CN110526124B - A kind of anti-swing method, device, equipment and storage medium of bridge crane based on sliding surface - Google Patents
A kind of anti-swing method, device, equipment and storage medium of bridge crane based on sliding surface Download PDFInfo
- Publication number
- CN110526124B CN110526124B CN201910818773.3A CN201910818773A CN110526124B CN 110526124 B CN110526124 B CN 110526124B CN 201910818773 A CN201910818773 A CN 201910818773A CN 110526124 B CN110526124 B CN 110526124B
- Authority
- CN
- China
- Prior art keywords
- sliding mode
- swing angle
- subsystem
- controller
- rope length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 230000006870 function Effects 0.000 claims description 128
- 238000009795 derivation Methods 0.000 claims description 33
- 238000010276 construction Methods 0.000 claims description 20
- 238000013178 mathematical model Methods 0.000 claims description 19
- 230000015654 memory Effects 0.000 claims description 17
- 238000013459 approach Methods 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 abstract description 20
- 238000013461 design Methods 0.000 abstract description 14
- 238000004088 simulation Methods 0.000 description 43
- 230000000694 effects Effects 0.000 description 18
- 239000000725 suspension Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 9
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 244000145845 chattering Species 0.000 description 3
- 238000002789 length control Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/06—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
- B66C13/063—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C17/00—Overhead travelling cranes comprising one or more substantially horizontal girders the ends of which are directly supported by wheels or rollers running on tracks carried by spaced supports
- B66C17/04—Overhead travelling cranes comprising one or more substantially horizontal girders the ends of which are directly supported by wheels or rollers running on tracks carried by spaced supports with lifting beams, e.g. slewable beams, carrying load-engaging elements, e.g. magnets, hooks
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control And Safety Of Cranes (AREA)
Abstract
Description
技术领域technical field
本发明涉及桥式起重机技术领域,特别是一种基于滑模面的桥吊防摆方法、装置、设备及存储介质。The invention relates to the technical field of bridge cranes, in particular to an anti-swing method, device, equipment and storage medium for bridge cranes based on a sliding surface.
背景技术Background technique
桥式吊车作为一种大型货物装卸机械装置,被广泛应用于港口、仓库、重工业车间、建筑工地等场所的装配运输过程。桥式吊车系统控制的主要目标是实现精确的吊车定位并尽可能地消除负载的摆角,以便在最短时间内将货物运输到指定位置而不产生摆动。滑模控制对非线性系统的有良好的控制性能,被广泛应用到桥式吊车的系统控制中,但是当前主流的桥式吊车滑模控制存在以下问题:As a large-scale cargo loading and unloading mechanical device, overhead cranes are widely used in the assembly and transportation process of ports, warehouses, heavy industry workshops, construction sites and other places. The main goal of overhead crane system control is to achieve precise crane positioning and eliminate the swing angle of the load as much as possible, so that the goods can be transported to the designated position in the shortest time without swinging. Sliding mode control has good control performance for nonlinear systems and is widely used in the system control of overhead cranes. However, the current mainstream overhead crane sliding mode control has the following problems:
传统的一般滑模控制算法不能很好地处理系统非匹配不确定性的问题,因而会出现抖振现象,这一问题进而会影响到电机的使用寿命。此外,传统的滑模控制算法在大幅度改变系统参数时,吊车的防摆控制效果会变得较差,鲁棒性较差,当系统受到外部强烈干扰时,控制算法无法及时准确地做出响应,进一步削弱了桥吊防摆效果。The traditional general sliding mode control algorithm cannot deal with the problem of mismatching uncertainty of the system, so chattering phenomenon will occur, which will affect the service life of the motor. In addition, when the traditional sliding mode control algorithm greatly changes the system parameters, the anti-swing control effect of the crane will become poor and the robustness will be poor. When the system is strongly disturbed by the outside, the control algorithm cannot make timely and accurate decisions In response, the anti-sway effect of the bridge suspension is further weakened.
发明内容SUMMARY OF THE INVENTION
为解决上述问题,本发明的目的在于提供一种基于滑模面的桥吊防摆方法、装置、设备及存储介质,利用反演滑模控制技术能处理系统非匹配不确定性的优点,同时引入时变滑模面使系统具有更强的鲁棒性,进一步提高桥式吊车系统的稳定性和控制性能。In order to solve the above-mentioned problems, the purpose of the present invention is to provide an anti-swing method, device, equipment and storage medium for a bridge crane based on a sliding mode surface, which can deal with the advantages of non-matching uncertainty of the system by using the inversion sliding mode control technology, and at the same time. The introduction of the time-varying sliding surface makes the system more robust and further improves the stability and control performance of the overhead crane system.
本发明解决其问题所采用的技术方案是:The technical scheme adopted by the present invention to solve its problem is:
第一方面,本发明提供了一种基于滑模面的桥吊防摆方法,包括:构建桥式吊车的位置摆角系统数学模型,基于反演滑模控制理论构建台车位置子系统控制器和负载摆角子系统控制器,将所述台车位置子系统控制器和所述负载摆角子系统控制器结合构建位置摆角全局滑模面,在所述位置摆角全局滑模面中引入时变函数,构建位置摆角滑模控制器;In a first aspect, the present invention provides an anti-swing method for a bridge crane based on a sliding mode surface, including: constructing a mathematical model of a position swing angle system of an overhead crane, and constructing a trolley position subsystem controller based on an inverse sliding mode control theory and the load swing angle subsystem controller, the trolley position subsystem controller and the load swing angle subsystem controller are combined to construct a position swing angle global sliding mode surface, when introduced into the position swing angle global sliding mode surface Variable function to construct a position swing angle sliding mode controller;
构建桥式吊车的绳长系统数学模型,基于反演滑模控制理论构建绳长滑模控制器;Build the mathematical model of the rope length system of the overhead crane, and construct the rope length sliding mode controller based on the inversion sliding mode control theory;
获取台车位置参数、负载摆角参数、时间参数和绳长参数;Obtain trolley position parameters, load swing angle parameters, time parameters and rope length parameters;
将所述台车位置参数、负载摆角参数、时间参数输入所述位置摆角滑模控制器中,将所述绳长参数输入到绳长滑模控制器中;Inputting the trolley position parameter, load swing angle parameter and time parameter into the position swing angle sliding mode controller, and inputting the rope length parameter into the rope length sliding mode controller;
所述位置摆角滑模控制器和绳长滑模控制器分别输出台车水平牵引力和沿绳牵引力。The position and swing angle sliding mode controller and the rope length sliding mode controller respectively output the horizontal traction force of the trolley and the traction force along the rope.
进一步,基于反演滑模控制理论构建台车位置子系统控制器包括:Further, the construction of the trolley position subsystem controller based on the inversion sliding mode control theory includes:
构建台车位置子系统的第一层李雅普诺夫函数;Build the first-level Lyapunov function of the trolley position subsystem;
对台车位置子系统的第一层李雅普诺夫函数进行一阶求导;Perform the first-order derivation of the first-level Lyapunov function of the trolley position subsystem;
若所述台车位置子系统的第一层李雅普诺夫函数的一阶导数不大于0,则求得台车位置子系统控制器;If the first derivative of the Lyapunov function of the first layer of the trolley position subsystem is not greater than 0, obtain the trolley position subsystem controller;
若所述台车位置子系统的第一层李雅普诺夫函数的一阶导数大于0,则构建台车位置子系统的第二层台车位置子系统李雅普诺夫函数;If the first derivative of the Lyapunov function of the first layer of the trolley position subsystem is greater than 0, construct the Lyapunov function of the second layer of the trolley position subsystem of the trolley position subsystem;
对台车位置子系统的第二层台车位置子系统李雅普诺夫函数进行一阶求导;First-order derivation of the Lyapunov function of the second-level trolley position subsystem of the trolley position subsystem;
令台车位置子系统的第二层台车位置子系统李雅普诺夫函数的一阶导数不大于零,求得台车位置子系统控制器。Let the first derivative of the Lyapunov function of the second-layer trolley position subsystem of the trolley position subsystem be not greater than zero, and obtain the trolley position subsystem controller.
进一步,所述基于反演滑模控制理论构建负载摆角子系统控制器包括:Further, the construction of the load swing angle subsystem controller based on the inversion sliding mode control theory includes:
构建负载摆角子系统的第一层李雅普诺夫函数;Build the first-level Lyapunov function of the load swing angle subsystem;
对负载摆角子系统的第一层李雅普诺夫函数进行一阶求导;Perform the first-order derivation of the first-level Lyapunov function of the load swing angle subsystem;
若所述负载摆角子系统的第一层李雅普诺夫函数的一阶导数不大于0,则求得负载摆角子系统控制器;If the first derivative of the Lyapunov function of the first layer of the load swing angle subsystem is not greater than 0, obtain the load swing angle subsystem controller;
若所述负载摆角子系统的第一层李雅普诺夫函数的一阶导数大于0,则构建负载摆角子系统的第二层李雅普诺夫函数;If the first derivative of the Lyapunov function of the first layer of the load swing angle subsystem is greater than 0, construct the second layer of the Lyapunov function of the load swing angle subsystem;
对负载摆角子系统的第二层李雅普诺夫函数进行一阶求导;Perform the first-order derivation of the second-level Lyapunov function of the load swing angle subsystem;
令负载摆角子系统的第二层李雅普诺夫函数的一阶导数不大于零,求得负载摆角子系统控制器。Let the first derivative of the second-level Lyapunov function of the load swing angle subsystem be not greater than zero, and obtain the load swing angle subsystem controller.
进一步,所述将所述台车位置子系统控制器和所述负载摆角子系统控制器结合构建位置摆角全局滑模面,在所述位置摆角全局滑模面中引入时变函数,构建位置摆角滑模控制器包括:Further, the trolley position subsystem controller and the load swing angle subsystem controller are combined to construct a position swing angle global sliding mode surface, and a time-varying function is introduced into the position swing angle global sliding mode surface to construct The position swing angle sliding mode controller includes:
构建位置摆角全局系统滑模控制函数;Construct the sliding mode control function of the global system of position swing angle;
构建位置摆角全局系统时变滑模面;Build a time-varying sliding surface for a global system of position and swing angle;
构建位置摆角全局系统李雅普诺夫函数;Construct the Lyapunov function of the global system of position and swing angle;
对位置摆角全局系统李雅普诺夫函数进行一阶求导;Perform the first-order derivation of the Lyapunov function of the global system of position and swing angles;
构建一般指数趋近律求得位置摆角全局系统滑模控制的耦合开关控制律;A general exponential approach law is constructed to obtain the coupled switch control law of the sliding mode control of the global system of position swing angle;
构建S型饱和函数为位置摆角全局系统滑模控制函数求得位置摆角滑模控制器。The S-shaped saturation function is constructed as the sliding mode control function of the global system of position swing angle to obtain the position swing angle sliding mode controller.
进一步,所述基于反演滑模控制理论构建绳长滑模控制器包括:构建绳长子系统的第一层李雅普诺夫函数;Further, the construction of the rope length sliding mode controller based on the inversion sliding mode control theory includes: constructing the first layer Lyapunov function of the rope length subsystem;
对绳长子系统的第一层李雅普诺夫函数进行一阶求导;Take the first-order derivation of the first-level Lyapunov function of the rope length subsystem;
若所述绳长子系统的第一层李雅普诺夫函数的一阶导数不大于0,则求得绳长子系统控制器;If the first derivative of the Lyapunov function of the first layer of the rope length subsystem is not greater than 0, obtain the rope length subsystem controller;
若所述绳长子系统的第一层李雅普诺夫函数的一阶导数大于0,则构建绳长子系统的第二层李雅普诺夫函数;If the first-order derivative of the first-layer Lyapunov function of the rope-length subsystem is greater than 0, constructing the second-layer Lyapunov function of the rope-length subsystem;
对绳长子系统的第二层李雅普诺夫函数进行一阶求导;Take the first-order derivation of the second-level Lyapunov function of the rope length subsystem;
令绳长子系统的第二层李雅普诺夫函数的一阶导数不大于零,求得绳长子系统控制器。Let the first derivative of the second-level Lyapunov function of the rope length subsystem be not greater than zero, and obtain the rope length subsystem controller.
第二方面,本发明提供了一种基于滑模面的桥吊防摆装置,包括:位置摆角滑模控制器构建单元,用于构建桥式吊车的位置摆角系统数学模型,基于反演滑模控制理论构建台车位置子系统控制器和负载摆角子系统控制器,将所述台车位置子系统控制器和所述负载摆角子系统控制器结合构建位置摆角全局滑模面,在所述位置摆角全局滑模面中引入时变函数,构建位置摆角滑模控制器;In a second aspect, the present invention provides an anti-swing device for a bridge crane based on a sliding mode surface, comprising: a position swing angle sliding mode controller construction unit for constructing a mathematical model of the position swing angle system of the bridge crane, based on inversion The sliding mode control theory constructs the trolley position subsystem controller and the load swing angle subsystem controller, and combines the trolley position subsystem controller and the load swing angle subsystem controller to construct the position swing angle global sliding mode surface. A time-varying function is introduced into the global sliding mode surface of the position swing angle to construct a position swing angle sliding mode controller;
绳长滑模控制器构建单元,用于构建桥式吊车的绳长系统数学模型,基于反演滑模控制理论构建绳长滑模控制器;The rope length sliding mode controller construction unit is used to construct the mathematical model of the rope length system of the overhead crane, and the rope length sliding mode controller is constructed based on the inversion sliding mode control theory;
获取单元,用于获取台车位置参数、负载摆角参数、时间参数和绳长参数;The acquisition unit is used to acquire the trolley position parameters, load swing angle parameters, time parameters and rope length parameters;
输入单元,用于将所述台车位置参数、负载摆角参数、时间参数输入所述位置摆角滑模控制器中,将所述绳长参数输入到绳长滑模控制器中;an input unit for inputting the position parameter, load swing angle parameter and time parameter of the trolley into the position swing angle sliding mode controller, and inputting the rope length parameter into the rope length sliding mode controller;
输出单元,用于所述位置摆角滑模控制器和绳长滑模控制器分别输出台车水平牵引力和沿绳牵引力。The output unit is used for the position swing angle sliding mode controller and the rope length sliding mode controller to output the horizontal traction force and the rope traction force of the trolley respectively.
第三方面,本发明提供了一种基于滑模面的桥吊防摆设备,In a third aspect, the present invention provides a bridge suspension anti-swing device based on a sliding surface,
包括至少一个控制处理器和用于与至少一个控制处理器通信连接的存储器;存储器存储有可被至少一个控制处理器执行的指令,指令被至少一个控制处理器执行,以使至少一个控制处理器能够执行如上所述的基于滑模面的桥吊防摆方法。comprising at least one control processor and a memory for communicative connection with the at least one control processor; the memory stores instructions executable by the at least one control processor, the instructions are executed by the at least one control processor to cause the at least one control processor The sliding surface-based anti-sway method of the bridge suspension as described above can be performed.
第四方面,本发明提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行如上所述的基于滑模面的桥吊防摆方法。In a fourth aspect, the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute the above-mentioned sliding surface-based bridge suspension anti-sway method.
第五方面,本发明还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使计算机执行如上所述的基于滑模面的桥吊防摆方法。In a fifth aspect, the present invention also provides a computer program product, the computer program product including a computer program stored on a computer-readable storage medium, the computer program including program instructions, when the program instructions are executed by a computer , to make the computer execute the above-mentioned sliding surface-based bridge suspension anti-sway method.
本发明实施例中提供的一个或多个技术方案,至少具有如下有益效果:基于反演控制算法逐层设计台车位置子系统控制器和负载摆角子系统控制器后,将台车位置子系统控制器和负载摆角子系统控制器进行结合,构建一个位置摆角全局滑模面,在滑模面设计中引入时变函数,大大减少状态变量到达滑模面的时间;基于反演滑模控制理论对绳长的状态空间函数结合李雅普诺夫函数对绳长控制器进行逐层设计,实现吊绳子系统的渐进稳定。本发明实施例方法不仅可以处理系统非匹配不确定性问题,最大限度消除传统滑模控制算法中存在的抖振现象,而且可以提高吊车系统防摆控制的鲁棒性,同时使系统具有抗干扰能力,进一步提高桥式吊车系统的稳定性和控制性能。The one or more technical solutions provided in the embodiments of the present invention have at least the following beneficial effects: after the trolley position subsystem controller and the load swing angle subsystem controller are designed layer by layer based on the inversion control algorithm, the trolley position subsystem controller is designed The controller and the load swing angle subsystem controller are combined to construct a global sliding mode surface for the position swing angle, and a time-varying function is introduced into the sliding mode surface design, which greatly reduces the time for the state variables to reach the sliding mode surface; based on inversion sliding mode control In theory, the state space function of the rope length is combined with the Lyapunov function to design the rope length controller layer by layer, so as to realize the asymptotic stability of the suspending rope subsystem. The method of the embodiment of the present invention can not only deal with the problem of non-matching uncertainty of the system, eliminate the chattering phenomenon existing in the traditional sliding mode control algorithm to the greatest extent, but also improve the robustness of the anti-swing control of the crane system, and at the same time make the system anti-interference ability to further improve the stability and control performance of the overhead crane system.
附图说明Description of drawings
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
图1是本发明实施例的方法流程图;Fig. 1 is the method flow chart of the embodiment of the present invention;
图2是本发明实施例的基于反演滑模控制理论构建台车位置子系统控制器的方法流程图;2 is a flowchart of a method for constructing a trolley position subsystem controller based on the inversion sliding mode control theory according to an embodiment of the present invention;
图3是本发明实施例的基于反演滑模控制理论构建负载摆角子系统控制器的方法流程图;3 is a flowchart of a method for constructing a load swing angle subsystem controller based on inversion sliding mode control theory according to an embodiment of the present invention;
图4是本发明实施例的将所述台车位置子系统控制器和所述负载摆角子系统控制器结合构建位置摆角全局滑模面,在所述位置摆角全局滑模面中引入时变函数,构建位置摆角滑模控制器的方法流程图;4 is an embodiment of the present invention that combines the trolley position subsystem controller and the load swing angle subsystem controller to construct a position swing angle global sliding mode surface, when introduced into the position swing angle global sliding mode surface Variable function, the method flow chart of constructing the position swing angle sliding mode controller;
图5是本发明实施例的基于反演滑模控制理论构建绳长滑模控制器的方法流程图;5 is a flowchart of a method for constructing a rope length sliding mode controller based on inversion sliding mode control theory according to an embodiment of the present invention;
图6是本发明实施例的仿真实验效果图;Fig. 6 is the simulation experiment effect diagram of the embodiment of the present invention;
图7是本发明实施例控制方法与时变滑模控制方法、反演滑模控制方法在仿真环境1中的仿真实验效果图;7 is a simulation experiment effect diagram of the control method according to the embodiment of the present invention, the time-varying sliding mode control method, and the inversion sliding mode control method in the simulation environment 1;
图8是本发明实施例控制方法与时变滑模控制方法、反演滑模控制方法在仿真环境2中的仿真实验效果图;8 is a simulation experiment effect diagram of the control method, the time-varying sliding mode control method, and the inversion sliding mode control method in the simulation environment 2 according to the embodiment of the present invention;
图9是本发明实施例控制方法与时变滑模控制方法、反演滑模控制方法在仿真环境3中的仿真实验效果图;9 is a simulation experiment effect diagram of the control method, the time-varying sliding mode control method, and the inversion sliding mode control method in the simulation environment 3 according to the embodiment of the present invention;
图10是本发明实施例控制方法与时变滑模控制方法、反演滑模控制方法在仿真环境4中的仿真实验效果图;Fig. 10 is the simulation experiment effect diagram of the control method of the embodiment of the present invention, the time-varying sliding mode control method, and the inversion sliding mode control method in the simulation environment 4;
图11是本发明实施例控制方法与时变滑模控制方法、反演滑模控制方法在仿真环境5中的仿真实验效果图;Fig. 11 is the simulation experiment effect diagram of the control method of the embodiment of the present invention, the time-varying sliding mode control method, and the inversion sliding mode control method in the
图12是本发明实施例的装置中单元架构示意图;12 is a schematic diagram of a unit structure in a device according to an embodiment of the present invention;
图13是本发明实施例的设备中的连接示意图;FIG. 13 is a schematic diagram of connections in a device according to an embodiment of the present invention;
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。It should be noted that, if there is no conflict, various features in the embodiments of the present invention can be combined with each other, which are all within the protection scope of the present invention. In addition, although the functional modules are divided in the schematic diagram of the device, and the logical sequence is shown in the flowchart, in some cases, the modules in the device may be divided differently, or the sequence shown in the flowchart may be performed. or the described steps.
参照图1,本发明的一个实施例提供了一种基于滑模面的桥吊防摆方法,包括:Referring to FIG. 1 , an embodiment of the present invention provides a method for anti-swinging of a bridge suspension based on a sliding surface, including:
步骤S11,构建桥式吊车的位置摆角系统数学模型,基于反演滑模控制理论构建台车位置子系统控制器和负载摆角子系统控制器,将所述台车位置子系统控制器和所述负载摆角子系统控制器结合构建位置摆角全局滑模面,在所述位置摆角全局滑模面中引入时变函数,构建位置摆角滑模控制器;Step S11, construct the mathematical model of the position swing angle system of the overhead crane, build the trolley position subsystem controller and the load swing angle subsystem controller based on the inversion sliding mode control theory, and combine the trolley position subsystem controller and all The load swing angle subsystem controller is combined with constructing a position swing angle global sliding mode surface, and a time-varying function is introduced into the position swing angle global sliding mode surface to construct a position swing angle sliding mode controller;
步骤S12,构建桥式吊车的绳长系统数学模型,基于反演滑模控制理论构建绳长滑模控制器;Step S12, constructing the mathematical model of the rope length system of the overhead crane, and constructing the rope length sliding mode controller based on the inversion sliding mode control theory;
步骤S13,获取台车位置参数、负载摆角参数、时间参数和绳长参数;Step S13, obtain the trolley position parameter, load swing angle parameter, time parameter and rope length parameter;
步骤S14,将所述台车位置参数、负载摆角参数、时间参数输入所述位置摆角滑模控制器中,将所述绳长参数输入到绳长滑模控制器中;Step S14, inputting the trolley position parameter, load swing angle parameter and time parameter into the position swing angle sliding mode controller, and inputting the rope length parameter into the rope length sliding mode controller;
步骤S15,所述位置摆角滑模控制器和绳长滑模控制器分别输出台车水平牵引力和沿绳牵引力。Step S15, the position swing angle sliding mode controller and the rope length sliding mode controller output the horizontal traction force and the rope traction force of the trolley respectively.
本发明实施例将原本复杂的桥式吊车动力学模型转换成一般状态空间函数形式,运用反演控制算法逐层设计台车位置子系统控制器和负载摆角子系统控制器后,将台车位置子系统控制器和负载摆角子系统控制器进行结合,构建一个位置摆角全局滑模面,在滑模面设计中引入时变函数,滑模面可随着时间的改变而改变,使滑模面的初始位置尽可能地接近状态变量,大大减少状态变量到达滑模面的时间;构建绳长子系统控制器,利用反演滑模控制理论对绳长的状态空间函数结合李雅普诺夫函数进行逐层设计,实现吊绳子系统的渐进稳定。In the embodiment of the present invention, the original complex dynamic model of overhead crane is converted into a general state space function form, and the trolley position subsystem controller and the load swing angle subsystem controller are designed layer by layer by using the inversion control algorithm, and the trolley position The subsystem controller and the load swing angle subsystem controller are combined to construct a global sliding mode surface for the position swing angle, and a time-varying function is introduced into the sliding mode surface design. The sliding mode surface can change with time, making the sliding mode surface The initial position of the surface is as close to the state variable as possible, which greatly reduces the time for the state variable to reach the sliding mode surface; the rope length subsystem controller is constructed, and the state space function of the rope length combined with the Lyapunov function is used to perform a step-by-step process using the inversion sliding mode control theory. Layer design to achieve the progressive stability of the sling subsystem.
桥式吊车系统为欠驱动系统,台车位置和负载摆角两个状态量为同一个电机所驱动,也就是一个驱动量引起两个状态量同时改变,因此在位置摆角子系统控制器的设计中需要将台车位置和负载摆角的防摆控制器同时考虑进来,分别构建台车位置子系统控制器和负载摆角子系统控制器,再结合台车位置子系统控制器和负载摆角子系统控制器,引入时变函数,构建出位置摆角全局系统控制器。The overhead crane system is an underactuated system, and the two state quantities of the trolley position and the load swing angle are driven by the same motor, that is, one drive quantity causes the two state quantities to change at the same time. Therefore, in the design of the position swing angle subsystem controller It is necessary to take into account the anti-swing controller of the trolley position and the load swing angle at the same time, and build the trolley position subsystem controller and the load swing angle subsystem controller respectively, and then combine the trolley position subsystem controller and the load swing angle subsystem. The controller introduces a time-varying function to construct a global system controller for the position and swing angle.
参照图2,其中,基于反演滑模控制理论构建台车位置子系统控制器还包括以下步骤:Referring to Fig. 2, wherein, the construction of the trolley position subsystem controller based on the inversion sliding mode control theory also includes the following steps:
步骤S21,构建台车位置子系统的第一层李雅普诺夫函数;Step S21, constructing the first-layer Lyapunov function of the trolley position subsystem;
步骤S22,对台车位置子系统的第一层李雅普诺夫函数进行一阶求导;Step S22, first-order derivation is performed on the Lyapunov function of the first layer of the trolley position subsystem;
步骤S23,若所述台车位置子系统的第一层李雅普诺夫函数的一阶导数不大于0,则求得台车位置子系统控制器;Step S23, if the first derivative of the Lyapunov function of the first layer of the trolley position subsystem is not greater than 0, then obtain the trolley position subsystem controller;
步骤S24,若所述台车位置子系统的第一层李雅普诺夫函数的一阶导数大于0,则构建台车位置子系统的第二层台车位置子系统李雅普诺夫函数;Step S24, if the first derivative of the Lyapunov function of the first layer of the trolley position subsystem is greater than 0, construct the Lyapunov function of the second layer of the trolley position subsystem of the trolley position subsystem;
步骤S25,对台车位置子系统的第二层台车位置子系统李雅普诺夫函数进行一阶求导;Step S25, first-order derivation is performed on the Lyapunov function of the second-layer trolley position subsystem of the trolley position subsystem;
步骤S26,令台车位置子系统的第二层台车位置子系统李雅普诺夫函数的一阶导数不大于零,求得台车位置子系统控制器。In step S26, the first derivative of the Lyapunov function of the second-layer trolley position subsystem of the trolley position subsystem is not greater than zero, and the trolley position subsystem controller is obtained.
本发明实施例中,基于反演滑模控制理论,并结合李雅普诺夫函数进行稳定性设计,构建台车位置子系统控制器,第一层李雅普诺夫函数中仅包含台车位置参数,对其求导得到台车运动速度参数,这对于台车位置控制器设计来说是不够的,因为不包含台车的运动加速度变量,无法保证台车位置控制器渐进稳定,所以需要对台车位置子系统构建第二层李雅普诺夫函数,使台车位置子系统趋于稳定,增强系统的鲁棒性和控制性能。In the embodiment of the present invention, based on the inversion sliding mode control theory, combined with the Lyapunov function for stability design, the trolley position subsystem controller is constructed. The first layer of the Lyapunov function only contains the trolley position parameters. Its derivation can obtain the speed parameter of the trolley, which is not enough for the design of the trolley position controller, because it does not include the motion acceleration variable of the trolley, and the asymptotic stability of the trolley position controller cannot be guaranteed, so it is necessary to determine the position of the trolley. The subsystem builds the second-layer Lyapunov function, which stabilizes the trolley position subsystem and enhances the robustness and control performance of the system.
参照图3,其中,基于反演滑模控制理论构建负载摆角子系统控制器包括以下步骤:Referring to Fig. 3, wherein, constructing the load swing angle subsystem controller based on the inversion sliding mode control theory includes the following steps:
步骤S31,构建负载摆角子系统的第一层李雅普诺夫函数;Step S31, constructing the first-layer Lyapunov function of the load swing angle subsystem;
步骤S32,对负载摆角子系统的第一层李雅普诺夫函数进行一阶求导;Step S32, first-order derivation is performed on the Lyapunov function of the first layer of the load swing angle subsystem;
步骤S33,若所述负载摆角子系统的第一层李雅普诺夫函数的一阶导数不大于0,则求得负载摆角子系统控制器;Step S33, if the first derivative of the Lyapunov function of the first layer of the load swing angle subsystem is not greater than 0, then obtain the load swing angle subsystem controller;
步骤S34,若所述负载摆角子系统的第一层李雅普诺夫函数的一阶导数大于0,则构建负载摆角子系统的第二层李雅普诺夫函数;Step S34, if the first derivative of the Lyapunov function of the first layer of the load swing angle subsystem is greater than 0, construct the second layer of the Lyapunov function of the load swing angle subsystem;
步骤S35,对负载摆角子系统的第二层李雅普诺夫函数进行一阶求导;Step S35, first-order derivation is performed on the second-layer Lyapunov function of the load swing angle subsystem;
步骤S36,令负载摆角子系统的第二层李雅普诺夫函数的一阶导数不大于零,求得负载摆角子系统控制。In step S36, the first derivative of the Lyapunov function of the second layer of the load swing angle subsystem is not greater than zero, and the control of the load swing angle subsystem is obtained.
本发明实施例中,基于反演滑模控制理论,并结合李雅普诺夫函数进行稳定性设计,构建负载摆角子系统控制器,第一层李雅普诺夫函数中仅包含负载摆角角度参数,对其求导得到负载摆角运动速度参数,这对于负载摆角控制器设计来说是不够的,因为不包含负载摆角的运动加速度变量,无法保证负载摆角控制器渐进稳定,所以需要对负载摆角子系统构建第二层李雅普诺夫函数,使负载摆角子系统趋于稳定,增强系统的鲁棒性和控制性能。In the embodiment of the present invention, based on the inversion sliding mode control theory, and combined with the Lyapunov function for stability design, the load swing angle subsystem controller is constructed. The first layer of the Lyapunov function only includes the load swing angle angle parameter. Its derivation can obtain the speed parameter of the load swing angle motion, which is not enough for the design of the load swing angle controller, because the motion acceleration variable of the load swing angle is not included, and the asymptotic stability of the load swing angle controller cannot be guaranteed, so it is necessary to adjust the load swing angle controller. The swing angle subsystem constructs the second-layer Lyapunov function, which stabilizes the load swing angle subsystem and enhances the robustness and control performance of the system.
参照图4,其中,将所述台车位置子系统控制器和所述负载摆角子系统控制器结合构建位置摆角全局滑模面,在所述位置摆角全局滑模面中引入时变函数,构建位置摆角滑模控制器包括以下步骤:Referring to FIG. 4, wherein the trolley position subsystem controller and the load swing angle subsystem controller are combined to construct a position swing angle global sliding mode surface, and a time-varying function is introduced into the position swing angle global sliding mode surface , the construction of the position swing angle sliding mode controller includes the following steps:
步骤S41,构建位置摆角全局系统滑模控制函数;Step S41, constructing the global system sliding mode control function of the position swing angle;
步骤S42,构建位置摆角全局系统时变滑模面;Step S42, constructing a time-varying sliding surface of a global system of position swing angle;
步骤S43,构建位置摆角全局系统李雅普诺夫函数;Step S43, constructing the Lyapunov function of the global system of position swing angle;
步骤S44,对位置摆角全局系统李雅普诺夫函数进行一阶求导;Step S44, first-order derivation is performed on the Lyapunov function of the position swing angle global system;
步骤S45,构建一般指数趋近律求得位置摆角全局系统滑模控制的耦合开关控制律;Step S45, constructing a general exponential reaching law to obtain the coupled switch control law of the sliding mode control of the global system of the position swing angle;
步骤S46,构建S型饱和函数为位置摆角全局系统滑模控制函数求得位置摆角滑模控制器。Step S46, constructing the S-shaped saturation function as the sliding mode control function of the global system of the position swing angle to obtain the position swing angle sliding mode controller.
反演滑模控制设计方法首先对复杂的驱动量缺失的不呈线性状态的系统分隔成不多于系统层数的子系统,然后将李雅普诺夫函数与中间无实际物理含义的控制量相互结合引入到子系统设计中,在最后一层系统的虚拟控制量引入滑模变结构控制,利用滑模控制的不改变性来保证最后子系统的渐进平稳,在本发明实施例中是先分成台车位置子系统和负载摆角子系统分别构建控制器,在最后一层系统的构建中引入时变滑模面,从而构建出位置摆角全局滑模控制器。The inversion sliding mode control design method firstly divides the complex non-linear state system with missing driving variables into subsystems with no more than system layers, and then combines the Lyapunov function with the control variables that have no actual physical meaning in the middle. Introduced into the subsystem design, the sliding mode variable structure control is introduced into the virtual control quantity of the last layer of the system, and the invariance of the sliding mode control is used to ensure the asymptotic stability of the final subsystem. In the embodiment of the present invention, it is first divided into stages The vehicle position subsystem and the load swing angle subsystem build controllers respectively, and the time-varying sliding mode surface is introduced in the construction of the last layer of the system, so as to construct a global sliding mode controller for the position swing angle.
参照图5,其中,基于反演滑模控制理论构建绳长滑模控制器包括以下步骤:Referring to Figure 5, wherein, constructing a rope length sliding mode controller based on the inversion sliding mode control theory includes the following steps:
步骤S51,构建绳长子系统的第一层李雅普诺夫函数;Step S51, constructing the first-layer Lyapunov function of the rope length subsystem;
步骤S52,对绳长子系统的第一层李雅普诺夫函数进行一阶求导;Step S52, first-order derivation is performed on the Lyapunov function of the first layer of the rope length subsystem;
步骤S53,若所述绳长子系统的第一层李雅普诺夫函数的一阶导数不大于0,则求得绳长子系统控制器;Step S53, if the first derivative of the Lyapunov function of the first layer of the rope length subsystem is not greater than 0, obtain the rope length subsystem controller;
步骤S54,若所述绳长子系统的第一层李雅普诺夫函数的一阶导数大于0,则构建绳长子系统的第二层李雅普诺夫函数;Step S54, if the first derivative of the Lyapunov function of the first layer of the rope length subsystem is greater than 0, then construct the second layer of the Lyapunov function of the rope length subsystem;
步骤S55,对绳长子系统的第二层李雅普诺夫函数进行一阶求导;Step S55, first-order derivation is performed on the second-layer Lyapunov function of the rope length subsystem;
步骤S56,令绳长子系统的第二层李雅普诺夫函数的一阶导数不大于零,求得绳长子系统控制器。In step S56, the first derivative of the Lyapunov function of the second layer of the rope length subsystem is not greater than zero, and the rope length subsystem controller is obtained.
本发明实施例中,基于反演滑模控制理论,并结合李雅普诺夫函数进行稳定性设计,构建绳长子系统控制器,第一层李雅普诺夫函数中仅包含绳长长度参数,对其求导得到绳长运动速度参数,这对于绳长控制器设计来说是不够的,因为不包含绳长的运动加速度变量,无法保证绳长控制器渐进稳定,所以需要对绳长子系统构建第二层李雅普诺夫函数,使绳长子系统趋于稳定,增强系统的鲁棒性和控制性能。In the embodiment of the present invention, based on the inversion sliding mode control theory and combined with the Lyapunov function for stability design, the rope length subsystem controller is constructed. The first layer of the Lyapunov function only contains the rope length and length parameters. It is not enough for the design of the rope length controller, because it does not include the motion acceleration variable of the rope length, and the asymptotic stability of the rope length controller cannot be guaranteed, so it is necessary to build a second layer for the rope length subsystem. The Lyapunov function stabilizes the rope length subsystem and enhances the robustness and control performance of the system.
在一种优选的实施方式中,基于反演滑模控制理论构建台车位置子系统控制器包括:构建台车位置子系统数学模型,桥式吊车的数学模型公式考虑台车位置自由度改写成如下公式: 其中,x1=x,x为台车移动的位置,为台车移动的速度,ux为台车位置子系统控制器,基于桥式吊车的数学模型公式推导得出b1(x)=1/[M+msin2(x3)],其中,f1为台车位置子系统的状态变量,b1为台车位置子系统的输入变量,l为吊绳的绳长,M为吊车质量,m为负载质量,g为重力加速度,x3=θ,θ为负载的摆角,为负载摆角的角速度;定义台车位置跟踪误差e1=x1-x1d,其中,x1d为台车目标位置;对e1=x1-x1d求导数得到构建台车位置子系统的第一层李雅普诺夫函数为V1=e1 2/2;对V1=e1 2/2进行一阶求导得到令其中α1为虚拟中间变量,在反演滑模控制算法中构建稳定项α1=k1e1,其中k1为台车位置子系统的误差稳定系数;将α1=k1e1代入式子中得到当e2=0时,由李雅普诺夫函数稳定性判断系统趋于稳定,但一般情况下由于系统处在运动过程中,状态量是不稳定的,只有到达目标位置才会稳定下来,因此当e2≠0,需要对台车位置子系统进一步设计,定义第二层李雅普诺夫函数为其中,S1=c1e1+e2,S1为台车位置子系统滑模面,c1为台车位置子系统的误差系数;对台车位置子系统的第二层台车位置子系统李雅普诺夫函数进行一阶求导包括:对进行一阶求导得到令构建台车位置子系统控制器ux为其中,hx为台车位置子系统滑模面系数,βx为台车位置子系统切换增益。In a preferred embodiment, constructing the trolley position subsystem controller based on the inverse sliding mode control theory includes: constructing a mathematical model of the trolley position subsystem, and the mathematical model formula of the overhead crane is rewritten considering the trolley position degree of freedom as The following formula: where x 1 =x, x is the position where the trolley moves, is the moving speed of the trolley, and u x is the trolley position subsystem controller, which is derived based on the mathematical model formula of the overhead crane. b 1 (x)=1/[M+msin 2 (x 3 )], where f 1 is the state variable of the trolley position subsystem, b 1 is the input variable of the trolley position subsystem, and l is the rope length, M is the crane mass, m is the load mass, g is the gravitational acceleration, x 3 =θ, θ is the swing angle of the load, is the angular velocity of the load swing angle; define the trolley position tracking error e 1 =x 1 -x 1d , where x 1d is the target position of the trolley; take the derivative of e 1 =x 1 -x 1d to get The first-level Lyapunov function for constructing the trolley position subsystem is V 1 =e 1 2 /2; the first-order derivation of V 1 =e 1 2 /2 is obtained make where α 1 is a dummy intermediate variable, and the stability term α 1 =k 1 e 1 is constructed in the inversion sliding mode control algorithm, where k 1 is the error stability coefficient of the trolley position subsystem; substitute α 1 =k 1 e 1 into get in the formula When e 2 =0, Judging by the stability of the Lyapunov function, the system tends to be stable, but in general, because the system is in the process of motion, the state quantity is unstable, and it will stabilize only when it reaches the target position. Therefore, when e 2 ≠ 0, it is necessary to correct The trolley position subsystem is further designed, and the second layer Lyapunov function is defined as Among them, S 1 =c 1 e 1 +e 2 , S 1 is the sliding mode surface of the trolley position subsystem, and c 1 is the error coefficient of the trolley position subsystem; The first-order derivation of the Lyapunov function of the subsystem includes: Perform first-order derivation to get make Build the trolley position subsystem controller u x as Among them, h x is the sliding mode surface coefficient of the trolley position subsystem, and β x is the switching gain of the trolley position subsystem.
在本发明实施例中,基于反演滑模控制理论构建负载摆角子系统控制器包括:桥式吊车的数学模型公式负载摆角自由度改写成如下公式:其中,x3=θ,θ为负载的摆动角度,为负载的摆动角速度,uθ为台车位置子系统控制器,基于桥式吊车的数学模型公式推导得出b2(x)=[-cos(x3)]/{[M+msin2(x3)]l},其中,f2为摆角子系统的状态变量,b2为摆角子系统的输入变量;定义负载摆角跟踪误差eθ1=x3-θd,θd为目标负载摆角大小,理想状态应为0;对eθ1=x3-θd求导数得到构建负载摆角子系统的第一层李雅普诺夫函数为Vθ1=eθ1 2/2;对Vθ1=eθ1 2/2进行一阶求导得到令在反演滑模控制算法中构建稳定项αθ=kθ1eθ1,其中kθ为负载摆角子系统的误差稳定系数;将αθ=kθ1eθ1代入式子中得到当eθ2=0时,由李雅普诺夫函数稳定性判断系统趋于稳定,但一般情况下但一般情况下由于系统处在运动过程中,状态量是不稳定的,只有到达目标位置才会稳定下来,因此当eθ2≠0,需要对负载摆角子系统进一步设计,定义负载摆角子系统的第二层李雅普诺夫函数为Vθ2=Vθ1+Sθ 2/2,其中,Sθ=cθeθ1+eθ2,Sθ为负载摆角子系统滑模面,cθ为负载摆角子系统的误差系数;对负载摆角子系统的第二层李雅普诺夫函数进行一阶求导包括:对Vθ2=Vθ1+Sθ 2/2进行一阶求导得到令构建负载摆角子系统控制器uθ为其中,hθ为台车位置子系统滑模面系数,βθ为台车位置子系统切换增益。In the embodiment of the present invention, the construction of the load swing angle subsystem controller based on the inversion sliding mode control theory includes: the mathematical model formula of the overhead crane is rewritten as the load swing angle degree of freedom as the following formula: where x 3 =θ, θ is the swing angle of the load, is the swing angular velocity of the load, u θ is the trolley position subsystem controller, which is derived based on the mathematical model formula of the overhead crane b 2 (x)=[-cos(x 3 )]/{[M+msin 2 (x 3 )]l}, where f 2 is the state variable of the swing angle subsystem, and b 2 is the input variable of the swing angle subsystem ;Define load swing angle tracking error e θ1 =x 3 -θ d , θ d is the size of the target load swing angle, ideally it should be 0; take the derivative of e θ1 =x 3 -θ d to get The first-level Lyapunov function to construct the load swing angle subsystem is V θ1 =e θ1 2 /2; the first-order derivation of V θ1 =e θ1 2 /2 is make The stability term α θ = k θ1 e θ1 is constructed in the inversion sliding mode control algorithm, where k θ is the error stability coefficient of the load swing angle subsystem; α θ = k θ1 e θ1 is substituted into get in the formula When e θ2 = 0, Judging by the stability of the Lyapunov function, the system tends to be stable, but in general, because the system is in the process of motion, the state quantity is unstable, and it will stabilize only when it reaches the target position, so when e θ2 ≠ 0, the load swing angle subsystem needs to be further designed, and the second-level Lyapunov function of the load swing angle subsystem is defined as V θ2 =V θ1 +S θ 2 /2, where S θ =c θ e θ1 +e θ2 , S θ is the sliding mode surface of the load swing angle subsystem, and c θ is the error coefficient of the load swing angle subsystem; the first-order derivation of the second-layer Lyapunov function of the load swing angle subsystem includes: V θ2 = V θ1 +S θ 2 /2 is obtained by first-order derivation make Construct the load swing angle subsystem controller u θ as Among them, h θ is the sliding mode surface coefficient of the trolley position subsystem, and β θ is the switching gain of the trolley position subsystem.
值得注意的是,将所述台车位置子系统控制器和所述负载摆角子系统控制器结合构建位置摆角全局滑模面,在所述位置摆角全局滑模面中引入时变函数,构建位置摆角滑模控制器包括:因为位置和摆角两自由度皆由一个控制输入,所以需要将台车位置子系统控制器和负载摆角子系统控制器结合,构建一个全局滑模控制器u为u=ux+uθ+uc,其中uc为耦合开关控制律;构建位置摆角全局系统时变滑模面为S=aS1+S2+ωe-qt,其中,a为滑模面权重系数,ω为指数函数加权系数,e-qt为时变指数函数,q为指数函数时变系数,t为系统运行时间变量;构建位置摆角全局系统李雅普诺夫函数为V=S2/2;对位置摆角全局系统李雅普诺夫函数进行一阶求导包括:对V=S2/2进行一阶求导并化简得到It is worth noting that the trolley position subsystem controller and the load swing angle subsystem controller are combined to construct a position swing angle global sliding mode surface, and a time-varying function is introduced into the position swing angle global sliding mode surface, The construction of the position and swing angle sliding mode controller includes: because the two degrees of freedom of position and swing angle are both controlled by one control input, it is necessary to combine the trolley position subsystem controller and the load swing angle subsystem controller to construct a global sliding mode controller u is u=u x +u θ +u c , where u c is the coupled switch control law; the time-varying sliding mode surface of the global system of position swing angle is S=aS 1 +S 2 +ωe -qt , where a is The weight coefficient of the sliding mode surface, ω is the weighting coefficient of the exponential function, e -qt is the time-varying exponential function, q is the time-varying coefficient of the exponential function, and t is the system running time variable; the Lyapunov function of the global system for constructing the position swing angle is V = S 2 /2; the first-order derivation of the Lyapunov function of the global system of position swing angle includes: first-order derivation of V=S 2 /2 and simplification to obtain
由于台车位置子系统控制器ux和负载摆角子系统控制器uθ中均包含了滑模变结构的趋近律控制,因此对位置摆角全局系统李雅普诺夫函数的一阶导数进行化简,得到根据滑模控制算法,选择一般指数趋近律作为全局滑模控制律,一般指数趋近律具体公式为η>0,其中,-kS为指数趋近项,k为趋近律,η是增益系数,由此得到(ab1uθ+b2ux)+uc(ab1+b2)-ωqe-qt=-ηsgn(S)-kS,继而求得耦合开关控制律uc为uc=-[b2ux+ab1uθ+ηsgn(S)+kS-ωqe-qt]/(ab1+b2);位置摆角全局系统的切换控制函数选用S型饱和函数,得到位置摆角全局系统控制器u=-[ab1ux+b2uθ+ηsat(S)+kS]/(ab1+b2)。Since both the trolley position subsystem controller u x and the load swing angle subsystem controller u θ contain the reaching law control of the sliding mode variable structure, the first derivative of the Lyapunov function of the position and swing angle global system is transformed into Jane, get According to the sliding mode control algorithm, the general exponential reaching law is selected as the global sliding mode control law. The specific formula of the general exponential reaching law is: η>0, where -kS is the exponential approach term, k is the approach law, and η is the gain coefficient, thus obtaining (ab 1 u θ +b 2 u x )+u c (ab 1 +b 2 )- ωqe -qt =-ηsgn(S)-kS, and then the coupling switch control law u c is obtained as u c =-[b 2 u x +ab 1 u θ +ηsgn(S)+kS-ωqe -qt ]/( ab 1 +b 2 ); the switching control function of the position swing angle global system selects the S-type saturation function to obtain the position swing angle global system controller u=-[ab 1 u x +b 2 u θ +ηsat(S)+kS ]/(ab 1 +b 2 ).
应理解,基于反演滑模控制理论构建绳长滑模控制器包括:绳长子系统的数学模型公式改写为其中,x5=l,l为吊车的绳长,为吊车的绳长变化速度,ul为台车位置子系统控制器,基于桥式吊车的数学模型公式推导得出f3(x)=-x5D/m+g,b3(x)=1/m,其中,f3为绳长子系统的状态变量,b3为绳长子系统的输入变量,D为吊绳运动伸缩的阻尼系数;定义绳长跟踪误差el1=x5-ld,其中ld为目标绳长;对绳长子系统跟踪误差进行一阶求导,对el1=x5-ld求导数得到构建绳长子系统的第一层李雅普诺夫函数为Vl1=el1 2/2;对Vl1=el1 2/2进行一阶求导得到令在反演滑模控制算法中构建稳定项αl=klel1,其中kl为绳长子系统的误差稳定系数;将αl=klel1代入式子中得到当el2=0时,由李雅普诺夫函数稳定性判断系统趋于稳定,但一般情况下但一般情况下由于系统处在运动过程中,状态量是不稳定的,只有到达目标位置才会稳定下来,因此当el2≠0,需要对绳长子系统进一步设计,定义绳长子系统的第二层李雅普诺夫函数为Vl2=Vl1+Sl 2/2,其中,Sl=clel1+el2,Sl为绳长子系统滑模面,cl为绳长子系统的误差系数;对Vl2=Vl1+Sl 2/2进行一阶求导得到令构建绳长子系统控制器ul为其中,hl为绳长子系统滑模面系数,βl为绳长子系统切换增益。It should be understood that the construction of the rope length sliding mode controller based on the inversion sliding mode control theory includes: the mathematical model formula of the rope length subsystem is rewritten as where x 5 =l, l is the rope length of the crane, is the change speed of the rope length of the crane, and u l is the controller of the trolley position subsystem. Based on the mathematical model formula of the overhead crane, f 3 (x)=-x 5 D/m+g, b 3 (x) =1/m, where f 3 is the state variable of the rope length subsystem, b 3 is the input variable of the rope length subsystem, and D is the damping coefficient of the rope movement expansion and contraction; define the rope length tracking error e l1 =x 5 -l d , where l d is the target rope length; take the first-order derivation of the tracking error of the rope length subsystem, and obtain the derivative of e l1 =x 5 -ld . The first-level Lyapunov function for constructing the rope length subsystem is V l1 =e l1 2 /2; the first-order derivation of V l1 =e l1 2 /2 can be obtained make The stability term α l =k l e l1 is constructed in the inversion sliding mode control algorithm, where k l is the error stability coefficient of the rope length subsystem; substitute α l =k l e l1 into get in the formula When e l2 = 0, Judging by the stability of the Lyapunov function, the system tends to be stable, but in general, because the system is in the process of motion, the state quantity is unstable, and it will stabilize only when it reaches the target position, so when e l2 ≠ 0, the rope length subsystem needs to be further designed, and the second-layer Lyapunov function of the rope length subsystem is defined as V l2 =V l1 +S l 2 /2, where S l =c l e l1 +e l2 , S l is the sliding mode surface of the rope length subsystem , and c l is the error coefficient of the rope length subsystem ; make Build the rope length subsystem controller u l as Among them, h l is the sliding mode surface coefficient of the rope length subsystem, and β l is the switching gain of the rope length subsystem.
根据本发明实施例的方法,通过仿真实验来检验本发明实施例的防摆效果,仿真时长设置为15秒,参照图6,其中,台车位置从0米运动到3米目标位置所花费时间为7秒,负载摆角的最大幅度小于0.03弧度,同时在7秒收敛到0弧度,吊绳从1米伸长到4米长度所花费时间为1秒,吊绳驱动力产生后很快收敛到0牛顿,收敛时间为1秒,吊车驱动力从一开始约45牛顿驱动吊车运动,随后快速收敛到0牛顿,所耗费时间为7秒,之后再无抖振现象产生。本发明实施例不仅克服了时变滑模出现的驱动力抖振问题,而且克服了反演滑模出现残余摆动现象,使桥式吊车的控制效果达到最优。According to the method of the embodiment of the present invention, the anti-swing effect of the embodiment of the present invention is tested through a simulation experiment, and the simulation duration is set to 15 seconds. Referring to FIG. 6, the time it takes for the trolley to move from 0 meters to a target position of 3 meters The maximum amplitude of the load swing angle is less than 0.03 radians, and it converges to 0 radians in 7 seconds. The time it takes for the sling to stretch from 1 meter to 4 meters is 1 second, and the driving force of the sling converges quickly after it is generated. To 0 Newton, the convergence time is 1 second, the crane driving force is about 45 Newton from the beginning to drive the crane motion, and then quickly converges to 0 Newton, which takes 7 seconds, and then no chattering phenomenon occurs. The embodiment of the present invention not only overcomes the problem of driving force buffeting caused by the time-varying sliding mode, but also overcomes the residual swing phenomenon caused by the inversion sliding mode, so that the control effect of the overhead crane can be optimized.
为了进一步检验本发明实施例控制方法对桥式吊车的控制效果,接下来设置了五种仿真环境实验,分别对比本发明实施例控制方法与时变滑模控制方法、反演滑模控制方法在相应仿真环境中对桥式吊车的控制效果,其中实线代表本发明实施例控制方法的仿真结果情况,方点虚线代表时变滑模控制方法的仿真结果情况,短虚线代表反演滑模控制方法的仿真结果情况,五种仿真环境条件如下:In order to further test the control effect of the control method of the embodiment of the present invention on the overhead crane, five kinds of simulation environment experiments were set up next, and the control method of the embodiment of the present invention was compared with the time-varying sliding mode control method and the inversion sliding mode control method respectively. The control effect of the overhead crane in the corresponding simulation environment, wherein the solid line represents the simulation result of the control method of the embodiment of the present invention, the square dotted line represents the simulation result of the time-varying sliding mode control method, and the short dashed line represents the inversion sliding mode control The simulation results of the method, the five simulation environment conditions are as follows:
仿真环境1:轻型负载条件下,将台车位移目标值和绳长目标值分别设定为3米和4米,台车质量和负载质量分别设定为10千克和5千克,其他系统模型参数不改变。Simulation environment 1: Under light load conditions, the target value of the trolley displacement and the target value of the rope length are set to 3 meters and 4 meters, respectively, and the weight of the trolley and the load are set to 10 kg and 5 kg, respectively. Other system model parameters not changing.
仿真环境2:重型负载条件下,将台车位移目标值和绳长目标值分别设定为3米和4米,台车质量和负载质量分别设定为500千克和100千克,其他系统模型参数不改变。Simulation environment 2: Under heavy load conditions, set the target value of trolley displacement and rope length to 3 meters and 4 meters, respectively, set the trolley mass and load mass to 500 kg and 100 kg, and other system model parameters not changing.
仿真环境3:大目标值条件下,将台车位移目标值和绳长目标值分别设定为10米和6米,台车质量和负载质量分别设定为500千克和100千克,其他系统模型参数不改变。Simulation environment 3: Under the condition of large target value, set the target value of trolley displacement and rope length to 10 meters and 6 meters, respectively, set the trolley mass and load mass to 500 kg and 100 kg, respectively. Other system models Parameters do not change.
仿真环境4:系统模型改变条件下,将台车位移目标值和绳长目标值分别设定为10米和6米,台车质量和负载质量分别设定为500千克和100千克,对二维桥式吊车系统模型参数进行改变,吊车空气阻力系数从0.5变为0.2,负载空气阻力系数从0.5变为0.6,吊车摩擦系数从0.5变为0.3。Simulation environment 4: Under the condition of changing the system model, the target value of the trolley displacement and the target value of the rope length are set to 10 meters and 6 meters respectively, and the weight of the trolley and the load are set to 500 kg and 100 kg respectively. The model parameters of the bridge crane system are changed, the air resistance coefficient of the crane is changed from 0.5 to 0.2, the air resistance coefficient of the load is changed from 0.5 to 0.6, and the friction coefficient of the crane is changed from 0.5 to 0.3.
仿真环境5:有外界干扰条件下,将台车位移目标值和绳长目标值分别设定为10米和6米,台车质量和负载质量分别设定为500千克和100千克,吊车空气阻力系数从0.5变为0.2,负载空气阻力系数从0.5变为0.6,吊车摩擦系数从0.5变为0.3,桥式吊车由初始位置运动到目标位置,待其收敛稳定后,对负载突然施加一个长达1秒的力使其从0.15弧度的角度开始摆动。Simulation environment 5: Under the condition of external interference, set the target value of trolley displacement and rope length to 10 meters and 6 meters, respectively, set the trolley mass and load mass to 500 kg and 100 kg, respectively, and the air resistance of the crane The coefficient is changed from 0.5 to 0.2, the load air resistance coefficient is changed from 0.5 to 0.6, the friction coefficient of the crane is changed from 0.5 to 0.3, and the overhead crane moves from the initial position to the target position. 1 second of force makes it swing from an angle of 0.15 radians.
参照图7,仿真环境1实验结果为:采用本发明实施例控制方法的仿真结果中,负载摆角幅度小于0.031弧度,并且在收敛后无残余摆动,而时变滑模控制方法的仿真结果为负载摆动幅度较大,反演滑模控制方法的仿真结果为负载摆角有残余摆动;在台车位置控制性能方面,本发明实施例7秒到达指标位置且没有摆动,而反演滑模控制方法的仿真结果有轻微摆动;在绳长控制方面,本发明实施例吊绳从1米伸长到4米耗时为1秒,而时变滑模控制方法耗时4秒,本发明实施例控制效果较好。以上结果表明,本发明实施例控制方法在仿真环境1中对比其他两种滑模控制算法,负载摆角幅度较小,更快达到稳定,控制效果较佳。Referring to FIG. 7 , the experimental results of simulation environment 1 are: in the simulation results using the control method of the embodiment of the present invention, the amplitude of the load swing angle is less than 0.031 radians, and there is no residual swing after convergence, and the simulation results of the time-varying sliding mode control method are: The load swing amplitude is large, and the simulation result of the inversion sliding mode control method is that the load swing angle has residual swing; in terms of the position control performance of the trolley, the embodiment of the present invention reaches the index position within 7 seconds and has no swing, while the inversion sliding mode control method The simulation result of the method has a slight swing; in terms of rope length control, it takes 1 second to extend the suspending rope from 1 meter to 4 meters in the embodiment of the present invention, while the time-varying sliding mode control method takes 4 seconds. Control effect is better. The above results show that the control method of the embodiment of the present invention compared with the other two sliding mode control algorithms in the simulation environment 1, the load swing angle amplitude is smaller, the stability is achieved faster, and the control effect is better.
参照图8,仿真环境2实验结果为:当台车质量与负载质量大幅度增加时,采用本发明实施例控制方法的仿真结果中,负载摆角幅度小于0.03弧度,收敛后无残余摆动,而时变滑模控制方法的仿真结果为负载摆动幅度较大,反演滑模控制方法的仿真结果为负载摆动幅度较大并且有残余摆动;在台车位置控制性能方面,本发明实施例较其他两种控制方法更快达到指定位置,并且没有摆动;在绳长控制方面,本发明实施例吊绳从1米伸长到4米耗时为1秒,而时变滑模控制方法耗时4秒,本发明实施例控制效果较好。以上结果表明,本发明实施例控制方法在仿真环境2中对比其他两种滑模控制算法,负载摆角幅度较小,更快达到稳定,控制效果较佳。Referring to FIG. 8 , the experimental results of simulation environment 2 are: when the mass of the trolley and the mass of the load are greatly increased, in the simulation result using the control method of the embodiment of the present invention, the amplitude of the load swing angle is less than 0.03 radian, and there is no residual swing after convergence, and The simulation result of the time-varying sliding mode control method is that the load swing is larger, and the simulation result of the inversion sliding mode control method is that the load swing is larger and has residual swing. The two control methods reach the specified position faster, and there is no swing; in terms of rope length control, it takes 1 second to extend the suspension rope from 1 meter to 4 meters in the embodiment of the present invention, while the time-varying sliding mode control method takes 4 seconds. Second, the control effect of the embodiment of the present invention is better. The above results show that the control method of the embodiment of the present invention compared with the other two sliding mode control algorithms in simulation environment 2, the load swing angle amplitude is smaller, the stability is achieved faster, and the control effect is better.
参照图9,仿真环境3实验结果为:当改变台车位移目标值和绳长目标值时,采用本发明实施例控制方法的仿真结果为负载摆角为0.1弧度,收敛后无残余摆动,而时变滑模控制的负载摆角幅度超过0.15弧度,反演滑模控制的负载摆角幅度超过0.1弧度并且收敛后存在残余摆动,以上结果表明,本发明实施例控制方法在仿真环境3中对比其他两种滑模控制算法,负载摆角幅度较小,更快达到稳定,控制效果较佳。Referring to FIG. 9 , the experimental results of simulation environment 3 are: when changing the target value of the trolley displacement and the target value of the rope length, the simulation result using the control method of the embodiment of the present invention is that the load swing angle is 0.1 radian, and there is no residual swing after convergence, and The amplitude of the load swing angle of the time-varying sliding mode control exceeds 0.15 radians, the amplitude of the load swing angle of the inversion sliding mode control exceeds 0.1 radians, and there is residual swing after convergence. The above results show that the control method of the embodiment of the present invention is compared in simulation environment 3 For the other two sliding mode control algorithms, the load swing angle amplitude is smaller, the stability is achieved faster, and the control effect is better.
参照图10,仿真环境4实验结果为:当改变改变二维桥式吊车系统模型上的空气阻力系数和摩擦系数时,采用本发明实施例控制方法的仿真结果为负载摆角为0.1弧度,收敛后无残余摆动,而时变滑模控制的负载摆角幅度超过0.15弧度,反演滑模控制的负载摆角幅度超过0.1弧度并且收敛后存在残余摆动,以上结果表明,本发明实施例控制方法在仿真环境4中对比其他两种滑模控制算法,负载摆角幅度较小,更快达到稳定,控制效果较佳。Referring to FIG. 10, the experimental results of the simulation environment 4 are: when changing the air resistance coefficient and friction coefficient on the two-dimensional bridge crane system model, the simulation result using the control method of the embodiment of the present invention is that the load swing angle is 0.1 radian, and the convergence Afterwards, there is no residual swing, but the amplitude of the load swing angle of the time-varying sliding mode control exceeds 0.15 radian, the amplitude of the load swing angle of the inversion sliding mode control exceeds 0.1 radian, and there is residual swing after convergence. The above results show that the control method of the embodiment of the present invention Comparing the other two sliding mode control algorithms in the simulation environment 4, the load swing angle amplitude is smaller, the stability is achieved faster, and the control effect is better.
参照图11,仿真环境5实验结果为:在施加外界干扰条件下,采用本发明实施例控制方法的台车位置恢复超调比其他两种滑模控制算法小,并且输出的吊绳驱动力明显小于其他两种滑模控制算法,吊绳驱动力接近于0。以上结果表明,本发明实施例控制方法在仿真环境5中对比其他两种滑模控制算法,在控制力矩输出方面优于其他两种滑模控制算法。Referring to FIG. 11 , the experimental results of the
本发明实施例还提供了一种基于滑模面的桥吊防摆装置,在该基于滑模面的桥吊防摆装置1000中,包括但不限于:位置摆角滑模控制器构建单元1100、绳长滑模控制器构建单元1200、获取单元1300、输入单元1400和输出单元1500。The embodiment of the present invention further provides an anti-swing device for bridge cranes based on a sliding surface. , rope length sliding mode
其中,位置摆角滑模控制器构建单元1100,用于构建桥式吊车的位置摆角系统数学模型,基于反演滑模控制理论构建台车位置子系统控制器和负载摆角子系统控制器,将所述台车位置子系统控制器和所述负载摆角子系统控制器结合构建位置摆角全局滑模面,在所述位置摆角全局滑模面中引入时变函数,构建位置摆角滑模控制器;Among them, the position swing angle sliding mode
绳长滑模控制器构建单元1200,用于构建桥式吊车的绳长系统数学模型,基于反演滑模控制理论构建绳长滑模控制器;The rope length sliding mode
获取单元1300,用于获取台车位置参数、负载摆角参数、时间参数和绳长参数;an
输入单元1400,用于将所述台车位置参数、负载摆角参数、时间参数输入所述位置摆角滑模控制器中,将所述绳长参数输入到绳长滑模控制器中;an
输出单元1500,用于所述位置摆角滑模控制器和绳长滑模控制器分别输出台车水平牵引力和沿绳牵引力。The
需要说明的是,由于本实施例中的一种基于滑模面的桥吊防摆装置与上述的一种基于滑模面的桥吊防摆方法基于相同的发明构思,因此,方法实施例中的相应内容同样适用于本装置实施例,此处不再详述。It should be noted that, because the anti-swing device for bridge suspension based on sliding surface in this embodiment and the above-mentioned method for anti-swinging bridge suspension based on sliding surface are based on the same inventive concept, therefore, in the method embodiment Corresponding contents of , are also applicable to the embodiments of the device, and will not be described in detail here.
本发明实施例还提供了一种基于滑模面的桥吊防摆设备,该基于滑模面的桥吊防摆设备2000可以是任意类型的智能终端,例如手机、平板电脑、个人计算机等。Embodiments of the present invention also provide a sliding surface-based bridge
具体地,该基于滑模面的桥吊防摆设备2000包括:一个或多个控制处理器2010和存储器2020,图13中以一个控制处理器2010为例。Specifically, the sliding surface-based bridge
控制处理器2010和存储器2020可以通过总线或者其他方式连接,图13中以通过总线连接为例。The
存储器2020作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的基于滑模面的桥吊防摆方法对应的程序指令/模块,例如,图12中所示的位置摆角滑模控制器构建单元1100、绳长滑模控制器构建单元1200、获取单元1300、输入单元1400和输出单元1500。控制处理器2010通过运行存储在存储器2020中的非暂态软件程序、指令以及模块,从而执行基于滑模面的桥吊防摆装置1000的各种功能应用以及数据处理,即实现上述方法实施例的基于滑模面的桥吊防摆方法。As a non-transitory computer-readable storage medium, the
存储器2020可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据基于滑模面的桥吊防摆装置1000的使用所创建的数据等。此外,存储器2020可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器2020可选包括相对于控制处理器2010远程设置的存储器,这些远程存储器可以通过网络连接至该基于滑模面的桥吊防摆设备2000。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The
所述一个或者多个模块存储在所述存储器2020中,当被所述一个或者多个控制处理器2010执行时,执行上述方法实施例中的基于滑模面的桥吊防摆方法,例如,执行以上描述的图1中的方法步骤S11至S15,实现图12中的单元1100-1500的功能。The one or more modules are stored in the
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,被图13中的一个控制处理器2010执行,可使得上述一个或多个控制处理器2010执行上述方法实施例中的基于滑模面的桥吊防摆方法,例如,执行以上描述的图1中的方法步骤S11至S15,实现图12中的单元1100-1500的功能。Embodiments of the present invention further provide a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, as shown in FIG. 13 . Executed by one
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。The apparatus embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
通过以上的实施方式的描述,本领域技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现。本领域技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(ReadOnly Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。From the description of the above embodiments, those skilled in the art can clearly understand that each embodiment can be implemented by means of software plus a general hardware platform. Those skilled in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing relevant hardware through a computer program. The program can be stored in a computer-readable storage medium, and the program can be executed when the program is executed. , the flow of the above-mentioned method embodiments may be included. The storage medium may be a magnetic disk, an optical disk, a read-only memory (ReadOnly Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The preferred implementation of the present invention has been specifically described above, but the present invention is not limited to the above-mentioned embodiments. Those skilled in the art can also make various equivalent deformations or replacements on the premise of not violating the spirit of the present invention. These Equivalent modifications or substitutions are included within the scope defined by the claims of the present application.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910818773.3A CN110526124B (en) | 2019-08-30 | 2019-08-30 | A kind of anti-swing method, device, equipment and storage medium of bridge crane based on sliding surface |
PCT/CN2020/104565 WO2021036626A1 (en) | 2019-08-30 | 2020-07-24 | Bridge crane anti-swing method, apparatus, and device based on sliding mode surface, and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910818773.3A CN110526124B (en) | 2019-08-30 | 2019-08-30 | A kind of anti-swing method, device, equipment and storage medium of bridge crane based on sliding surface |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110526124A CN110526124A (en) | 2019-12-03 |
CN110526124B true CN110526124B (en) | 2020-12-01 |
Family
ID=68665748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910818773.3A Active CN110526124B (en) | 2019-08-30 | 2019-08-30 | A kind of anti-swing method, device, equipment and storage medium of bridge crane based on sliding surface |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110526124B (en) |
WO (1) | WO2021036626A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110526124B (en) * | 2019-08-30 | 2020-12-01 | 五邑大学 | A kind of anti-swing method, device, equipment and storage medium of bridge crane based on sliding surface |
CN112051740A (en) * | 2020-08-31 | 2020-12-08 | 五邑大学 | Parameter setting method and device for sliding mode controller and storage medium |
CN112068428B (en) * | 2020-08-31 | 2022-05-17 | 五邑大学 | A design method and system of a double-pendulum PI terminal sliding mode controller for an overhead crane |
CN113321123B (en) * | 2021-05-07 | 2023-08-29 | 武汉理工大学 | Layered fast terminal sliding mode control method for crane double pendulum system |
CN113325715B (en) * | 2021-06-10 | 2022-05-24 | 浙江理工大学 | Feedforward control-based global continuous sliding mode control method for bridge crane |
CN114967462B (en) * | 2022-06-01 | 2023-05-30 | 南京工业大学 | Sliding mode control method for inhibiting output jitter of tower crane |
CN115072559A (en) * | 2022-06-23 | 2022-09-20 | 五邑大学 | Method, system, equipment and medium for controlling safety robustness of smooth start |
CN115465782B (en) * | 2022-08-24 | 2024-01-19 | 杭州大杰智能传动科技有限公司 | Cooperative control method and system for operation and maintenance mechanism of tower crane |
CN118838469B (en) * | 2024-09-23 | 2024-11-29 | 兰州交通大学 | Photovoltaic MPPT method based on self-adaptive super-twist sliding mode control |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000219482A (en) * | 1999-01-28 | 2000-08-08 | Hitachi Service & Engineering (West) Ltd | Crane control method and control device |
CN108303883A (en) * | 2018-01-22 | 2018-07-20 | 五邑大学 | The anti-pendular regime of bridge crane based on first-order dynamic sliding moding structure |
CN108227504B (en) * | 2018-01-25 | 2020-10-27 | 河海大学常州校区 | Micro-gyroscope fractional order self-adaptive fuzzy neural inversion terminal sliding mode control method |
CN108427280B (en) * | 2018-03-21 | 2022-03-15 | 南京邮电大学 | Bridge crane anti-swing control method based on sliding mode control theory |
CN110526124B (en) * | 2019-08-30 | 2020-12-01 | 五邑大学 | A kind of anti-swing method, device, equipment and storage medium of bridge crane based on sliding surface |
-
2019
- 2019-08-30 CN CN201910818773.3A patent/CN110526124B/en active Active
-
2020
- 2020-07-24 WO PCT/CN2020/104565 patent/WO2021036626A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN110526124A (en) | 2019-12-03 |
WO2021036626A1 (en) | 2021-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110526124B (en) | A kind of anti-swing method, device, equipment and storage medium of bridge crane based on sliding surface | |
US20220363259A1 (en) | Method for generating lane changing decision-making model, method for lane changing decision-making of unmanned vehicle and electronic device | |
Peng et al. | Distributed model reference adaptive control for cooperative tracking of uncertain dynamical multi‐agent systems | |
CN108549229A (en) | A kind of overhead crane neural network adaptive controller and its design method | |
Abdullahi et al. | Efficient control of a 3D overhead crane with simultaneous payload hoisting and wind disturbance: design, simulation and experiment | |
CN110647038B (en) | Bridge crane sliding mode control parameter optimization method, device, equipment and storage medium | |
CN109976161B (en) | A Finite Time Optimal Tracking Control Method for Uncertain Nonlinear Systems | |
CN108439209B (en) | Position control method, apparatus and system in drive lacking marine hoist finite time | |
CN108345217A (en) | Become rope length crane system time optimal trajectory planning method, apparatus and system | |
CN113988369A (en) | Training method of forecasting model and forecasting method based on forecasting model | |
Zhang et al. | Improved energy dissipation control of overhead cranes | |
CN109709807B (en) | Self-adaptive neural network control method and device based on friction compensation | |
CN112068428B (en) | A design method and system of a double-pendulum PI terminal sliding mode controller for an overhead crane | |
CN112061979B (en) | Overhead crane control method, operation control device and computer readable storage medium | |
CN114063453B (en) | Helicopter system control method, system, device and medium based on reinforcement learning | |
CN117945271A (en) | Seven-degree-of-freedom tower crane self-adaptive sliding mode control method and system | |
CN114089629A (en) | Helicopter system self-adaptive fault-tolerant control method, system, device and medium | |
CN108388136A (en) | A kind of vibration control method of the flexible string linear system system with non-linear input | |
CN118068704A (en) | Container crane self-adaptive fuzzy control method and system | |
CN115657472B (en) | Feedback control method and system for tower crane system | |
CN113126502B (en) | Control method and control system of under-actuated crane system | |
CN112363398B (en) | Finite-time sliding-mode control system and method for bridge crane system under control input limitation | |
CN119501947A (en) | A fixed time optimal control method and system for a single-link robotic arm | |
CN110647166A (en) | Unmanned aerial vehicle formation information interaction topology online optimization method and device with balanced energy consumption | |
Rahimi et al. | Reinforcement learning-based optimised control for tracking of nonlinear systems with adversarial attacks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |