化学工业以及医疗事业等各方面也有着广泛的用途;利用LNG冷能实现碳捕获技术,使得燃气轮机烟气中较高的二氧化碳被捕获并储存在容器中,有效减少大气中CO2的排放量;本发明中,LNG主要按照温度范围进行划分,可实现合理的冷能利用,对能源可持续发展及环境保护发挥着至关重要的作用。
本发明中,还设置有冰雪世界环节,能够进一步合理利用LNG的冷量。
本发明中,综合考虑选择了乙二醇水溶液作为载冷剂,乙二醇水溶液随体积分数的增加,其冰点温度逐渐降低,体积分数设定在50%~60%之间时,冰点温度介于-50~-33℃之间;本发明可为冰雪世界提供一定的冷量,用于造雪等需要大量的冷量,而冰雪世界的冷量是通过载冷剂提供的。
本发明中,还设置有燃气蒸汽联合循环环节,能够进一步合理利用LNG的冷量。
本发明中,还设置有汽水分离环节,能够进一步合理利用LNG的冷量。
本发明中,控制T1的进口温度在-90~-60℃作用,在T1和T2之间设置有换热器H2,可以提高透平T2的进口温度。
本发明中,经换热后的载冷剂温度介于-50~-10℃之间,可以防止载冷剂在管道中因低温造成凝结而堵塞管道,载冷剂携带的冷量在冰雪世界完成冷量释放后温度升高。
本发明的控制方法,按照冷量的大小设定不同的工艺环节,可实现LNG冷能梯级利用,能够合理利用LNG的冷量,可实现液化天然气冷量利用的最大化并转变成高品质的电能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面对实施例或现有技术描述中所需要使用的附图做简单的介绍;显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种LNG冷能梯级利用控制系统的结构示意框图;
图2是本发明实施例中,聚氨酯发泡塑料结构示意图。
具体实施方式
为使本发明实施例的目的、技术效果及技术方案更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述;显然,所描述的实施例是本发明一部分实施例。基于本发明公开的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,都应属于本发明保护的范围。
请参阅图1,图1中,ASU为空气分离系统,H1~H4均为换热器,C1~C3均为压气机,CC为燃烧室,GT为燃气轮机,T1、T2、T4均为透平,Con为冷凝器,P1~P3均为加压泵,CV1~CV5均为控制阀,G1~G4均为发电机,MHE为多股物流换热器,SP为气液分离器。
本发明实施例中构建的LNG冷能梯级利用系统主要有空分系统制氧、低温天然气直接膨胀发电、CO2分离、冰雪世界、燃气蒸汽联合循环等这几个部分构成,建立的LNG冷能梯级利用系统如图1所示。LNG温度为-162摄氏度,在空分系统中分离出液氧主要根据空气中氧气、氮气沸点的不同,在大气压力下氧气的沸点为-183.15℃,氮气的沸点为-196℃;相比于现有传统的制冷方式耗能较低,本发明在ASU中利用LNG的冷源维持精蒸馏塔内低温环境,使得液态空气产品低于常规空分成本,分离出的液O2在调节阀CV1和CV2作用下分成两个部分,一部分用于燃气蒸汽联合循环的富氧燃烧,而多余的液O2在调节阀的作用下进入液氧高压储液罐中。
LNG冷能用于液体二氧化碳的制备,CO2的三相点温度为-56.6℃,压力为0.511Mpa。针对于CO2捕获技术,在混合气的压力高于0.511MPa时,温度必须高于-56.6℃,否则会有CO2凝结堵塞管道,因此在捕获碳技术需要控制其CO2液化温度不能低于三相点温度。本发明中设定了不同工艺下LNG冷能温度适用范围,如表1所示。
表1.不同工艺下LNG冷能温度适用范围
工艺 | LNG温度/℃ |
空气分离 | -162~-120 |
CO<sub>2</sub>捕获 | -110~-90 |
低温发电 | -80~-60 |
控制透平T1的进口温度在-90~-60℃作用,在透平T1和透平T2之间设置有一换热器H2,该换热器有两个显著的作用。一方面可以提高透平T2的进口温度,设定其透平T2进口温度在-10~-20℃之间,透平T2出口压力设定在300KPa;另一方面为冰雪世界提供一定的冷量,用于造雪等需要大量的冷量,而冰雪世界的冷量是通过载冷剂提供的。其冷量来源于LNG本身,还能加上冷能发电输出机械功,这样极大的节省了冰雪世界所需的制冷耗功。
在为冰雪世界提供冷量的循环中,载冷剂的选择极其重要,基于安全性、成本的考虑,应满足以下几点要求:(1)环境友好性;(2)成本较低,属于常见或者易于制备;(3)具有较大的利用显热或潜热;(4)泄漏后易于处理。
本发明中,综合考虑选择了乙二醇水溶液作为载冷剂,乙二醇水溶液随体积分数的增加,其冰点温度逐渐降低,体积分数设定在50%~60%之间时,冰点温度介于-50~-33℃之间,冰雪世界循环中,载冷剂乙二醇水溶液和透平T1出口的低温天然气换热,换热后的载冷剂与经透平T2膨胀做功后的天然气在换热器H1中进行换热,再次充分利用天然气的冷量,使携带冷量的载冷剂通过管道输送至冰雪世界。经换热后的载冷剂温度介于-50~-10℃之间,可以防止载冷剂在管道中因低温造成凝结而堵塞管道,载冷剂携带的冷量在冰雪世界完成冷量释放后温度升高,在泵的加压做功下运输到储液罐中,最终完成为冰雪世界提供冷量的循环。
对于冰雪世界载冷剂管道的设计至关重要,因充分考虑到冷能发电站和冰雪世界供冷总站之间的距离、管道运输过程中冷量损失、克服的沿程阻力、材料成本等各方面原因。因此,管材采用奥氏体不锈钢,保温材料为硬质聚氨酯发泡塑料或者PIR,本发明中选用的保温材料为硬质聚氨酯发泡塑料,其结构如图2所示,每层的厚度约为50-60mm,为解决冷收缩问题,每35米安装一膨胀节。
透平T2出口的天然气经膨胀做功后转变为低温低压的天然气,应确定透平T2出口合适的温度和压力,其一出口温度大小的确定应基于透平能做最大的功输出,其二透平T2出口因防止低温天然气液化凝结而导致末级叶片腐蚀,且透平T2出口压力在0.2MPa以上,因出口压力过低易于造成液化凝结现象。用于富氧燃烧的液氧在进入多股物流换热器(MHE)换热之前,液氧与废热烟气在换热器H4中进行换热,液氧气化成温度较高的氧气,烟气在轴流风机和控制阀CV5的作用下实现与液氧的换热,充分提高燃烧室前进气温度,减少在燃烧室中热量的损失。低温低压的CH4输送至(MHE)中与来之燃气蒸汽联合循环的烟气进行换热,除此外在MHE中与高温烟气进行换热的还有O2、空气,用于富氧燃烧的液氧在用于燃烧前与烟气废热进行换热,提高燃烧室进口前温度,利于提高燃气蒸汽联合循环的效率,输出更大的机械功。氧气和空气在MHE中与高温烟气换热后温度升高,经压缩机C1压缩做功送入燃烧室(CC)。低温低压CH4在MHE中换热后温度升高,部分作为燃料实现在燃烧室中燃烧产生高温高压烟气,经压缩机C2的加压做功送入燃烧室与较高氧浓度空气混合燃烧,多余的CH4进入管网系统供给居民使用或者工业等其他用途。
在燃气蒸汽联合循环部分,燃烧室中产生高温高压的烟气用于燃气轮机发电,产生高品位的电能,燃气轮机GT带动发电机G3输出电能,燃气轮机排气温度仍然处于较高温度,直接排放将造成极大的热能损失,构建的燃气蒸汽联合循环中,高温的烟气与循环水在换热器H3进行换热,产生高温高压的水蒸气输入到透平T4中带动发电机G4实现电能输出,做功完成后的乏汽经冷凝器凝结成水,在加压泵的作用下输入到换热器完成整个循环。
碳捕获环节部分,燃气轮机排出的高温烟气在于蒸汽发电循环换热后温度有所降低,但烟气温度仍在100℃以上,该烟气在MHE中与多股流换热后转变成温度较低的烟气,烟气中主要成分是CO2以及部分水分,若直接排入大气会加重温室效应的产生,因此需要将烟气中的CO2以液态的形式分离出来。在MHE中换热后的烟气在气液分离器SP中分离出CO2和水分。该气液分离器采用旋风式,其通过分离-降速、离心、碰撞、变向和凝聚等原理,在分离器中设定挡板迫使气体改变二次方向,并以设计好的旋转速度产生离心力高效的分离出水分,产生的凝结水及时的通过管道及时排出凝结水。分离出的CO2在压缩机的加压下送至换热器H1与进行换热,因考虑到CO2的三相点温度为-56.6℃,控制压缩机对CO2加压控制在0.511MPa左右,液化产生的CO2储存在储液罐中。产生的液态CO2可以作为制冷剂、人工降雨、制纯碱、尿素和汽水等多种用途。
综上所述,本发明提出了一种LNG冷能梯级利用系统,设计了一个LNG冷能梯级利用系统,考虑到LNG在各个环节冷量大小及充分利用。由于LNG的温度在-162℃,具有很大的冷能利用潜力,分别构建了空分系统、碳捕获与储存环节、低温发电、冰雪世界、换热器环节、燃气蒸汽联合循环等这几个主要部分,基于各环节的工艺,空分系统设定温度范围在-162~120℃,CO2捕获设定温度范围在-110~-90℃范围内,利用换热器H2实现低温天然气与烟气中CO2换热,以实现对其液化并且封存在储液罐中。
本发明中,天然气经过换热器H1换热后升温至-80~-60℃之间,之后送入透平中进行低温膨胀做功,在透平T1膨胀做功完成后经换热器H2与载冷剂乙二醇水溶液换热,提高透平T2进口温度并为冰雪世界提供一定的冷量,透平T2出口状态点由于温度较低,具备一定的冷量,此时低温的天然气与载冷剂在换热器H5中进行换热,使得天然气的冷量得到充分利用。在MHE中完成燃气轮机排气与低温CH4、空气、氧气之间的换热,提高燃烧室进口温度,换热后部分天然气用于发电,其余部分进入管网系统送至居民区或工业用途等,富氧空气经压缩加压后与CH4在燃烧室中燃烧生成高温高压的烟气,该烟气用于燃气蒸汽联合循环产生高品位的电能。
本发明的优点在于:在构建的新系统中实现了空气分离环节并利用LNG冷能得到了液氧,碳捕获与封存环节实现了液态CO2的分离,有效防止烟气直接排入大气中加剧温室效应的形成,利用CH4的低温膨胀发电转化成高品质的电能,在冰雪世界环节模块中利用载冷剂乙二醇水溶液为其提供冷量,降低了冰雪世界的低温制冷成本,除此外还能提高透平T2的进口温度,利于低温CH4的二次膨胀做功。
燃气蒸汽联合循环模块中CH4在燃烧室中富氧燃烧,产生高温高压的烟气送入燃气轮机中带动发电机转换成高品质的电能,在透平循环中充分利用燃机的高温烟气与循环水换热产生高温蒸汽,送气汽轮机中带动发电机发电转换成高品质电能。最终合理的实现了LNG冷能梯级利用。
随着国家清洁能源战略的推进,液化天然气(LNG)在一次能源消费占比中逐年增加,LNG本身具备的巨大冷量需及时得到合理的利用。本发明中提出了一种LNG梯级冷量利用的控制系统,按照冷量的大小设定不同的工艺环节。控制系统中主要包含了空气分离系统环节(ASU)、透平低温膨胀做功、碳的捕获与封存、冰雪世界、汽水分离以及燃气蒸汽联合循环等多个环节,合理利用LNG的冷量,实现了液化天然气冷量利用的最大化并转变成高品质的电能。本发明提出的LNG冷能梯级的利用方式,按照冷量大小合理利用冷能,系统中构建的空分系统(ASU)分离出液氧,有效降低的制氧的成本,液氧的制取有利于在国防工业、冶金工业、化学工业以及医疗事业等各方面也有着广泛的用途。利用LNG冷能实现碳捕获技术,使得燃气轮机烟气中较高的二氧化碳被捕获并储存在容器中,有效减少大气中CO2的排放量,当前,我国的能源结构以煤炭为主,而发电燃煤排放的CO2量占我国CO2总排放量的82.0%。因此,随着CO2的排放量日益增加,政府也面临着巨大的碳减排压力,CO2的捕获与封存技术(CCS)将会在节能减排中发挥着至关重要的作用。据此国家设定了预计在2050年,燃气电厂的比例将上升到15%,其中1/3必须安装CCS设施。因此,LNG主要按照温度范围进行划分主要划分为深冷区、普冷区、浅冷区,实现合理的冷区冷能利用对能源可持续发展及环境保护发挥着至关重要的作用。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。
Claims (9)
1.一种LNG冷能梯级利用控制系统,其特征在于,包括:
空气分离系统,用于输入待分离空气及LNG,用于输出一次升温后的天然气,输出液态O2;其中,输入的LNG温度范围为-162℃~-120℃;
换热器H2,用于输入所述空气分离系统输出的一次升温后的天然气,用于输入待换热的CO2,用于输出液态CO2,用于输出二次升温后的天然气;其中,一次升温后的天然气的温度范围为-110℃~-90℃;
透平T1,用于输入所述换热器H2输出的二次升温后的天然气,用于输出一次降温降压后的天然气,用于带动发电机G1发电;其中,二次升温后的天然气的温度范围为-80℃~-60℃;
换热器H1,用于输入所述透平T1输出的一次降温降压后的天然气,用于输入待换热的载冷剂,用于输出换热后的载冷剂,用于输出三次升温后的天然气;
透平T2,用于输入所述换热器H1输出的三次升温后的天然气,用于输出二次降温降压后的天然气,用于带动发电机G2发电;其中,三次升温后的天然气的温度范围为-80℃~-60℃。
2.根据权利要求1所述的一种LNG冷能梯级利用控制系统,其特征在于,所述载冷剂为乙二醇水溶液,其体积分数在50%~60%之间。
3.根据权利要求1所述的一种LNG冷能梯级利用控制系统,其特征在于,还包括:
换热器H4,用于输入液态O2,用于输入待冷却烟气,用于输出O2气体;
多股物流换热器,用于输入所述换热器H4输出的O2气体,用于输入所述透平T2输出的二次降温降压后的天然气,用于输入空气,用于输出换热后的氧气和空气的混合气体,用于输出四次升温后的天然气;
燃烧室,用于输入所述多股物流换热器输出的四次升温后的天然气及氧气和空气的混合气体,富氧燃烧后,输出燃烧后产生的高温烟气;
燃气轮机GT,用于输入所述燃烧室输出的高温烟气,用于输出降压后的烟气,用于带动发电机G3发电;
换热器H3,用于输入所述燃气轮机GT输出的降压后的烟气,用于输入循环水,用于输出过热蒸汽;
透平T4,用于输入所述换热器H3输出的过热蒸气,用于带动发电机G4发电;
冷凝器,用于输入冷凝膨胀做功后的乏汽,用于输出凝结水。
4.根据权利要求1所述的一种LNG冷能梯级利用控制系统,其特征在于,还包括:
气液分离器,用于输入待处理的烟气,用于输出冷凝水,用于输出CO2混合气体;其中,输出的CO2混合气体经过压缩机C2输入所述换热器H2进行换热。
5.根据权利要求1所述的一种LNG冷能梯级利用控制系统,其特征在于,还包括:
天然气输送管路,用于天然气的传输;所述天然气输送管路设置有加压泵和控制阀;
液态CO2收集灌,用于收集所述换热器H2输出的液态CO2;
液态O2收集灌,用于收集所述空气分离系统输出的液态O2。
6.根据权利要求1所述的一种LNG冷能梯级利用控制系统,其特征在于,透平T1的进口温度为-90℃~-60℃;
透平T2的进口温度为-10℃~-20℃,透平T2的出口压力为300KPa。
7.根据权利要求1所述的一种LNG冷能梯级利用控制系统,其特征在于,换热后的载冷剂温度介于-50℃~-10℃之间。
8.根据权利要求1至7中任一项所述的一种LNG冷能梯级利用控制系统,其特征在于,输送载冷剂的管材采用奥氏体不锈钢;
所述管材外由内到外依次设置有保温层、防水层和保护层;所述保温层内壁与所述管材外壁之间留有间隙;所述保温层材料为硬质聚氨酯发泡塑料;
所述管材上每隔预设距离安装有膨胀节。
9.一种LNG冷能梯级利用控制方法,其特征在于,包括以下步骤:
步骤1,将待分离空气及LNG输入空气分离系统,输出一次升温后的天然气和液态O2;其中,输入的LNG温度范围为-162℃~-120℃;
步骤2,将待处理的CO2和步骤1输出的一次升温后的天然气输入换热器H2进行换热,输出二次升温后的天然气;其中,一次升温后的天然气的温度范围为-110℃~-90℃;
步骤3,将步骤2中换热器H2输出的二次升温后的天然气输入透平T1,用于带动发电机G1发电,输出一次降温降压后的天然气;其中,二次升温后的天然气的温度范围为-80℃~-60℃;
步骤4,将步骤3中透平T1输出的一次降温降压后的天然气和待处理的载冷剂输入换热器H1进行换热,输出换热后的载冷剂,输出三次升温后的天然气;其中,换热后的载冷剂温度介于-50℃~-10℃之间;
步骤5,将步骤4中换热器H1输出的三次升温后的天然气输入透平T2,用于带动发电机G2发电,输出二次降温降压后的天然气;其中,三次升温后的天然气的温度范围为-80℃~-60℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910672938.0A CN110529208B (zh) | 2019-07-24 | 2019-07-24 | 一种lng冷能梯级利用控制系统及控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910672938.0A CN110529208B (zh) | 2019-07-24 | 2019-07-24 | 一种lng冷能梯级利用控制系统及控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110529208A CN110529208A (zh) | 2019-12-03 |
CN110529208B true CN110529208B (zh) | 2020-11-10 |
Family
ID=68660854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910672938.0A Active CN110529208B (zh) | 2019-07-24 | 2019-07-24 | 一种lng冷能梯级利用控制系统及控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110529208B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115773180A (zh) * | 2022-11-24 | 2023-03-10 | 浙江大学 | 与Allam循环形式电站相结合的联合循环系统及低温循环方法 |
CN118408302B (zh) * | 2024-06-28 | 2024-09-10 | 浙江城建煤气热电设计院股份有限公司 | 一种天然气分布式综合能源系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221199A (ja) * | 2004-02-09 | 2005-08-18 | Kobe Steel Ltd | 空気分離装置 |
CN103628982A (zh) * | 2013-11-27 | 2014-03-12 | 暨南大学 | 利用液化天然气冷能捕集二氧化碳的联合动力循环方法及其系统 |
WO2014137573A2 (en) * | 2013-03-04 | 2014-09-12 | Exxonmobil Upstream Research Company | Regasification plant |
CN106224024A (zh) * | 2016-07-19 | 2016-12-14 | 华中科技大学 | 一种零碳排放的多级循环发电集成系统 |
CN108331625A (zh) * | 2017-12-29 | 2018-07-27 | 华中科技大学 | 一种利用天然气电厂排烟汽化潜热的发电系统 |
CN208751137U (zh) * | 2018-08-24 | 2019-04-16 | 邢仁钊 | 一种利用液化天然气冷能的空分系统 |
CN109821341A (zh) * | 2019-03-20 | 2019-05-31 | 赫普科技发展(北京)有限公司 | 一种燃气轮机利用lng冷能碳捕集系统及碳捕集方法 |
-
2019
- 2019-07-24 CN CN201910672938.0A patent/CN110529208B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221199A (ja) * | 2004-02-09 | 2005-08-18 | Kobe Steel Ltd | 空気分離装置 |
WO2014137573A2 (en) * | 2013-03-04 | 2014-09-12 | Exxonmobil Upstream Research Company | Regasification plant |
CN103628982A (zh) * | 2013-11-27 | 2014-03-12 | 暨南大学 | 利用液化天然气冷能捕集二氧化碳的联合动力循环方法及其系统 |
CN106224024A (zh) * | 2016-07-19 | 2016-12-14 | 华中科技大学 | 一种零碳排放的多级循环发电集成系统 |
CN108331625A (zh) * | 2017-12-29 | 2018-07-27 | 华中科技大学 | 一种利用天然气电厂排烟汽化潜热的发电系统 |
CN208751137U (zh) * | 2018-08-24 | 2019-04-16 | 邢仁钊 | 一种利用液化天然气冷能的空分系统 |
CN109821341A (zh) * | 2019-03-20 | 2019-05-31 | 赫普科技发展(北京)有限公司 | 一种燃气轮机利用lng冷能碳捕集系统及碳捕集方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110529208A (zh) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101806293B (zh) | 一种提高液化天然气冷能发电效率的集成优化方法 | |
Mirzaee et al. | Thermodynamic analyses of different scenarios in a CCHP system with micro turbine–Absorption chiller, and heat exchanger | |
CN204827564U (zh) | 一种低温热源发电装置 | |
CN103867894B (zh) | 一种利用液化天然气冷能发电及co2捕集的方法与装置 | |
CN107165723A (zh) | 集高效、节水、可控于一体的燃气轮机四联产系统 | |
CN103925587B (zh) | 一种燃煤的超临界水热燃烧发电装置 | |
WO2011054169A1 (zh) | 超临界空气储能系统 | |
CN105115245B (zh) | 利用液化天然气冷能捕集液化二氧化碳的系统装置及其方法 | |
CN111121390A (zh) | 一种耦合燃煤发电机组汽水系统的液化空气储能发电系统 | |
CN110529208B (zh) | 一种lng冷能梯级利用控制系统及控制方法 | |
CN106764414A (zh) | 一种lng气化站冷热电三联供系统 | |
CN102817655A (zh) | 错峰供电的综合能源管理系统及其方法 | |
CN205638705U (zh) | 利用lng制冰及以天然气为燃料的冷热电三联供系统 | |
CN105863762B (zh) | 一种利用液化天然气冷能发电的工艺系统及方法 | |
CN103806968B (zh) | 一种液态空气发电装置及工作方法 | |
CN112648034B (zh) | 一种利用lng冷能的bog燃气轮机、超临界co2布雷顿、有机朗肯联合循环发电系统 | |
CN114046172A (zh) | 基于二氧化碳工艺和模块化设计的煤火治理利用系统及方法 | |
Jiang et al. | Insights into 4E evaluation of a novel solar-assisted gas-fired decarburization power generation system with oxygen-enriched combustion | |
CN209990560U (zh) | 一种基于热声技术的冷能梯级利用系统 | |
CN106401676B (zh) | 一种低温液体汽化发电方法及发电设备 | |
US20230228485A1 (en) | Photoelectric hydrogen production energy storage and cold energy recovery coupled dry ice production device and use method | |
CN206889110U (zh) | 一种集高效、节水、可控于一体的燃气轮机四联产系统 | |
CN108278135B (zh) | 一种多循环工质回收烟气余热富氧燃烧发电集成系统 | |
CN203547813U (zh) | 一种以液化天然气冷能和太阳能为动力来源的发电装置 | |
CN215804738U (zh) | 一种蒸汽热量梯级利用的海水淡化和输送系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |