CN110511931A - Sal-miR-1和Sal-miR-3及其在制备药物中的用途 - Google Patents
Sal-miR-1和Sal-miR-3及其在制备药物中的用途 Download PDFInfo
- Publication number
- CN110511931A CN110511931A CN201910501245.5A CN201910501245A CN110511931A CN 110511931 A CN110511931 A CN 110511931A CN 201910501245 A CN201910501245 A CN 201910501245A CN 110511931 A CN110511931 A CN 110511931A
- Authority
- CN
- China
- Prior art keywords
- mir
- sal
- added
- rna
- room temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
- C12N2310/141—MicroRNAs, miRNAs
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明属于医药技术领域,具体涉及两种小分子活性成分及其在制备药物组合中的应用,更具体的涉及丹参来源的两种miRNA:Sal‑miR‑1和Sal‑miR‑3,其在制备用于治疗血管重塑性疾病药物中的应用,本发明还提供所述miRNA的制备方法,以及含有上述miRNA的组合物,所述组合物选自片剂、胶囊剂或注射剂。为验证Sal‑miR‑1和Sal‑miR‑3的作用,本发明在小鼠体内颈动脉结扎模型中应用制备的Sal‑miR‑1和Sal‑miR‑3进行联合治疗,还在体外培养的血管平滑肌细胞中给予Sal‑miR‑1和Sal‑miR‑3联合治疗进行分子机制研究。为临床治疗血管重塑提供一种高效、低毒的新型药物奠定基础,为研发治疗血管重塑提供体内药效学及作用机制及理论实验依据,为科技成果转化创造条件。
Description
技术领域
本发明属于医药技术领域,具体涉及两种小分子活性成分及其在制备药物中的应用,更具体的涉及丹参来源的两种miRNA——Sal-miR-1和Sal-miR-3在制备用于治疗血管重塑性疾病药物中的应用。
背景技术
血管重塑是血管为适应内外环境变化而发生的结构和功能的改变。血流动力学变化或代谢紊导致血管内皮损伤时,损伤部位产生的生长因子、血管活性物质,可诱导血管平滑肌细胞表型转化、增殖和迁移,同时伴随着细胞外基质的合成、降解和骨架的重新排布。血管在发育过程中,为应对不断变化的灌注压,其结构发生不断的变化,逐渐形成成熟的血管网络,如血管动脉的形成或是胚胎血管新生等过程均属于生理性血管重塑。而当血管壁无法承受外界应激时,其组织结构和功能就会发生病理性改变,产生病理性血管重塑,进而发生一系列的心血管疾病,如动脉粥状硬化、动脉瘤和血管内皮增生等。血管内皮细胞,平滑肌细胞和单核巨噬细胞均参与血管重塑过程,在血管重塑的过程中,常常伴随着血管平滑肌细胞增殖、迁移和异常的表型转化等,血管平滑肌细胞中这些细胞生物学行为的改变,对发生血管重塑起到至关重要的作用。
近年,虽然在血管重塑发病机制研究方面取得很大进展,但尚缺乏逆转或减轻血管重塑的理想药物。因此,临床迫切需要获得一种新型、高效、低毒、安全、价廉的用于治疗血管重塑的药物。而从传统中药中寻找抗血管重塑的有效成分成为当前的研究热点之一。
发明内容
为克服现有技术之缺陷,本发明提供能够抑制血管平滑肌细胞增殖和对单核细胞黏附反应,从而能够有效治疗血管重塑的药物。
丹参是唇形科植物的干燥根部和根茎,具有清心除燥、通经止痛、活血化瘀、凉血消痈的功效,在亚洲国家被广泛用于治疗冠心病、心肌梗死、心绞痛和动脉粥样硬化(AS),是重要的心脑血管保护药物。丹参具有降低血液粘稠度、抑制动脉粥样硬化斑块形成、抑炎、抑制内膜增生、抗氧化、促进血管新生、改善内皮细胞功能等作用。其中,抑制血管内膜增生是丹参发挥心血管保护作用的重要机制之一。近年研究表明,丹参酮I、丹参酮IIA、丹参酮IIB、二氢丹参酮、隐丹参酮等亲油性成分以及丹参素、丹参酚酸A、B、原儿茶醛等亲水成分均可抑制血管平滑肌细胞增殖而发挥抑制内膜增生的作用,但其在影响血管平滑肌细胞对单核细胞的黏附,并作用于哪些黏附因子的研究并不详尽。
自从南京大学张辰宇教授等,于2012年首次报道在人体血液中检测出大米miR-168a,并调控人低密度脂蛋白受体衔接蛋白1基因(LDLRAP1)。这说明了人体也可以吸收来自植物里的miRNAs。这些植物miRNAs经口服进入消化道后,不仅能稳定生存下来,还能被机体吸收进入血循环,从而在不同靶器官发挥作用。这就打破外源性miRNAs会被机体核酸酶降解而失去调控能力的结论,还可以进行跨物种的传递调节,为摄入性获取外源性miRNAs的研究和临床应用提供新思路,对中国传统中药药理的作用机制研究具有十分深远的影响。还有研究发现,稳定存在于中药金银花汤剂中的金银花miRNAs,可以通过小鼠灌胃方式进入小鼠循环系统,并有效抑制小鼠体内的流感病毒A。
本发明经对丹参提取成分进行二代高通量测序,筛选并鉴定了特异性存在于丹参中的2 种miRNA,命名为Sal-miR-1和Sal-miR-3。将丹参的有效成分单一化并合成、体外实验抑制黏附机制的研究、动物模型的建立等,发现丹参来源的miRNA,Sal-miR-1和Sal-miR-3联合治疗在抑制血管内膜增生形成中发挥抑制血管对单核细胞黏附反应的作用。因此,本发明解决现有技术问题的技术方案如下所述。
本发明提供2种miRNA,命名为Sal-miR-1和Sal-miR-3,分别具有如下序列。
name sequence
Sal-miR-1 cgtaaagacctctgatgagagtg
Sal-miR-3 gaggcattgagggagaagt
本发明提供所述Sal-miR-1和Sal-miR-3在制备联合治疗血管重塑中的药物组合中的用途。
本发明提供所述Sal-miR-1和Sal-miR-3在制备用于治疗血管平滑肌增生性疾病的药物组合中的用途。
上述用途中,两种miRNA的摩尔比例为1:1。
本发明还提供所述miRNA的制备方法,含有如下步骤:
1、植物总RNA的提取
1)将丹参的干燥根和根茎组织进行液氮研磨,保证无块状组织,取100mg粉末置于2mL 无菌离心管中,添加500μL Buffer RCL/β-巯基乙醇,(样品解冻之前加入β-巯基乙醇),快速混匀;
2)55℃水浴1-3min,室温,14,000g离心5min;
3)吸取上清液(大概可获得450μL),加入至含有2mL收集管的gDNA Filter Colum中,室温14,000g离心2min;
4)加入等倍体积的Buffer RCB于收集管中,并上下颠倒混匀5-10次;
5)将从(4)中得到的全部混合液包括沉淀置于HiBind RNA mini Colum,加入一个新的2mL 收集管,室温10,000离心1min,除去流动相,并把柱子放回收集管中;
6)加入400μL RWC Wash Buffer置于柱子中,室温10,000g离心1min除去流动相,柱子放回收集管中;此时,可选择用DNAaseⅠ处理;
7)把柱子放在一个新的2mL收集管中,加入500μL RNA Wash BufferⅡ,室温10,000g离心1min,除去流动相,并把柱子放回收集管中;
8)重复(7),把柱子放回收集管中,10,000g离心2min,离心干燥;
9)将离心柱置于新的1.5mL离心管中,在离心柱中加入30-50μL DEPC水,室温静置2min 后,全速(≥13,000g)离心1min,将流出液收集,-80℃保存;
2、丹参RNA建库测序流程
从RNA样品到最终数据获得,样品检测、建库、测序每一个环节都会对数据质量和数量产生影响,而数据质量又会直接影响后续信息分析的结果;为了从源头上保证测序数据的准确性、可靠性,对样品检测、建库、测序每一个步骤都严格把控,确保高质量数据的产出;流程图如附图2。
2.1Total RNA样品检测
对RNA样品的检测主要包括4种方法:
(1)琼脂糖凝胶电泳分析RNA降解程度以及是否有污染;
(2)Nanodrop检测RNA的纯度(OD260/280比值);
(3)Qubit对RNA浓度进行精确定量;
(4)Agilent 2100精确检测RNA的完整性;
2.2文库构建
样品检测合格后,使用Small RNA Sample Pre Kit构建文库,利用Small RNA的3’及5’端特殊结构(5’端有完整的磷酸基团,3’端有羟基),以total RNA为起始样品,直接将Small RNA两端加上接头,然后反转录合成cDNA;随后经过PCR扩增,PAGE胶电泳分离目标DNA片段,切胶回收得到的即为cDNA文库;构建原理图如附图1。
2.3库检
文库构建完成后,先使用Qubit2.0进行初步定量,稀释文库至1ng/μL,随后使用Agilent 2100对文库的insert size进行检测,insert size符合预期后,使用Q-PCR方法对文库的有效浓度进行准确定量(文库有效浓度>2nM),以保证文库质量;
2.4上机测序
库检合格后,把不同文库按照有效浓度及目标下机数据量的需求pooling后进行HiSeq/MiSeq测序获取丹参中存在的植物源性的miRNA;
3、植物miRNA的提取
1)将丹参的干燥根和根茎组织进行液氮研磨,保证无块状组织,取50-100mg粉末置于2mL 无菌离心管中,添加700μL Lysis mixture,最高速度涡旋30s,充分混匀样品;
2)55℃水浴3min,室温,12,000g离心5min;
3)吸取上清液,加入至含有2mL收集管的gDNA Removel Colum中,室温12,000g离心2min;
4)将收集管液体转移至新的2mL离心管中,加入1.1倍体积的无水乙醇涡旋20s,充分混匀;12,000g离心1min,弃掉流动相;
5)将从(4)中得到的700μL混合液置于microElute RNA mini Colum,加入一个新的2mL 收集管,室温12,000离心1min,除去流动相,并把柱子放回收集管中;
6)重复(5)直至所有液体均被转移;
7)加入500μL无水乙醇至microElute RNA mini Colum,室温12,000g离心1min,除去流动相;
8)加入500μL XD Binding Buffer到microElute RNA mini Colum,室温12,000g离心1min,除去流动相;
9)加入750μL RNA Wash BufferⅡ,室温10,000g离心1min,除去流动相,并把柱子放回收集管中;重复一次;
10)最大转速离心(≥12,000g)2min,离心干燥
11)将离心柱置于新的1.5mL离心管中,在离心柱中加入30-50μL DEPC水,室温静置5min 后,全速(≥12,000g)离心1min,将流出液收集,-80℃保存;
4、高碘酸钠消化处理RNA
(1)将提取的RNA取5μL加入95μL 10mM NaIO3在0℃避光孵育40min;
(2)加入1mL无水乙醇及1μL糖原在冰上静置20min;
(3)12,000g,15min,4℃离心后弃上清;
(4)加入1mL无水乙醇12,000g,15min,4℃离心弃上清;
(5)加入1mL 75%乙醇12,000g,15min,4℃离心弃上清;
(6)室温静置5min,用ddH2O溶解后进行定量;
5、miRNA的逆转录
5.1连接反应体系:
将上述反应体系在PCR仪中按照如下条件进行反转录反应:
5.2反转录反应体系:
4μL连接产物加入反转录体系中(加入前在室温平衡2min)
6、miRNA的半定量检测
PCR反应体系:
20μL的cDNA加入200μLRNase-free H2O
name primers
Sal-miR-1 cgtaaagacctctgatgagagtg
Sal-miR-3 gaggcattgagggagaagt
7、miRNA的测序
将扩增的PCR产物进行测序确定为Sal-miR-1和Sal-miR-3的序列一致。
Sal-miR-1序列信息:
Precursor:
cucucaucuggggucuuuguuuagauaaguugguugaaguuaaaaaauuuauuuaaaaaugagguugcuuuagaaauugugug gcuuaaugaaucaugauauuuuauucuuguuauuaucuuugaauguuuucauuuaaugaaauaauauuuugaaugauucauua ggcucacacaguuucccaagcaacaauauuugaaacgauuuuugcuucaacaaacuuauaaauuuauauaaagaccucugaugag agug
Mature:uaaagaccucugaugagagug
Sal-miR-3序列信息:
Precursor:
uucucccucaagggcuucuggcccuuugcaugcuuaguuucuucgagaaaugguaucuaaaagaaugguagugaugaaacaugg cuaggaggcauugagggagaagu
Mature:ggaggcauugagggagaagu。
本发明还提供含有上述miRNA的组合物,含有上述miRNA和药学上可接受的辅料。
上述组合物选自片剂、胶囊剂或注射剂。
为验证Sal-miR-1和Sal-miR-3的作用,本发明首先在小鼠体内颈动脉结扎模型中应用制备的Sal-miR-1和Sal-miR-3进行联合治疗。本发明还在体外血管平滑肌细胞中给予Sal-miR-1和 Sal-miR-3联合治疗进行分子机制研究。本发明结合对血管内膜增生历经十几年的实验研究,经对丹参提取成分进行二代高通量测序、将丹参的有效成分单一化并合成、体外实验抑制血管黏附机制的研究、动物模型的建立等,发现丹参来源的Sal-miR-1和Sal-miR-3在抑制血管重塑形成中发挥抑制血管内膜增生和黏附反应的作用。这种发现突破了现有技术的教导与启示,是本领域技术人员不经过创造性劳动就得不出来的,具有突出的实质性特点和显著的进步。
为了进一步研究丹参来源的Sal-miR-1和Sal-miR-3在抑制血管重塑形成中发挥抑制血管内膜增生和黏附反应的作用机制。本发明采用了分子生物学、组织病理学、组织生物化学、组织电镜学的方法,研制出具有抑制内膜增生和抗黏附作用的Sal-miR-1和Sal-miR-3,为临床治疗血管重塑提供一种高效、低毒的新型药物奠定基础,为研发中药治疗血管重塑提供体内药效学及作用机制及理论实验依据,为科技成果转化创造条件。
本发明研制出具有抑制血管内膜增生和抗黏附作用的Sal-miR-1和Sal-miR-3,为临床治疗血管重塑提供一种高效、低毒的新型药物奠定基础,为研发中药治疗血管重塑提供体内药效学及作用机制及理论实验依据,为科技成果转化创造条件。
附图说明
图1.丹参RNA建库测序流程
图2.Sal-miR-1和Sal-miR-3生物信息分析流程
图3.Sal-miR-1和Sal-miR-3表达丰度
图4.Sal-miR-1和Sal-miR-3KEGG pathway富集分析
图5.Sal-miR-1和Sal-miR-3GO富集分析
图6.Sal-miR-1和Sal-miR-3在丹参中的表达情况分析
图7.Sal-miR-1和Sal-miR-3在丹参注射液中的表达情况分析
图8.Sal-miR-1和Sal-miR-3在丹参注射液灌胃小鼠的各组织中的表达情况分析
图9.Sal-miR-1和Sal-miR-3转染血管平滑肌细胞后的表达情况分析
图10.Western blot检测Sal-miR-1、Sal-miR-3以及Sal-miR-1和Sal-miR-3共转染对血管平滑肌细胞黏附因子的抑制情况
图11.qRT-PCR检测Sal-miR-1、Sal-miR-3以及Sal-miR-1和Sal-miR-3共转染对血管平滑肌细胞黏附因子的抑制情况
图12.VSMCs转染Sal-miR-1+3 24h后,再给予凝血酶处理。Western blot检测Sal-miR-1+3 抑制由凝血酶诱导的黏附因子的表达情况
图13.VSMCs转染Sal-miR-1+3 24h后,再给予凝血酶处理。qRT-PCR检测Sal-miR-1+3抑制由凝血酶诱导的黏附因子的表达情况
图14.Sal-miR-1和Sal-miR-3在丹参中的表达情况分析,免疫荧光染色检测,Sal-miR-1+3 抑制由凝血酶诱导的VCAM-1的表达情况
图15.细胞划痕实验检测Sal-miR-1和Sal-miR-3对抑制血管平滑肌细胞迁移的影响。
图16.Transwell小室实验检测Sal-miR-1和Sal-miR-3对抑制血管平滑肌细胞迁移的影响
图17.活细胞工作站观察。Sal-miR-1+3转染血管平滑肌细胞对抑制细胞径向运动能力的影响。
图18.对Sal-miR-1+3转染血管平滑肌细胞抑制细胞径向运动能力的数据统计。
图19.转染Sal-miR-1+3对抑制由凝血酶诱导的VSMCs对淋巴细胞黏附的影响
图20.转染Sal-miR-1+3对抑制由凝血酶诱导的VSMCs对巨噬细胞黏附的影响
图21.小鼠颈动脉结扎诱导的血管内膜增生模型中原位转染Sal-miR-1+3Agomir或control Agomir,检测Sal-miR-1+3表达情况。
图22.小鼠颈动脉结扎诱导的血管内膜增生模型中原位转染Sal-miR-1+3Agomir或control Agomir,HE染色检测血管内膜增生形态学变化的情况。
图23.小鼠颈动脉结扎诱导的血管内膜增生模型中原位转染Sal-miR-1+3Agomir或control Agomir,对内膜中膜比(I/M)值进行数据统计。
图24.小鼠颈动脉结扎诱导的血管内膜增生模型中原位转染Sal-miR-1+3Agomir或control Agomir,Western blot检测血管中黏附因子表达情况
图25.小鼠颈动脉结扎诱导的血管内膜增生模型中原位转染Sal-miR-1+3Agomir或control Agomir,qRT-PCR检测血管中黏附因子表达情况
图26.小鼠颈动脉结扎诱导的血管内膜增生模型中原位转染Sal-miR-1+3Agomir或control Agomir,免疫双荧光染色检测血管中黏附因子VCAM-1和血管平滑肌标志基因SMα-actin表达情况
图27.小鼠颈动脉结扎诱导的血管内膜增生模型中原位转染Sal-miR-1+3Agomir或control Agomir,免疫组织化学法检测血管中黏附因子VCAM-1的表达情况
具体实施方式
为了使本领域技术人员能够更好地理解本发明,下面结合实施例,对本发明的技术方案进一步阐述。需要说明的是,以下描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,本领域普通技术人员基于本发明实施例,在没有做出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。
实施例1丹参来源的Sal-miR-1和Sal-miR-3的鉴定及其在小鼠体内的稳定性。
为了得知丹参中存在着哪些miRNAs,我们利用高通量二代测序手段,对丹参中存在的 miRNAs进行序列分析,在建立文库前,我们首先对植物丹参的RNA进行提取,质量合格后开始建立文库并测序(附图1)。测序结果显示,共筛选出了187种miRNAs,其中既有与其它植物同源的miRNAs,如ath-miR166a-3、hbr-miR156、gma-miR172b-5p等,又存在41种在丹参中特异存在的miRNAs(附图2,3)。进一步通过对丹参中miRNAs的靶基因进行了 KEGGPathway和GO富集分析(附图4,5),从中选取了与VSMCs功能相关的几种miRNAs 进行后续验证,我们提取丹参及丹参注射液中的RNA进行qRT-PCR检测,结果显示在丹参和丹参注射液中均能检测到丹参来源的miRNAs的表达,且以丹参特异性的Sal-miR-1和 Sal-miR-3表达相对较高(附图6)。我们决定将这两种miRNAs作为研究对象。由于植物来源的miRNAs在其3’末端核苷酸上存在2′-O-methylated结构的修饰,这使得它们对高碘酸盐具有抗性。相反,具有游离2'和3'羟基的哺乳动物miRNAs对高碘酸盐敏感。我们进一步还提取了丹参注射液中的RNA,并给予高碘酸钠(氧化剂)处理,进行qRT-PCR检测,结果显示在丹参注射液中能够检测到丹参特异性的Sal-miR-1和Sal-miR-3表达(附图7)。我们给予小鼠灌胃丹参注射液,为了确定血清及组织器官中的ppt-miR-414、hbr-miR-156、gra-miR172-5p、 Sal-miR-1和Sal-miR-3是否为植物来源的miRNAs,我们提取血清及组织中分离的RNA。在给予高碘酸钠处理后,进行qRT-PCR检测,结果显示,受高碘酸盐氧化影响,哺乳动物的 miRNAs被降解,而丹参来源的miRNAs则能在组织中呈现不同程度的稳定表达(附图8)。我们进一步验证,丹参来源的miRNAs能否在VSMCs中稳定表达,我们对Sal-miR-1和 Sal-miR-3进行了制备,并在各自的3’末端核苷酸上添加了2′-O-methylated结构的修饰,分别转染VSMCs,提取RNA并给予高碘酸钠处理后,进行qRT-PCR检测。结果表明,丹参来源的Sal-miR-1和Sal-miR-3不被高碘酸钠氧化降解,可以在小鼠VSMCs中稳定存在(附图9)。
实施例2体外试验
我们在体外培养小鼠VSMCs,制备了3'末端加有2'-O-甲基化的Sal-miR-1和Sal-miR-3 mimic转染VSMCs,明确Sal-miR-1和Sal-miR-3可以抑制颈动脉结扎引起的内膜增生和平滑肌对单核细胞的黏附反应的分子机制。
结果见后续“研究结果”中“1”。
实施例3体内试验
选用C57BL/6小鼠40只(20g左右的雄性小鼠),适应性喂养一周后,分为4组即:①空白对照组、②颈动脉结扎组、③空白对照药物组(C57BL/6+Sal-miR-1+Sal-miR-3)、④颈动脉结扎模型药物组(C57BL/6结扎+Sal-miR-1+Sal-miR-3)每组10只。药物治疗组,即④组用Sal-miR-1+Sal-miR-3Agomir采用原位凝胶包裹的方式。在颈动脉结扎血管内膜增生动物模型基础上,C57BL/6结扎+Sal-miR-1+Sal-miR-3组,使用含有Sal-miR-1+Sal-miR-3agomir (Sal-miR-1和Sal-miR-3各1OD的Agomir)30%无RNA酶的F-127胶,将结扎后的颈动脉损伤部位进行原位包裹,并让其作用15min后,进行缝合然后单笼培养。
按照Kumar等报道的方法建立小鼠颈动脉结扎模型(Kumar A,LindnerV.Remodeling with neointima formation in the mouse carotid artery aftercessation of blood flow. ArteriosclerThrombVascBiol,1997,17:2238-2244),方法如下:
1)8-10周龄的雄性C57BL/6小鼠用2%的异氟烷进行吸入性麻醉;
2)固定小鼠于无菌手术台上,颈部伸直呈仰卧位,将手术部位皮肤去毛,碘伏局部消毒;
3)用高压灭菌的剪刀沿颈正中线剪开皮肤,切口0.5cm,显微弯镊钝性分离甲状腺和肌肉,从近心端向远心端钝性分离并暴露左侧颈总动脉;
4)在颈外动脉和颈内动脉分叉点下用6号无菌手术线结扎左侧颈总动脉;
5)未结扎对照组是仅把6号无菌手术线置于左侧颈总动脉分叉点下而不结扎;
6)手术伤口用青霉素处理后用6号可吸收手术线缝合;
7)术后将小鼠置于无菌热垫上苏醒后置入动物房单笼喂养。
2.1.2通过转染原位过表达Sal-miR-1+3的颈动脉结扎模型
1)Sal-miR-1+Sal-miR-3各1OD的激动剂(Sal-miR-1+3Agomir)或对照,加入30%无 RNA酶的F-127胶(Sigma)中,4℃持续颠倒混匀24h,冰上备用。
2)雄性C57BL/6小鼠进行常规颈动脉结扎后(2.1),用(1)准备的RNA将损伤部位包裹,并让其作用15min。
3)撒上青霉素粉末,并用5号线缝合,术后将小鼠置于无菌热垫上苏醒后置入动物房单笼喂养。
结果见后续“研究结果”中“2”。
研究结果:
1、Sal-miR-1和Sal-miR-3通过抑制凝血酶诱导VCAM-1、ICAM-1和TXA2R表达而影响VSMCs细胞骨架组构和迁移。
凝血酶不仅作为凝血因子,炎性因子,还是一种与血管增殖性疾病紧密相关的血管活性物质。为了研究丹参来源的Sal-miR-1和Sal-miR-3对VSMCs的影响,我们将制备的Sal-miR-1 和Sal-miR-3转染VSMCs,Western blot和qRT-PCR结果显示,Sal-miR-1、Sal-miR-3以及 Sal-miR-1和Sal-miR-3共转染均能够明显抑制黏附因子VCAM-1、ICAM-1及TXA2R的表达,其中Sal-miR-1和Sal-miR-3共转染效果最为明显(附图10,11)。此后,我们以Sal-miR-1+3共转染为研究对象探究对凝血酶效应的影响。进一步我们给VSMCs转染Sal-miR-1+3 24h后,再给予凝血酶(1U/mL)处理。Western blot和qRT-PCR检测结果显示,Sal-miR-1+3能够显著抑制由凝血酶诱导的VCAM-1、ICAM-1和TXA2R表达(附图12,13)。同时免疫荧光染色检测 VCAM-1的表达,检测结果显示,Sal-miR-1+3能够显著抑制由凝血酶诱导的VCAM-1的荧光强度(Fig.14)。由于凝血酶能够显著促进VSMCs的迁移,并且黏附因子VCAM-1在单核细胞向炎症部位侵润过程中发挥着关键作用。于是进一步探讨了丹参来源的Sal-miR-1和Sal-miR-3 对VSMCs迁移和对单核细胞黏附的影响。细胞划痕实验和Transwell小室实验证明, Sal-miR-1+3抑制凝血酶诱导的VSMCs的迁移(附图15,16)。以上观察现象尽管表明 Sal-miR-1+3抑制凝血酶诱导的VSMCs的迁移,但是也可能存在细胞迁移速率相同而前后径向运动的能力不同导致异常的定位和迁移。因此本实验采用了动态细胞成像技术观察 Sal-miR-1+3转染VSMCs的径向迁移能力是否受到影响。我们采用凝血酶趋化VSMCs细胞的迁移。通过将VSMCs接种在培养皿中,凝血酶加入在培养皿的一端(终浓度为1U/mL)形成一个自然浓度梯度采用活细胞工作站对其运动进行观察。结果显示对照组VSMCs向凝血酶浓度高的一端显著径向运动,但是Sal-miR-1+3转染VSMCs的径向运动能力显著降低(附图17, 18)。以上的结果证明了Sal-miR-1+3在VSMCs的迁移功能中具有重要作用。同时,我们利用细胞黏附试验,荧光染色检测细胞黏附的结果显示,凝血酶促进VSMCs对淋巴细胞和巨噬细胞的黏附,转染Sal-miR-1+3显著抑制由凝血酶诱导的VSMCs对淋巴细胞和巨噬细胞的黏附 (附图19,20)。综上结果提示,Sal-miR-1+3能够抑制凝血酶诱导的VSMCs的迁移以及对单核细胞的黏附。
2、Sal-miR-1+3抑制颈动脉结扎诱导的血管内膜增生及黏附因子的表达。
为了确定丹参来源的Sal-miR-1+3是否能抑制体内血管平滑肌细胞的增殖,我们建立小鼠颈动脉结扎诱导的血管内膜增生模型并原位转染Sal-miR-1+3Agomir或controlAgomir,并同时与给予丹参注射液治疗组进行对比。C57BL/6小鼠经颈动脉结扎后立即原位给予 Sal-miR-1+3Agomir(或control Agomir,PBS)孵育15min。术后21天,取结扎的颈动脉进行 qRT-PCR检测Sal-miR-1+3的变化,结果显示与原位孵育control Agomir组相比,孵育Sal-miR-1+3Agomir组血管壁Sal-miR-1+3的表达显著增加(P<0.01)。而转染miR-Ctl的小鼠检测不到Sal-miR-1+3的存在(附图21)。HE染色结果显示,C57BL/6小鼠颈动脉结扎21天后内膜显著增生。给予原位转染Sal-miR-1+3处理后,小鼠新生内膜形成、内膜中膜比(I/M)值显著降低,(附图22,23)。以上结果表明,丹参来源的Sal-miR-1+3抑制颈动脉结扎所诱导的新生内膜形成。同时,我们提取对照组和模型组的血管组织,经Western blot和qRT-PCR检测发现,与未结扎组相比,结扎组小鼠颈动脉中的VCAM-1的表达明显上调,Sal-miR-1+3转染显著抑制由结扎引起的VCAM-1表达的上调(附图24,25)。在颈动脉结扎后21天的血管新生内膜中血管平滑肌细胞的大量增殖。然而,原位给予丹参来源的Sal-miR-1+3组结扎血管中,中膜平滑肌细胞的增殖和迁移受到抑制。那么,随着平滑肌细胞的增殖和迁移,黏附因子 VCAM-1是否在内膜中大量产生?免疫双荧光和免疫组化显示(附图26,27),与对照组相比,损伤21天后结扎血管的新生内膜中有大量VCAM-1的产生,而原位给予丹参来源的Sal-miR-1+3组显著抑制了结扎后血管中VCAM-1的表达。以上结果说明,Sal-miR-1+3抑制颈动脉结扎诱导的内膜增生和黏附因子的表达。
以上实施例的说明只是用于帮助理解本发明,使本领域专业技术人员能够实现或使用本发明,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 河北医科大学
<120> Sal-miR-1和Sal-miR-3及其在制备药物中的用途
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA/RNA
<213> 丹参(Salvia miltiorrhiza Bge)
<400> 1
cgtaaagacc tctgatgaga gtg 23
<210> 2
<211> 19
<212> DNA/RNA
<213> 丹参(Salvia miltiorrhiza Bge)
<400> 2
gaggcattga gggagaagt 19
Claims (7)
1.一种miRNA,具有如下序列,CGTAAAGACCTCTGATGAGAGTG。
2.一种miRNA,具有如下序列,GAGGCATTGAGGGAGAAGT。
3.如权利要求1和2所述两种miRNA在制备用于治疗血管重塑性疾病的药物组合中的用途。
4.如权利要求1和2所述两种miRNA在制备用于治疗血管平滑肌细胞增殖性疾病的药物组合中的用途。
5.一种制备如权利要求1所述miRNA的方法,含有如下步骤:
①植物总RNA的提取
1)将丹参的干燥根和根茎组织进行液氮研磨,保证无块状组织,取100mg粉末置于2mL无菌离心管中,添加500μL Buffer RCL/β-巯基乙醇,(样品解冻之前加入β-巯基乙醇),快速混匀;
2)55℃水浴1-3min,室温,14,000g离心5min;
3)吸取上清液(大概可获得450μL),加入至含有2mL收集管的gDNA Filter Colum中,室温14,000g离心2min;
4)加入等倍体积的Buffer RCB于收集管中,并上下颠倒混匀5-10次;
5)将从(4)中得到的全部混合液包括沉淀置于HiBind RNA mini Colum,加入一个新的2mL收集管,室温10,000离心1min,除去流动相,并把柱子放回收集管中;
6)加入400μL RWC Wash Buffer置于柱子中,室温10,000g离心1min除去流动相,柱子放回收集管中;此时,可选择用DNAase Ⅰ处理;
7)把柱子放在一个新的2mL收集管中,加入500μL RNA Wash Buffer Ⅱ,室温10,000g离心1min,除去流动相,并把柱子放回收集管中;
8)重复(7),把柱子放回收集管中,10,000g离心2min,离心干燥;
9)将离心柱置于新的1.5mL离心管中,在离心柱中加入30-50μL DEPC水,室温静置2min后,全速(≥13,000g)离心1min,将流出液收集,-80℃保存;
②丹参RNA建库测序流程
②.1 Total RNA样品检测
对RNA样品的检测主要包括4种方法:
(1)琼脂糖凝胶电泳分析RNA降解程度以及是否有污染;
(2)Nanodrop检测RNA的纯度(OD260/280比值);
(3)Qubit对RNA浓度进行精确定量;
(4)Agilent 2100精确检测RNA的完整性;
②.2文库构建
样品检测合格后,使用Small RNA Sample Pre Kit构建文库,利用Small RNA的3’及5’端特殊结构(5’端有完整的磷酸基团,3’端有羟基),以total RNA为起始样品,直接将SmallRNA两端加上接头,然后反转录合成cDNA;随后经过PCR扩增,PAGE胶电泳分离目标DNA片段,切胶回收得到的即为cDNA文库;
②.3库检
文库构建完成后,先使用Qubit2.0进行初步定量,稀释文库至1ng/μL,随后使用Agilent 2100对文库的insert size进行检测,insert size符合预期后,使用Q-PCR方法对文库的有效浓度进行准确定量(文库有效浓度>2nM),以保证文库质量;
②.4上机测序
库检合格后,把不同文库按照有效浓度及目标下机数据量的需求pooling后进行HiSeq/MiSeq测序获取丹参中存在的植物源性的miRNA;
③植物miRNA的提取
1)将丹参的干燥根和根茎组织进行液氮研磨,保证无块状组织,取50-100mg粉末置于2mL无菌离心管中,添加700μL Lysis mixture,最高速度涡旋30s,充分混匀样品;
2)55℃水浴3min,室温,12,000g离心5min;
3)吸取上清液,加入至含有2mL收集管的gDNA Removel Colum中,室温12,000g离心2min;
4)将收集管液体转移至新的2mL离心管中,加入1.1倍体积的无水乙醇涡旋20s,充分混匀;12,000g离心1min,弃掉流动相;
5)将从(4)中得到的700μL混合液置于microElute RNA mini Colum,加入一个新的2mL收集管,室温12,000离心1min,除去流动相,并把柱子放回收集管中;
6)重复(5)直至所有液体均被转移;
7)加入500μL无水乙醇至microElute RNA mini Colum,室温12,000g离心1min,除去流动相;
8)加入500μL XD Binding Buffer到microElute RNA mini Colum,室温12,000g离心1min,除去流动相;
9)加入750μL RNA Wash Buffer Ⅱ,室温10,000g离心1min,除去流动相,并把柱子放回收集管中;重复一次;
10)最大转速离心(≥12,000g)2min,离心干燥
11)将离心柱置于新的1.5mL离心管中,在离心柱中加入30-50μL DEPC水,室温静置5min后,全速(≥12,000g)离心1min,将流出液收集,-80℃保存;
④高碘酸钠消化处理RNA
(1)将提取的RNA取5μL加入95μL 10mM NaIO3在0℃避光孵育40min;
(2)加入1mL无水乙醇及1μL糖原在冰上静置20min;
(3)12,000g,15min,4℃离心后弃上清;
(4)加入1mL无水乙醇12,000g,15min,4℃离心弃上清;
(5)加入1mL75%乙醇12,000g,15min,4℃离心弃上清;
(6)室温静置5min,用ddH2O溶解后进行定量;
⑤miRNA的逆转录
⑤.1连接反应体系:
将上述反应体系在PCR仪中按照如下条件进行反转录反应:
⑤.2反转录反应体系:
4μL连接产物加入反转录体系中(加入前在室温平衡2min)
⑥miRNA的半定量检测
PCR反应体系:
20μL的cDNA加入200μLRNase-free H2O
⑦miRNA的测序
将扩增的PCR产物进行测序确定为Sal-miR-1和Sal-miR-3的序列一致;
Sal-miR-1序列信息:
Precursor:
cucucaucuggggucuuuguuuagauaaguugguugaaguuaaaaaauuuauuuaaaaaugagguugcuuuagaaauuguguggcuuaaugaaucaugauauuuuauucuuguuauuaucuuugaauguuuucauuuaaugaaauaauauuuugaaugauucauuaggcucacacaguuucccaagcaacaauauuugaaacgauuuuugcuucaacaaacuuauaaauuuauauaaagaccucugaugagagug
Mature:uaaagaccucugaugagagug
Sal-miR-3序列信息:
Precursor:uucucccucaagggcuucuggcccuuugcaugcuuaguuucuucgagaaaugguaucuaaaagaaugguagugaugaaacauggcuaggaggcauugagggagaagu
Mature:ggaggcauugagggagaagu。
6.一种药物组合物,其特征在于含有如权利要求1和2所述的miRNA和药学上可接受的辅料。
7.如权利要求6所述的组合物,其特征在于所述组合物选自片剂、胶囊剂、颗粒剂、散剂或注射剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910501245.5A CN110511931B (zh) | 2019-06-11 | 2019-06-11 | Sal-miR-1和Sal-miR-3及其在制备药物中的用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910501245.5A CN110511931B (zh) | 2019-06-11 | 2019-06-11 | Sal-miR-1和Sal-miR-3及其在制备药物中的用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110511931A true CN110511931A (zh) | 2019-11-29 |
CN110511931B CN110511931B (zh) | 2023-02-28 |
Family
ID=68622434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910501245.5A Active CN110511931B (zh) | 2019-06-11 | 2019-06-11 | Sal-miR-1和Sal-miR-3及其在制备药物中的用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110511931B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110511930A (zh) * | 2019-06-11 | 2019-11-29 | 河北医科大学 | Sal-miR-58及其在抑制血管炎性反应和动脉瘤形成中的用途 |
CN114984033A (zh) * | 2022-06-02 | 2022-09-02 | 河北中医学院 | 尖叶假龙胆来源的Gen-miR-1抑制心肌纤维化的用途 |
CN116509887A (zh) * | 2023-04-12 | 2023-08-01 | 河北中医学院 | 尖叶假龙胆来源的Gen-miR-5在制备防治心肌肥大的药物中的应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1489999A (zh) * | 2002-10-18 | 2004-04-21 | 四川大学 | 丹参酮在治疗血管平滑肌细胞异常增殖疾病药物中的应用 |
CN110511930A (zh) * | 2019-06-11 | 2019-11-29 | 河北医科大学 | Sal-miR-58及其在抑制血管炎性反应和动脉瘤形成中的用途 |
-
2019
- 2019-06-11 CN CN201910501245.5A patent/CN110511931B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1489999A (zh) * | 2002-10-18 | 2004-04-21 | 四川大学 | 丹参酮在治疗血管平滑肌细胞异常增殖疾病药物中的应用 |
CN110511930A (zh) * | 2019-06-11 | 2019-11-29 | 河北医科大学 | Sal-miR-58及其在抑制血管炎性反应和动脉瘤形成中的用途 |
Non-Patent Citations (12)
Title |
---|
QIN Y等: "Tanshinone ⅡA inhibits VSMC inflammation and proliferation in vivo and in vitro by downregulating miR-712-5p expression", 《EUR J PHARMACOL》 * |
YANG GS等: "Salvia miltiorrhiza-derived miRNAs suppress vascular remodeling through regulating OTUD7B/KLF4/NMHC IIA axis", 《THERANOSTICS》 * |
ZHAO XS等: "Salvianolic acid B inhibits Ang II-induced VSMC proliferation in vitro and intimal hyperplasia in vivo by downregulating miR-146a expression", 《PHYTOMEDICINE》 * |
卢俊阳等: "MicroRNA在靶向治疗缺血性心脏病中的研究进展", 《现代生物医学进展》 * |
国丽茹等: "丹参多酚酸治疗非小细胞肺癌合并急性脑梗死临床观察", 《中华肿瘤防治杂志》 * |
曹慧敏等: "丹参酮ⅡA对心血管系统药理作用的研究进展", 《世界中医药》 * |
杨高山: "丹参和丹参来源的Sal-miR-1和Sal-miR-3调节血管平滑肌细胞生物学行为的作用机制", 《中国博士学位论文全文数据库医药卫生科技辑》 * |
王露等: "miRNA在血管重塑中的调节作用", 《生命的化学》 * |
贾文浩等: "血管平滑肌细胞/内皮细胞miRNA――中医药干预PCI预后的新靶点", 《中西医结合心脑血管病杂志》 * |
赵雪山: "丹参酚酸B抑制血管平滑肌细胞增殖的作用机制", 《中国学位论文全文数据库》 * |
韩一: "丹参抑制血管平滑肌细胞增殖和迁移的实验研究", 《中国优秀硕士学位论文全文数据库》 * |
韩璐璐等: "循环MicroRNAs:心血管疾病及药物治疗新的生物标志物", 《中国分子心脏病学杂志》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110511930A (zh) * | 2019-06-11 | 2019-11-29 | 河北医科大学 | Sal-miR-58及其在抑制血管炎性反应和动脉瘤形成中的用途 |
CN110511930B (zh) * | 2019-06-11 | 2023-01-10 | 河北医科大学 | Sal-miR-58及其在抑制血管炎性反应和动脉瘤形成中的用途 |
CN114984033A (zh) * | 2022-06-02 | 2022-09-02 | 河北中医学院 | 尖叶假龙胆来源的Gen-miR-1抑制心肌纤维化的用途 |
CN114984033B (zh) * | 2022-06-02 | 2023-07-07 | 河北中医学院 | 尖叶假龙胆来源的Gen-miR-1抑制心肌纤维化的用途 |
CN116509887A (zh) * | 2023-04-12 | 2023-08-01 | 河北中医学院 | 尖叶假龙胆来源的Gen-miR-5在制备防治心肌肥大的药物中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110511931B (zh) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sheng et al. | LncRNA NBR2 inhibits tumorigenesis by regulating autophagy in hepatocellular carcinoma | |
CN110511931A (zh) | Sal-miR-1和Sal-miR-3及其在制备药物中的用途 | |
CN110791501A (zh) | 一种长链非编码rna及其干扰rna在治疗动脉粥样硬化中的应用 | |
Feng et al. | Protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats through inhibiting the Cys-C/Wnt signaling pathway | |
CN112138159B (zh) | 乳酸脱氢酶在组织炎症和纤维化治疗中的应用 | |
CN102921021A (zh) | miRNA-361及其反义核苷酸的用途 | |
Zhang et al. | Drosophila model and network pharmacology to explore novel targets and novel active components of Chinese traditional medications for treating kidney stones | |
JP7549911B2 (ja) | タンジン活性成分またはその医薬的に許容される塩の、抗ウイルス薬物の製造における使用 | |
CN107158008B (zh) | 一种治疗心肌梗死的药物组合物 | |
CN114984033B (zh) | 尖叶假龙胆来源的Gen-miR-1抑制心肌纤维化的用途 | |
WO2020030091A1 (zh) | 用于治疗组织坏死或改善心脏功能的药物 | |
CN110511930B (zh) | Sal-miR-58及其在抑制血管炎性反应和动脉瘤形成中的用途 | |
CN109234381A (zh) | miR-2682-5p作为肾纤维化标志物的应用 | |
CN113559245A (zh) | 替度鲁肽用于制备治疗心肌缺血再灌注损伤药物中的应用 | |
CN101411698A (zh) | 丹参丹酚酸a的用途 | |
CN106890189A (zh) | 重楼皂苷在制备抗肿瘤药物增敏剂中的应用 | |
CN102888403A (zh) | miRNA-539及其反义核苷酸的用途和其药物组合物 | |
CN104434940A (zh) | 竹节参皂苷Ⅳa在防治心血管疾病及其并发症中的应用 | |
CN116509887B (zh) | 尖叶假龙胆来源的Gen-miR-5在制备防治心肌肥大的药物中的应用 | |
CN104940177B (zh) | 藤黄酮f的医药用途 | |
CN104491496B (zh) | 天麻素/天麻粉在制备抗肝纤维化药物中的应用 | |
US20230248781A1 (en) | Method for regulating expression level of musashi1 in cells | |
CN115137740B (zh) | miRNA-497b或miRNA-5106在制备治疗缺血心肌的药物中的应用 | |
CN102895671A (zh) | 一种微小rna在预防和/或治疗心脏疾病中的用途 | |
Chen et al. | Huangqi-Danshen decoction improves heart failure by regulating pericardial adipose tissue derived extracellular vesicular miR-27a-3p to activate AMPKα2 mediated mitophagy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |