CN110508291B - Au-ZnIn2S4Preparation method of nano array electrode photocatalytic nitrogen fixation material - Google Patents
Au-ZnIn2S4Preparation method of nano array electrode photocatalytic nitrogen fixation material Download PDFInfo
- Publication number
- CN110508291B CN110508291B CN201910823580.7A CN201910823580A CN110508291B CN 110508291 B CN110508291 B CN 110508291B CN 201910823580 A CN201910823580 A CN 201910823580A CN 110508291 B CN110508291 B CN 110508291B
- Authority
- CN
- China
- Prior art keywords
- znin
- electrode
- solution
- nano
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 37
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 36
- 239000000463 material Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title abstract description 14
- 239000000243 solution Substances 0.000 claims abstract description 65
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000011521 glass Substances 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 238000002360 preparation method Methods 0.000 claims abstract description 21
- 239000002245 particle Substances 0.000 claims abstract description 20
- 239000007864 aqueous solution Substances 0.000 claims abstract description 16
- 238000000151 deposition Methods 0.000 claims abstract description 13
- 238000002256 photodeposition Methods 0.000 claims abstract description 12
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 7
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 6
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 6
- 239000002135 nanosheet Substances 0.000 claims abstract description 4
- 239000010931 gold Substances 0.000 claims description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 229910052724 xenon Inorganic materials 0.000 claims description 23
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 23
- 238000003487 electrochemical reaction Methods 0.000 claims description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 16
- 238000005286 illumination Methods 0.000 claims description 15
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 14
- 229910052737 gold Inorganic materials 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 12
- 239000010453 quartz Substances 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 238000003760 magnetic stirring Methods 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- -1 polytetrafluoroethylene Polymers 0.000 claims description 10
- 239000002120 nanofilm Substances 0.000 claims description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- 229910021617 Indium monochloride Inorganic materials 0.000 claims description 7
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 6
- 238000012986 modification Methods 0.000 claims description 6
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 4
- 239000012459 cleaning agent Substances 0.000 claims description 4
- 229940079593 drug Drugs 0.000 claims description 4
- 238000009423 ventilation Methods 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004202 carbamide Substances 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 claims description 3
- 238000003491 array Methods 0.000 claims description 2
- 238000013032 photocatalytic reaction Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 5
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 230000032900 absorption of visible light Effects 0.000 abstract description 2
- 231100000252 nontoxic Toxicity 0.000 abstract description 2
- 230000003000 nontoxic effect Effects 0.000 abstract description 2
- 238000002715 modification method Methods 0.000 abstract 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 230000008021 deposition Effects 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000005693 optoelectronics Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- 229910004410 SrSnO3 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003777 experimental drug Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 238000007144 microwave assisted synthesis reaction Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007540 photo-reduction reaction Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/341—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/14—Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Hybrid Cells (AREA)
Abstract
一种Au‑ZnIn2S4纳米阵列电极光催化固氮材料的制备方法,属于光电化学催化材料制备与改性的方法。制备方法:基于ZnIn2S4纳米阵列电极在其表面光沉积纳米Au颗粒,提高ZnIn2S4的光催化固氮性能;首先采用水热法在FTO导电玻璃上生长一层ZnIn2S4纳米片阵列,通过光沉积的方法在其表面沉积Au颗粒制得Au‑ZnIn2S4电极;Au‑ZnIn2S4电极片固定放进甲醇水溶液中,持续通入高纯氮气,在氙灯光照下将N2转化为NH3,进而转化为NH4+;取反应溶液与纳氏试剂混合显色,确定反应溶液中NH4+浓度,进而确定材料光催化固氮性能。优点:制备简单,制备条件宽松,无毒,材料应用过程中易于回收,能够循环利用;以ZnIn2S4禁带宽度较窄,能吸收更大范围的可见光,Au在可见光范围能也有很强的吸收,提高了材料对可见光的综合利用率。
A preparation method of Au-ZnIn 2 S 4 nano-array electrode photocatalytic nitrogen fixation material belongs to the preparation and modification method of photoelectrochemical catalytic material. Preparation method: Based on ZnIn 2 S 4 nano-array electrode, nano-Au particles are photodeposited on its surface to improve the photocatalytic nitrogen fixation performance of ZnIn 2 S 4 ; first, a layer of ZnIn 2 S 4 nanosheet array is grown on FTO conductive glass by hydrothermal method , Au-ZnIn 2 S 4 electrode was prepared by depositing Au particles on its surface by the method of photodeposition; the Au-ZnIn 2 S 4 electrode sheet was fixed and placed in methanol aqueous solution, high-purity nitrogen gas was continuously introduced, and N 2 is converted into NH 3 , and then into NH 4+ ; the reaction solution is mixed with Nessler reagent to develop color, the NH 4+ concentration in the reaction solution is determined, and then the photocatalytic nitrogen fixation performance of the material is determined. Advantages: simple preparation, loose preparation conditions, non-toxic, easy to recycle in the process of material application, and can be recycled; ZnIn 2 S 4 has a narrow band gap and can absorb a wider range of visible light, Au also has strong energy in the visible light range The absorption of visible light improves the comprehensive utilization rate of visible light.
Description
技术领域technical field
本发明涉及一种光电化学催化材料制备与改性的方法,特别是一种Au-ZnIn2S4纳米阵列电极光催化固氮材料的制备方法。The invention relates to a method for preparing and modifying a photoelectrochemical catalytic material, in particular to a preparation method for an Au-ZnIn 2 S 4 nanometer array electrode photocatalytic nitrogen fixation material.
背景技术Background technique
氨是化工、医药、农业等方面必不可少的生产原料。目前,工业生产中合成氨依旧是传统的哈伯法,反应温度多在300℃以上,压力100atm以上,在铁基催化剂催化过程中反应。合成反应中所需的H2主要由天然气的蒸发转化产生,维持整个反应过程消耗了地球上1-2%的化石能源,并且造成大量CO2的排放。从减少不可再生能源的消耗和较少温室气体排放角度看,利用光能合成氨是非常有科研价值的。Ammonia is an indispensable raw material for chemical industry, medicine, agriculture, etc. At present, the synthesis of ammonia in industrial production is still the traditional Haber method. The reaction temperature is mostly above 300 °C and the pressure is above 100 atm, and the reaction is carried out in the process of iron-based catalyst catalysis. The H2 required in the synthesis reaction is mainly produced by the evaporative transformation of natural gas, maintaining the entire reaction process consumes 1-2% of the fossil energy on the earth, and causes a large amount of CO2 emission. From the perspective of reducing the consumption of non-renewable energy and reducing greenhouse gas emissions, the use of light energy to synthesize ammonia is of great scientific value.
光电催化过程是将光能转化为化学能的过程,是解决能源危机的思路之一。有光催化性能的材料众多,但能实现光催化固氮的材料很少,主要因为N2分子非常稳定,完全打开每摩尔N≡N分子需要至少941.69kJ能量,其中首个N-N键解离需要410kJmol-1能量,所以将氮气转化为氨气所需的能量是非常大的。Photoelectric catalysis is the process of converting light energy into chemical energy, which is one of the ideas to solve the energy crisis. There are many materials with photocatalytic properties, but there are very few materials that can achieve photocatalytic nitrogen fixation, mainly because the N 2 molecule is very stable, and it takes at least 941.69kJ energy per mole of N≡N molecule to fully open, of which 410kJmol is required for the dissociation of the first N-N bond. -1 energy, so the energy required to convert nitrogen to ammonia is very large.
当前研究最多的是TiO2光催化材料,TiO2通过各种改性手段可以提高其光催化固氮性能。天津大学龚金龙团队对TiO2电极固氮进行过研究,通过水热法在FTO导电玻璃上生长一层TiO2纳米杆,然后对TiO2电极引入氧空位和贵金属实现了固氮性能的提高到13.4nmol/cm2/h(参考文献:Alammar,T.;Hamm,I.;Grasmik,V.;Wark,M.;Mudring,A.V.,Microwave-Assisted Synthesis of Perovskite SrSnO3 Nanocrystals in IonicLiquids for Photocatalytic Applications.Inorg Chem 2017,56(12),6920-6932.)。基于TiO2材料的改性也有很多,其光催化固氮的仍然不太理想。受制于TiO2材料自身禁带宽度为3.2eV,带隙过宽,仅能吸收占太阳光中能量4%的紫外光。通过后期改性其光催化性能提高有一定提高,但基体TiO2自身可见光利用率不高是制约其光催化固氮性能不高的关键。 TiO2 photocatalytic material is currently the most studied material, and TiO2 can improve its photocatalytic nitrogen fixation performance through various modification means. The team of Gong Jinlong of Tianjin University has studied nitrogen fixation on TiO 2 electrodes, growing a layer of TiO 2 nanorods on FTO conductive glass by hydrothermal method, and then introducing oxygen vacancies and precious metals into TiO 2 electrodes to achieve an increase in nitrogen fixation performance to 13.4 nmol /cm 2 /h (References: Alammar, T.; Hamm, I.; Grasmik, V.; Wark, M.; Mudring, AV, Microwave-Assisted Synthesis of Perovskite SrSnO3 Nanocrystals in IonicLiquids for Photocatalytic Applications. Inorg Chem 2017 , 56(12), 6920-6932.). There are also many modifications based on TiO2 materials, and their photocatalytic nitrogen fixation is still not ideal. Constrained by the 3.2eV forbidden band width of the TiO 2 material itself, the band gap is too wide, and it can only absorb ultraviolet light which accounts for 4% of the energy in sunlight. The photocatalytic performance has been improved to some extent by post-modification, but the low utilization rate of visible light of the matrix TiO 2 itself is the key to restricting its low photocatalytic nitrogen fixation performance.
纳米ZnIn2S4微观相貌为片状,有较大的光活性面积,其禁带宽度在2.5eV附近,可以吸收较宽范围的可见光,同时具有良好的光化学稳定性。以标准氢电极为参比测试下ZnIn2S4的导带位置在-0.74eV附近,价带位置在+1.66eV附近,N2+6H++6e-→2NH3的还原电位为-0.15eV。其还原电位在ZnIn2S4导带以内,在理论上是可以实现将N2还原为NH3的。经过人为设计将贵金属纳米颗粒沉积在半导体表面是一种常见的提高半导体光电性能的方法。贵金属吸收光能产生热载流子,当热载流子能量高于金属-半导体界面处肖特基势垒时热电子会直接注入到半导体导带中。本发明通过纳米Au修饰过的ZnIn2S4对可见光利用得到了很大的提升,其在光电领域、光催化领域有着很大的研究空间。The microscopic appearance of nano-ZnIn 2 S 4 is sheet-like, with a large photoactive area, and its forbidden band width is around 2.5eV, which can absorb a wide range of visible light and has good photochemical stability. The conduction band position of ZnIn 2 S 4 is around -0.74eV, the valence band position is around +1.66eV, and the reduction potential of N 2 +6H + +6e - →2NH 3 is -0.15eV under the standard hydrogen electrode test. . Its reduction potential is within the conduction band of ZnIn 2 S 4 , and it is theoretically possible to reduce N 2 to NH 3 . Deposition of noble metal nanoparticles on semiconductor surfaces by artificial design is a common method to improve the optoelectronic properties of semiconductors. Noble metals absorb light energy to generate hot carriers. When the hot carrier energy is higher than the Schottky barrier at the metal-semiconductor interface, hot electrons are directly injected into the semiconductor conduction band. The invention greatly improves the utilization of visible light through the nano-Au-modified ZnIn 2 S 4 , and has a great research space in the fields of optoelectronics and photocatalysis.
发明内容SUMMARY OF THE INVENTION
本发明的目的是要提供一种Au-ZnIn2S4纳米阵列电极光催化固氮材料的制备方法,解决当前光催化领域中光催化领域中光活性面积低、光电性能不高、催化性能不高的问题。The purpose of the present invention is to provide a preparation method of Au-ZnIn 2 S 4 nano-array electrode photocatalytic nitrogen fixation material, so as to solve the problem of low photoactive area, low photoelectric performance and low catalytic performance in the current photocatalysis field. The problem.
实现本发明目的采用的技术方案:Au-ZnIn2S4纳米阵列的制备方法是:基于ZnIn2S4纳米阵列电极在其表面光沉积纳米Au颗粒,提高ZnIn2S4的光催化固氮性能;首先采用水热法在FTO导电玻璃上生长一层ZnIn2S4纳米片阵列,通过光沉积的方法在其表面沉积Au颗粒;Au-ZnIn2S4电极片固定放进甲醇水溶液中,持续通入高纯氮气,在氙灯光照下将N2转化为NH3,进而转化为NH4+;取反应溶液与纳氏试剂混合显色,确定反应溶液中 NH4+浓度,进而确定材料光催化固氮性能。The technical scheme adopted to achieve the purpose of the present invention: the preparation method of Au-ZnIn 2 S 4 nanometer array is as follows: based on ZnIn 2 S4 nanometer array electrode, nano Au particles are photodeposited on its surface to improve the photocatalytic nitrogen fixation performance of ZnIn 2 S4; firstly A layer of ZnIn 2 S 4 nanosheet array was grown on FTO conductive glass by hydrothermal method, and Au particles were deposited on its surface by photodeposition; Au-ZnIn 2 S 4 electrode sheet was fixed in methanol aqueous solution, and the High-purity nitrogen, convert N 2 into NH 3 under xenon light, and then into NH 4+ ; Mix the reaction solution with Nessler reagent to develop color, determine the NH 4+ concentration in the reaction solution, and then determine the photocatalytic nitrogen fixation performance of the material .
所述的Au-ZnIn2S4纳米阵列的制备,具体步骤如下:The specific steps for the preparation of the Au-ZnIn 2 S 4 nanoarrays are as follows:
步骤1.利用硝酸锌Zn(NO3)2·6H2O、三氯化铟InCl3、硫化尿素CH4N2S以摩尔比为1:2:4 的比例配置前驱体溶液,通过一步水热法制得具有ZnIn2S4纳米层的FTO导电玻璃电极,即ZnIn2S4纳米阵列电极;
步骤2.取20-60μL 50mmol/L的HAuCl4溶液用纯水稀释至100mL,将该溶液转移至石英电解池中,将ZnIn2S4电极片用聚四氟乙烯电极夹固定在石英电解池中,通过氙灯模拟太阳光照射使溶液中的Au3+还原成的Au单质沉积在ZnIn2S4电极片表面,制备出Au- ZnIn2S4纳米阵列电极;
步骤3.对Au-ZnIn2S4纳米阵列电极光催化固氮材料性能进行测试,Au-ZnIn2S4电极固定放进甲醇水溶液中,持续通入高纯氮气,在模拟太阳光照射之前预先通气20min,以模拟太阳光为能量来源,用铂片电极夹固定Au-ZnIn2S4电极,组建光催化反应池;在氙灯光照下将N2转化为NH3,进而转化为NH4+;取反应溶液与纳氏试剂混合显色,确定反应溶液中NH4 +浓度,进而确定材料光催化固氮性能。
所述的步骤1中,ZnIn2S4纳米阵列的生长制备,具体步骤如下:In the described
步骤(1-1),清洗:将溅射有SnO2的FTO导电玻璃裁成2×3cm的小片并编号,依次用混有玻璃清洗剂的纯水溶液、纯水、异丙醇、乙醇95wt%、乙醇99wt%超声30min,后自然晾干,备用;Step (1-1), cleaning: cut the FTO conductive glass sputtered with SnO 2 into small pieces of 2×3 cm and number them, and sequentially use pure aqueous solution mixed with glass cleaning agent, pure water, isopropanol, and ethanol 95wt% , ethanol 99wt% ultrasonic for 30min, then air-dry naturally, for use;
步骤(1-2),改性:将步骤(1-1)中的清洗干净的FTO导电玻璃放入纯水︰双氧水︰氨水为5︰1︰1的溶液中,静置10min,镊子夹出,用大量纯水冲洗干净,自然晾干,备用;Step (1-2), modification: put the cleaned FTO conductive glass in step (1-1) into a 5:1:1 solution of pure water: hydrogen peroxide: ammonia water, let stand for 10 minutes, and take out the tweezers , rinse with plenty of pure water, dry naturally, spare;
步骤(1-3),配制前驱体溶液:以盐酸配置pH为1.8的水溶液,将0.75mmol Zn(NO3)2·6H2O、1.50mmol InCl3、3mmol CH4N2S溶于30mL pH=1.8的水中,磁力搅拌20min 使药品完全溶解,制得前驱体溶液;Step (1-3), prepare a precursor solution: prepare an aqueous solution with a pH of 1.8 with hydrochloric acid, dissolve 0.75mmol Zn(NO 3 ) 2 ·6H 2 O, 1.50mmol InCl 3 , 3mmol CH 4 N 2 S in 30mL pH = 1.8 in water, magnetic stirring for 20min to completely dissolve the drug to obtain a precursor solution;
步骤(1-4),将经改性过的FTO导电玻璃导电面朝下倾斜放入50ml水热反应釜内衬,将步骤(1-3)中前驱体溶液转移至反应釜中;Step (1-4), the conductive surface of the modified FTO conductive glass is tilted downward and put into the 50ml hydrothermal reactor lining, and the precursor solution in step (1-3) is transferred to the reactor;
步骤(1-5),反应釜密封,置于烘箱中,180℃保温3h,自然冷却至室温,得到FTO 导电玻璃导电面均匀长满淡黄色的薄膜,该淡黄色的薄膜为ZnIn2S4纳米薄膜;FTO导电玻璃经缓水冲洗、真空干燥6h后的得到ZnIn2S4纳米阵列电极。In step (1-5), the reaction kettle is sealed, placed in an oven, kept at 180° C. for 3 hours, and cooled to room temperature naturally to obtain a light yellow film uniformly covered on the conductive surface of the FTO conductive glass, and the light yellow film is ZnIn 2 S 4 Nano film; FTO conductive glass was rinsed with slow water and vacuum dried for 6h to obtain ZnIn 2 S 4 nanometer array electrodes.
所述的步骤2中,在ZnIn2S4纳米阵列电极表面沉积金;具体步骤如下:In the
步骤(2-1),将40μl 50mmol/L的AuHCl4用纯水稀释至100mL,得到含Au量为0.394mg 的溶液,将溶液移入石英电解池中;In step (2-1), 40 μl of 50 mmol/L AuHCl 4 was diluted to 100 mL with pure water to obtain a solution containing 0.394 mg of Au, and the solution was transferred into a quartz electrolytic cell;
步骤(2-2),将ZnIn2S4电极用聚四氟乙烯电极夹固定,全部浸入步骤(2-1)中溶液,长有ZnIn2S4纳米薄膜的面朝向氙灯光源,在磁力搅拌中光照30min,对ZnIn2S4电极实施光沉积;In step (2-2), the ZnIn 2 S 4 electrode was fixed with a polytetrafluoroethylene electrode clip, and all of it was immersed in the solution in step (2-1), and the surface with the ZnIn 2 S 4 nano-film was facing the xenon lamp light source, and the magnetic stirring was carried out. The ZnIn 2 S 4 electrode was subjected to photodeposition under medium illumination for 30 min;
步骤(2-3),将光沉积过的电极用去离子水冲洗3次,60℃真空干燥6h得到表面沉积Au的Au-ZnIn2S4纳米阵列电极。In step (2-3), the photodeposited electrode was rinsed three times with deionized water, and vacuum-dried at 60° C. for 6 h to obtain an Au-ZnIn 2 S 4 nanoarray electrode with Au deposited on the surface.
所述的步骤2中,模拟太阳光照射的光照强度为100mW/cm2,在室温下照射20-40min。In the
所述的步骤3中,通入的高纯氮气N2的流量20ml/min,在模拟太阳光照射之前预先通气20min;所述的甲醇水溶液中,99%甲醇与水的体积比为1:4。In the
在ZnIn2S4纳米阵列表面光沉积金颗粒的专用装置:包括氙灯模拟太阳光、电极夹、ZnIn2S4纳米阵列电极、磁力搅拌器、磁子和电化学反应池;在磁力搅拌器上安置电化学反应池,在电化学反应池内有磁子,在电化学反应池上端有电极夹,电极夹夹持ZnIn2S4纳米阵列电极,在电化学反应池外有氙灯模拟太阳光照射ZnIn2S4纳米阵列电极3,ZnIn2S4纳米阵列电极置于电解液中。Special equipment for photodepositing gold particles on the surface of ZnIn 2 S 4 nanoarrays: including xenon lamp to simulate sunlight, electrode clips, ZnIn 2 S 4 nanoarray electrodes, magnetic stirrer, magneton and electrochemical reaction cell; installed on the magnetic stirrer Electrochemical reaction cell, there are magnetons in the electrochemical reaction cell, electrode clips at the upper end of the electrochemical reaction cell, electrode clips clamp ZnIn 2 S 4 nano-array electrodes, and a xenon lamp simulates sunlight to illuminate ZnIn 2 outside the electrochemical reaction cell S4 nanoarray electrode 3 , ZnIn2S4 nanoarray electrode is placed in the electrolyte.
有益效果,由于采用了上述方案,采用一步水热法,在FTO导电玻璃上生长ZnIn2S4纳米阵列;然后通过光照射浸在HAuCl4水溶液中的ZnIn2S4纳米阵列电极,使Au3+被还原产生金颗粒,在搅拌的条件下光照30min,清洗、干燥得到表面沉积纳米Au颗粒的 ZnIn2S4纳米阵列电极。Beneficial effects, due to the adoption of the above scheme, a one-step hydrothermal method is used to grow ZnIn 2 S 4 nanometer arrays on FTO conductive glass ; + is reduced to produce gold particles, irradiated for 30 min under stirring conditions, washed and dried to obtain a ZnIn 2 S 4 nanoarray electrode with nano Au particles deposited on the surface.
利用光沉积的方法制备Au-ZnIn2S4电极片,将Au-ZnIn2S4电极片用于光催化固氮领域,开发一种全新的光催化固氮材料。沉积Au颗粒有利于提高ZnIn2S4对光的吸收,光沉积的方法有利于Au选择性的沉积在高活性面上,ZnIn2S4纳米材料为片状结构,片层的棱边具有更高的光电性能,进而促使Au颗粒在ZnIn2S4片棱边被光还原沉积。沉积Au颗粒有利于提高ZnIn2S4对光的吸收,处于棱边的Au颗粒吸收的光电子向ZnIn2S4转移,进而促进吸附在ZnIn2S4上的N2活化,实现光催化固氮。The Au-ZnIn 2 S 4 electrode sheet was prepared by the method of photodeposition, and the Au-ZnIn 2 S 4 electrode sheet was used in the field of photocatalytic nitrogen fixation to develop a new photocatalytic nitrogen fixation material. The deposition of Au particles is beneficial to improve the absorption of light by ZnIn 2 S 4 , and the photodeposition method is beneficial to the selective deposition of Au on the highly active surface . The high optoelectronic properties further promote the photoreduction deposition of Au particles on the edges of ZnIn 2 S 4 sheets. The deposition of Au particles is beneficial to improve the absorption of light by ZnIn 2 S 4 , and the photoelectrons absorbed by the Au particles at the edge are transferred to ZnIn 2 S 4 , which in turn promotes the activation of N 2 adsorbed on ZnIn 2 S 4 , and realizes photocatalytic nitrogen fixation.
在ZnIn2S4纳米阵列上表面沉积金颗粒,金的表面等离子体效应有效的提高ZnIn2S4在可见光区域的光吸收,同时纳米金颗粒吸收光能产生热电子,增强ZnIn2S4纳米阵列光还原N2产生NH3的能力。实验表明经过简单的光沉积纳米金颗粒的ZnIn2S4纳米阵列对可见光的吸收明显提高,光电性能也有所提高。同时,此材料是阵列材料,可以简单回收之后重复利用,制备和处理过程无毒且相对简单,在光催化固氮方面有着巨大的潜力。Gold particles are deposited on the surface of ZnIn 2 S 4 nanoarrays. The surface plasmon effect of gold can effectively improve the light absorption of ZnIn 2 S 4 in the visible light region . The ability of the array to photoreduce N2 to produce NH3 . Experiments show that the absorption of visible light by the ZnIn 2 S 4 nanoarrays of gold nanoparticles by simple photodeposition is obviously improved, and the optoelectronic properties are also improved. At the same time, this material is an array material, which can be easily recycled and reused. The preparation and processing process is non-toxic and relatively simple, and has great potential in photocatalytic nitrogen fixation.
解决了当前光催化领域中光活性面积低、光电性能不高、催化性能不高的问题,达到了本发明的目的。The problems of low photoactive area, low photoelectric performance and low catalytic performance in the current photocatalysis field are solved, and the purpose of the present invention is achieved.
本发明具有以下优点:The present invention has the following advantages:
1.该材料制备简单,制备条件宽松,无毒,材料应用过程中易于回收,可以循环利用。1. The material has the advantages of simple preparation, loose preparation conditions, non-toxicity, easy recovery in the process of material application, and can be recycled.
2.以ZnIn2S4禁带宽度较窄,能吸收更大范围的可见光,Au在可见光范围能也有很强的吸收,进而提高了材料对可见光的综合利用率。2. With the narrow band gap of ZnIn 2 S 4 , it can absorb a wider range of visible light, and Au can also have a strong absorption in the visible light range, thereby improving the comprehensive utilization rate of the material for visible light.
附图说明Description of drawings
图1为本发明在ZnIn2S4纳米阵列表面光沉积金颗粒装置结构示意图。FIG. 1 is a schematic structural diagram of an apparatus for optically depositing gold particles on the surface of a ZnIn 2 S 4 nanoarray according to the present invention.
图2为本发明实施例1中在FTO导电玻璃上生长ZnIn2S4纳米阵列的典型XRD图谱。FIG. 2 is a typical XRD pattern of ZnIn 2 S 4 nanoarrays grown on FTO conductive glass in Example 1 of the present invention.
图3-a为本发明实施例1中在FTO导电玻璃上生长ZnIn2S4纳米阵列的典型扫描电镜形貌图。Figure 3-a is a typical scanning electron microscope topography of the ZnIn 2 S 4 nanoarrays grown on FTO conductive glass in Example 1 of the present invention.
图3-b为本发明实施例2中在FTO导电玻璃上生长ZnIn2S4纳米阵列表面光沉积金的扫描电镜图。FIG. 3-b is a scanning electron microscope image of surface photodeposited gold of ZnIn 2 S 4 nanoarrays grown on FTO conductive glass in Example 2 of the present invention.
图3-c为本发明实施例2中在FTO导电玻璃上生长ZnIn2S4纳米阵列表面光沉积金的大范围扫描电镜图。3-c is a large-scale scanning electron microscope image of the surface photodeposited gold of ZnIn 2 S 4 nanoarrays grown on FTO conductive glass in Example 2 of the present invention.
图4为本发明在FTO导电玻璃上生长ZnIn2S4纳米阵列和光沉积不同质量Au后的紫外-可见漫反射吸收光谱图。FIG. 4 is the UV-Vis diffuse reflection absorption spectrum after growing ZnIn 2 S 4 nanoarrays on FTO conductive glass and photodepositing Au of different qualities according to the present invention.
图5为本发明在FTO导电玻璃上生长ZnIn2S4纳米阵列和光沉积不同质量Au后在可见光辐照下的光电流相应特征图。FIG. 5 is the corresponding characteristic diagram of photocurrent under visible light irradiation after growing ZnIn 2 S 4 nanoarrays on FTO conductive glass and photodepositing Au of different qualities according to the present invention.
图6为本发明在FTO导电玻璃上生长ZnIn2S4纳米阵列和光沉积不同质量Au后在可见光辐照下交流阻抗Nyquist图。FIG. 6 is a Nyquist diagram of AC impedance under visible light irradiation after growing ZnIn 2 S 4 nanoarrays on FTO conductive glass and photodepositing Au of different qualities according to the present invention.
图7为本发明在FTO导电玻璃上生长ZnIn2S4纳米阵列和光沉积不同质量Au后光催化固氮性能图。FIG. 7 is a graph showing the photocatalytic nitrogen fixation performance after growing ZnIn 2 S 4 nanoarrays on FTO conductive glass and photo-depositing Au of different qualities according to the present invention.
图1中,1.氙灯模拟太阳光;2.电极夹;3.ZnIn2S4纳米阵列电极;4.磁力搅拌器;5.磁子;6.电化学反应池。In Fig. 1, 1. Xenon lamp simulates sunlight; 2. Electrode clip; 3. ZnIn 2 S 4 nanoarray electrode; 4. Magnetic stirrer; 5. Magneton; 6. Electrochemical reaction cell.
具体实施方式Detailed ways
Au-ZnIn2S4纳米阵列的制备方法是:基于ZnIn2S4纳米阵列电极在其表面光沉积纳米 Au颗粒,提高ZnIn2S4的光催化固氮性能;首先采用水热法在FTO导电玻璃上生长一层ZnIn2S4纳米片阵列,通过光沉积的方法在其表面沉积Au颗粒;Au-ZnIn2S4电极片固定放进甲醇水溶液中,持续通入高纯氮气,在氙灯光照下将N2转化为NH3,进而转化为NH4+;取反应溶液与纳氏试剂混合显色,确定反应溶液中NH4+浓度,进而确定材料光催化固氮性能。The preparation method of Au-ZnIn 2 S 4 nanoarray is as follows: based on ZnIn 2 S 4 nano-array electrode, nano-Au particles are photodeposited on its surface to improve the photocatalytic nitrogen fixation performance of ZnIn 2 S 4 ; firstly, the hydrothermal method is used on FTO conductive glass. A layer of ZnIn 2 S 4 nanosheet array was grown, and Au particles were deposited on its surface by photodeposition; the Au-ZnIn 2 S 4 electrode sheet was fixed and placed in methanol aqueous solution, and high-purity nitrogen gas was continuously passed in, and under the illumination of xenon lamp, the N 2 is converted into NH 3 , and then into NH 4+ ; the reaction solution is mixed with Nessler reagent for color development, the NH 4+ concentration in the reaction solution is determined, and the photocatalytic nitrogen fixation performance of the material is determined.
所述的Au-ZnIn2S4纳米阵列的制备,具体步骤如下:The specific steps for the preparation of the Au-ZnIn 2 S 4 nanoarrays are as follows:
步骤1.利用硝酸锌Zn(NO3)2·6H2O、三氯化铟InCl3、硫化尿素CH4N2S以摩尔比为1:2:4 的比例配置前驱体溶液,通过一步水热法制得具有ZnIn2S4纳米层的FTO导电玻璃电极,即ZnIn2S4电极片;
步骤2.取20-60μL 50mmol/L的HAuCl4溶液用纯水稀释至100mL,将该溶液转移至石英电解池中,将ZnIn2S4电极片用聚四氟乙烯电极夹固定在石英电解池中,通过氙灯模拟太阳光照射使溶液中的Au3+还原成的Au单质沉积在ZnIn2S4电极片表面,制备出Au- ZnIn2S4纳米阵列电极;
步骤3.Au-ZnIn2S4纳米阵列电极固定放进甲醇水溶液中,持续通入高纯氮气,在氙灯光照下将N2转化为NH3,进而转化为NH4+;取反应溶液与纳氏试剂混合显色,确定反应溶液中NH4+浓度,进而确定材料光催化固氮性能。
所述的步骤1中,ZnIn2S4纳米阵列的生长制备,具体步骤如下:In the described
步骤(1-1),清洗:将溅射有SnO2的FTO导电玻璃裁成2×3cm的小片并编号,依次用混有玻璃清洗剂的纯水溶液、纯水、异丙醇、乙醇95wt%、乙醇99wt%超声30min,后自然晾干,备用;Step (1-1), cleaning: cut the FTO conductive glass sputtered with SnO 2 into small pieces of 2×3 cm and number them, and sequentially use pure aqueous solution mixed with glass cleaning agent, pure water, isopropanol, and ethanol 95wt% , ethanol 99wt% ultrasonic for 30min, then air-dry naturally, for use;
步骤(1-2),改性:将步骤(1-1)中的清洗干净的FTO导电玻璃放入纯水︰双氧水︰氨水为5︰1︰1的溶液中,静置10min,镊子夹出,用大量纯水冲洗干净,自然晾干,备用;Step (1-2), modification: put the cleaned FTO conductive glass in step (1-1) into a 5:1:1 solution of pure water: hydrogen peroxide: ammonia water, let stand for 10 minutes, and take out the tweezers , rinse with plenty of pure water, dry naturally, spare;
步骤(1-3),配制前驱体溶液:以盐酸配置pH为1.8的水溶液,将0.75mmol Zn(NO3)2·6H2O、1.50mmol InCl3、3mmol CH4N2S溶于30mL pH=1.8的水中,磁力搅拌20min 使药品完全溶解,制得前驱体溶液;Step (1-3), prepare a precursor solution: prepare an aqueous solution with a pH of 1.8 with hydrochloric acid, dissolve 0.75mmol Zn(NO 3 ) 2 ·6H 2 O, 1.50mmol InCl 3 , 3mmol CH 4 N 2 S in 30mL pH = 1.8 in water, magnetic stirring for 20min to completely dissolve the drug to obtain a precursor solution;
步骤(1-4),将经改性过的FTO导电玻璃导电面朝下倾斜放入50ml水热反应釜内衬,将步骤(1-3)中前驱体溶液转移至反应釜中;Step (1-4), the conductive surface of the modified FTO conductive glass is tilted downward and put into the 50ml hydrothermal reactor lining, and the precursor solution in step (1-3) is transferred to the reactor;
步骤(1-5),反应釜密封,置于烘箱中,180℃保温3h,自然冷却至室温,得到FTO 导电玻璃导电面均匀长满淡黄色的薄膜,该淡黄色的薄膜为ZnIn2S4纳米薄膜;FTO导电玻璃经缓水冲洗、真空干燥6h后的得到ZnIn2S4纳米阵列电极。In step (1-5), the reaction kettle is sealed, placed in an oven, kept at 180° C. for 3 hours, and cooled to room temperature naturally to obtain a light yellow film uniformly covered on the conductive surface of the FTO conductive glass, and the light yellow film is ZnIn 2 S 4 Nano film; FTO conductive glass was rinsed with slow water and vacuum dried for 6h to obtain ZnIn 2 S 4 nanometer array electrodes.
所述的步骤2中,在ZnIn2S4纳米阵列电极表面沉积金;具体步骤如下:In the
步骤(2-1),将40μl 50mmol/L的AuHCl4用纯水稀释至100mL,得到含Au量为0.394mg 的溶液,将溶液移入石英电解池中;In step (2-1), 40 μl of 50 mmol/L AuHCl 4 was diluted to 100 mL with pure water to obtain a solution containing 0.394 mg of Au, and the solution was transferred into a quartz electrolytic cell;
步骤(2-2),将ZnIn2S4电极用聚四氟乙烯电极夹固定,全部浸入步骤(2-1)中溶液,长有ZnIn2S4纳米薄膜的面朝向氙灯光源,在磁力搅拌中光照30min,对ZnIn2S4纳米阵列电极实施光沉积;In step (2-2), the ZnIn 2 S 4 electrode was fixed with a polytetrafluoroethylene electrode clip, and all of it was immersed in the solution in step (2-1), and the surface with the ZnIn 2 S 4 nano-film was facing the xenon lamp light source, and the magnetic stirring was carried out. The ZnIn 2 S 4 nano-array electrode was subjected to photodeposition under medium illumination for 30 min;
步骤(2-3),将光沉积过的电极用去离子水冲洗3次,60℃真空干燥6h得到表面沉积Au的Au-ZnIn2S4电极片;In step (2-3), the photo-deposited electrode was rinsed three times with deionized water, and vacuum-dried at 60° C. for 6 h to obtain an Au-ZnIn 2 S 4 electrode sheet with Au deposited on the surface;
所述的步骤2中,模拟太阳光照射的光照强度为100mW/cm2,在室温下照射20-40min。In the
在ZnIn2S4纳米阵列表面光沉积金颗粒的专用装置:包括氙灯模拟太阳光1、电极夹2、 ZnIn2S4纳米阵列电极3、磁力搅拌器4、磁子5和电化学反应池6;A special device for photo-depositing gold particles on the surface of ZnIn 2 S 4 nano-array: including xenon
在磁力搅拌器4上安置电化学反应池6,在电化学反应池6内有磁子5,在电化学反应池6上端有电极夹2,电极夹2夹持ZnIn2S4纳米阵列电极3,在电化学反应池6外有氙灯模拟太阳光1照射ZnIn2S4纳米阵列电极3,ZnIn2S4纳米阵列电极3置于电解液中。An
结合附图实验具体实施方式对本发明作进一步详细说明。The present invention will be further described in detail with reference to the experimental specific embodiments of the accompanying drawings.
1.本发明采用一步水热法制备ZnIn2S4纳米阵列,通过表面光沉积纳米Au颗粒提高其光电化学性能,同时提高其光催化固氮的能力。1. The present invention adopts a one-step hydrothermal method to prepare ZnIn 2 S 4 nanometer array, and improves its photoelectrochemical performance by surface photodeposition of nanometer Au particles, and at the same time improves its photocatalytic nitrogen fixation ability.
2.以下实施例中各种实验药品均为分析纯。2. Various experimental drugs in the following examples are all analytically pure.
3.所述ZnIn2S4纳米阵列为单晶结构,六方相晶型,厚度为100nm左右.3. The ZnIn 2 S 4 nanoarray is a single crystal structure, hexagonal phase crystal type, and the thickness is about 100nm.
4.制备ZnIn2S4纳米阵列,具体步骤如下:4. To prepare ZnIn 2 S 4 nanoarrays, the specific steps are as follows:
(4-1).将溅射有SnO2的FTO玻璃裁成2×3cm的小片并在非导电面编号,依次用混有玻璃清洗剂的纯水溶液、纯水、异丙醇、乙醇95wt%、乙醇99wt%超声30min。后自然晾干,备用;(4-1). Cut the FTO glass sputtered with SnO 2 into small pieces of 2 × 3 cm and number them on the non-conductive surface. Then use pure aqueous solution mixed with glass cleaning agent, pure water, isopropanol, and ethanol 95wt% , ethanol 99wt% ultrasonic for 30min. After drying naturally, spare;
(4-2).将(4-1)中玻璃放入V纯水︰V双氧水︰V氨水为5︰1︰1的溶液中,静置10min, 镊子夹出,用大量纯水冲洗干净,自然晾干,备用;(4-2). Put the glass in (4-1) into a 5:1:1 solution of V pure water : V hydrogen peroxide : V ammonia water , let it stand for 10 minutes, take it out with tweezers, rinse with plenty of pure water, Natural dry, spare;
(4-3).用分析天平称取0.2231g Zn(NO3)2·6H2O、0.2284g CH4N2S、0.3318gInCl3于50mL烧杯中,向其加入30mLpH=1.8的盐酸水溶液,在磁力搅拌作用下将药品完溶解;(4-3). Weigh 0.2231g Zn(NO 3 ) 2 ·6H 2 O, 0.2284g CH 4 N 2 S, 0.3318g InCl 3 into a 50mL beaker with an analytical balance, add 30mL pH=1.8 aqueous hydrochloric acid solution to it, The drug is completely dissolved under the action of magnetic stirring;
(4-4).将经改性过的FTO导电玻璃导电面朝下倾斜放入50ml水热反应釜内衬,将4-3)中溶液转至内衬中;(4-4). The conductive surface of the modified FTO conductive glass is tilted downward and put into the lining of the 50ml hydrothermal reactor, and the solution in 4-3) is transferred to the lining;
(4-5).反应釜密封,置于烘箱中,180℃保温3h,自然冷却至室温,得到FTO导电面均匀长满淡黄色的薄膜,FTO经缓水冲洗、真空干燥后的得到ZnIn2S4纳米阵列电极。(4-5). The reaction kettle was sealed, placed in an oven, kept at 180°C for 3 hours, and cooled to room temperature naturally to obtain a light yellow film evenly covered on the conductive surface of the FTO. After the FTO was rinsed with slow water and vacuum dried, ZnIn 2 was obtained. S 4 nanometer array electrodes.
实施例1:以0.2mgAu在ZnIn2S4纳米阵列表面沉积。Example 1: Deposition of 0.2 mg Au on the surface of ZnIn 2 S 4 nanoarrays.
1.将20μl 50mmol/L的AuHCl4溶于100mL纯水中,得到含Au0.2mg的溶液,将溶液移入石英电解池中。1. Dissolve 20 μl of 50 mmol/L AuHCl 4 in 100 mL of pure water to obtain a solution containing 0.2 mg of Au, and transfer the solution into a quartz electrolytic cell.
2.将电极片用聚四氟乙烯电极夹固定,全部浸入中溶液,长有ZnIn2S4纳米薄膜的面朝向氙灯光源,在磁力搅拌中光照30min。2. Fix the electrode sheet with a polytetrafluoroethylene electrode clip, immerse the whole in the medium solution, face the xenon lamp light source on the side with the ZnIn 2 S 4 nano-film, and illuminate for 30 minutes in the magnetic stirring.
3.将电极片取出,用纯水缓慢冲洗3min,60℃真空干燥6h,得到光沉积0.2mg Au的Au-ZnIn2S4电极片。3. The electrode sheet was taken out, slowly rinsed with pure water for 3 min, and vacuum-dried at 60° C. for 6 h to obtain an Au-ZnIn2S4 electrode sheet with 0.2 mg of Au photo-deposited.
实施例2:以0.4mgAu在ZnIn2S4纳米阵列表面沉积。Example 2: Deposition of 0.4 mg Au on the surface of ZnIn 2 S 4 nanoarrays.
1.将40μl 50mmol/L的AuHCl4溶于100mL纯水中,得到含Au0.4mg的溶液,将溶液移入石英电解池中。1. Dissolve 40 μl of 50 mmol/L AuHCl 4 in 100 mL of pure water to obtain a solution containing 0.4 mg of Au, and transfer the solution into a quartz electrolytic cell.
2.将电极片用聚四氟乙烯电极夹固定,全部浸入中溶液,长有ZnIn2S4纳米薄膜的面朝向氙灯光源,在磁力搅拌中光照30min。2. Fix the electrode sheet with a polytetrafluoroethylene electrode clip, immerse the whole in the medium solution, face the xenon lamp light source on the side with the ZnIn 2 S 4 nano-film, and illuminate for 30 minutes in the magnetic stirring.
3.将电极片取出,用纯水缓慢冲洗3min,60℃真空干燥6h,得到光沉积0.4mg Au的Au-ZnIn2S4电极片。3. The electrode sheet was taken out, slowly rinsed with pure water for 3 min, and vacuum-dried at 60° C. for 6 h to obtain an Au-ZnIn 2 S 4 electrode sheet with 0.4 mg of Au photo-deposited.
实施例3:以0.6mgAu在ZnIn2S4纳米阵列表面沉积。Example 3: Deposition of 0.6 mg Au on the surface of ZnIn 2 S 4 nanoarrays.
1.将60μl 50mmol/L的AuHCl4溶于100mL纯水中,得到含Au0.6mg的溶液,将溶液移入石英电解池中。1. Dissolve 60 μl of 50 mmol/L AuHCl 4 in 100 mL of pure water to obtain a solution containing 0.6 mg of Au, and transfer the solution into a quartz electrolytic cell.
2.将电极片用聚四氟乙烯电极夹固定,全部浸入溶液,长有ZnIn2S4纳米薄膜的面朝向氙灯光源,在磁力搅拌中光照30min。2. Fix the electrode sheet with a polytetrafluoroethylene electrode clip, immerse it all in the solution, face the xenon light source on the side with the ZnIn 2 S 4 nano-film, and illuminate for 30 min in magnetic stirring.
3.将电极片取出,用纯水缓慢冲洗3min,60℃真空干燥6h,得到光沉积0.6mg Au的Au-ZnIn2S4电极片。3. The electrode sheet was taken out, slowly rinsed with pure water for 3 min, and vacuum-dried at 60° C. for 6 h to obtain an Au-ZnIn 2 S 4 electrode sheet with photodeposited 0.6 mg Au.
实施例4:ZnIn2S4电极片与Au-ZnIn2S4电极片光电化学性能的测试。Example 4: Photoelectrochemical performance test of ZnIn 2 S 4 electrode sheet and Au-ZnIn 2 S 4 electrode sheet.
1.配150mL0.1mol/L的Na2SO4溶液,将电极片用铂片电极夹固定,铂片电极为对电极,Hg/HgCl饱和氯化钾电极为参比电极组成三电极体系。通过电化学工作站测试电极片的光电化学性能。1. Equipped with 150mL 0.1mol/L Na 2 SO 4 solution, fix the electrode piece with a platinum piece electrode clip, the platinum piece electrode is the counter electrode, and the Hg/HgCl saturated potassium chloride electrode is the reference electrode to form a three-electrode system. The photoelectrochemical properties of the electrode sheets were tested by an electrochemical workstation.
2.图5中,测试不同电极片的光电流响应特征施加偏压为0V。2. In Figure 5, the applied bias voltage is 0V to test the photocurrent response characteristics of different electrode sheets.
3.图6中,测试不同电极片在光照条件下进行交流阻抗时施加0.2V偏压,高频为50000Hz,低频为0.1Hz。3. In Figure 6, 0.2V bias is applied when testing the AC impedance of different electrode sheets under illumination conditions, the high frequency is 50000Hz, and the low frequency is 0.1Hz.
实施例5:ZnIn2S4电极片与Au-ZnIn2S4电极片的光催化固氮性能测试。Example 5: Photocatalytic nitrogen fixation performance test of ZnIn 2 S 4 electrode sheet and Au-ZnIn 2 S 4 electrode sheet.
1.配置30mL甲醇水溶液(V甲醇95wt%:V纯水=1:4),将电极片用铂片电极夹固定,置于特制反应器中,从反应器底部向其通入高纯氮气,通气速率为20mL/min。1. Configure 30mL methanol aqueous solution (V methanol 95wt% : V pure water =1:4), fix the electrode sheet with platinum electrode clips, place it in a special reactor, and pass high-purity nitrogen gas into it from the bottom of the reactor, The ventilation rate was 20 mL/min.
2.以300W氙灯光源照射反应器中的ZnIn2S4电极片,每隔25min收集2mL反应溶液。2. Irradiate the ZnIn 2 S 4 electrode sheet in the reactor with a 300W xenon lamp light source, and collect 2 mL of the reaction solution every 25 min.
3.取1mL收集溶液与1mL纳氏溶液混合,在黑暗中反应10min,移入2ml比色皿中,用紫外可见分光光度计420nm光下测试反应液的吸光度。3.
4.测试反应液的吸光度在标准氨溶液吸光度曲线中找到对应的氨浓度,进行单位转换,比较负载金前后ZnIn2S4纳米阵列的光电固氮,如图7所示。4. Test the absorbance of the reaction solution Find the corresponding ammonia concentration in the standard ammonia solution absorbance curve, perform unit conversion, and compare the photoelectric nitrogen fixation of ZnIn 2 S 4 nanoarrays before and after gold loading, as shown in Figure 7.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910823580.7A CN110508291B (en) | 2019-09-02 | 2019-09-02 | Au-ZnIn2S4Preparation method of nano array electrode photocatalytic nitrogen fixation material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910823580.7A CN110508291B (en) | 2019-09-02 | 2019-09-02 | Au-ZnIn2S4Preparation method of nano array electrode photocatalytic nitrogen fixation material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110508291A CN110508291A (en) | 2019-11-29 |
CN110508291B true CN110508291B (en) | 2020-10-13 |
Family
ID=68630386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910823580.7A Active CN110508291B (en) | 2019-09-02 | 2019-09-02 | Au-ZnIn2S4Preparation method of nano array electrode photocatalytic nitrogen fixation material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110508291B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110963505B (en) * | 2019-12-06 | 2023-04-28 | 深圳市中科墨磷科技有限公司 | A preparation method of Li-intercalated H-type two-dimensional nanosheets and its application in photoelectric nitrogen fixation |
CN111790404B (en) * | 2020-07-08 | 2022-07-26 | 齐鲁工业大学 | Defective type sulfur indium zinc microsphere visible light catalyst and preparation method and application |
CN111686714A (en) * | 2020-07-27 | 2020-09-22 | 兰州交通大学 | Preparation method of oxygen-enriched vacancy cerium-molybdenum-based nanosphere electrochemical nitrogen fixation catalyst |
CN112264049B (en) * | 2020-10-14 | 2023-08-25 | 盐城工学院 | Mo or Fe doped Zn for synthesizing ammonia by photocatalysis nitrogen fixation 1-x In 2 S 4 Process for preparing catalyst |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009066529A (en) * | 2007-09-13 | 2009-04-02 | Tokyo Univ Of Science | Photocatalyst, method for producing the same, and method for generating hydrogen gas |
CN104785259A (en) * | 2015-04-21 | 2015-07-22 | 福州大学 | Preparation and application of plasma gold/zinc oxide composite nanosheet array device |
CN105950140A (en) * | 2016-04-28 | 2016-09-21 | 江苏大学 | A method for preparing Ag:ZnIn2S4 luminescent quantum dots and photocatalysts |
CN108409157A (en) * | 2018-03-19 | 2018-08-17 | 中国矿业大学 | A kind of ZnIn2S4 nanometer wafer arrays structure and preparation method thereof |
CN109692691A (en) * | 2018-11-30 | 2019-04-30 | 长沙学院 | Counter opal structure MIn2S4Catalysis material and its preparation method and application |
-
2019
- 2019-09-02 CN CN201910823580.7A patent/CN110508291B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009066529A (en) * | 2007-09-13 | 2009-04-02 | Tokyo Univ Of Science | Photocatalyst, method for producing the same, and method for generating hydrogen gas |
CN104785259A (en) * | 2015-04-21 | 2015-07-22 | 福州大学 | Preparation and application of plasma gold/zinc oxide composite nanosheet array device |
CN105950140A (en) * | 2016-04-28 | 2016-09-21 | 江苏大学 | A method for preparing Ag:ZnIn2S4 luminescent quantum dots and photocatalysts |
CN108409157A (en) * | 2018-03-19 | 2018-08-17 | 中国矿业大学 | A kind of ZnIn2S4 nanometer wafer arrays structure and preparation method thereof |
CN109692691A (en) * | 2018-11-30 | 2019-04-30 | 长沙学院 | Counter opal structure MIn2S4Catalysis material and its preparation method and application |
Non-Patent Citations (2)
Title |
---|
Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid;Taotao Zhu et al.;《Journal of Hazardous Materials》;20181224;第278页右栏第2.1节和第284页右栏第4部分结论 * |
Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes;Chengcheng Li et al.;《Angewandte Chemie International Edition》;20180308;第5279页中Figure 2,第5281页右栏第3段和Supporting Information中第S4-S5页光电化学氮还原部分 * |
Also Published As
Publication number | Publication date |
---|---|
CN110508291A (en) | 2019-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin et al. | Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution | |
CN110508291B (en) | Au-ZnIn2S4Preparation method of nano array electrode photocatalytic nitrogen fixation material | |
Qi et al. | Electroless plating Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation | |
Zhong et al. | The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution | |
Li et al. | Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction | |
Li et al. | Transformation of Fe-B@ Fe into Fe-B@ Ni for efficient photocatalytic hydrogen evolution | |
Liu et al. | Efficient photoelectrochemical water splitting of CaBi6O10 decorated with Cu2O and NiOOH for improved photogenerated carriers | |
CN101811044B (en) | Potassium niobate nanotube photocatalyst and preparation method and application thereof | |
CN108499585B (en) | Phosphorus-containing compound and preparation and application thereof | |
Gai et al. | 2D-2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation | |
CN108906080B (en) | A CdS/Cu2S/Co-based photoelectric catalytic material and preparation method thereof | |
CN110252410A (en) | A kind of ternary composite photocatalyst, its preparation method and application | |
CN112264049B (en) | Mo or Fe doped Zn for synthesizing ammonia by photocatalysis nitrogen fixation 1-x In 2 S 4 Process for preparing catalyst | |
CN106824279A (en) | A kind of metal-organic framework material of energy photocatalytic cleavage water and preparation method thereof | |
Liu et al. | 1D/1D W18O49/Cd0. 9Zn0. 1S S-scheme heterojunction with spatial charge separation for high-yield photocatalytic H2 evolution | |
CN102335618B (en) | Semiconductor catalyst and preparation method thereof, catalytic hydrogen production system containing semiconductor catalyst and hydrogen production method thereof | |
Jiang et al. | ZIF-9 derived cobalt phosphide and In2O3 as co-catalysts for efficient hydrogen production | |
Jin et al. | Efficient photocatalytic hydrogen production achieved by WO3 coupled with NiP2 over ZIF-8 | |
Bao et al. | Visible-light-responsive S-vacancy ZnIn 2 S 4/N-doped TiO 2 nanoarray heterojunctions for high-performance photoelectrochemical water splitting | |
Liu et al. | High efficiency hydrogen production with visible light layered MgAl-LDH coupled with CoSx | |
CN108993573A (en) | Compound nanometer photocatalyst and preparation method | |
Zhang et al. | Advanced flexible photocatalytic fuel cell using TiO2/carbon quantum dots photoanode for green electricity production | |
CN109979643B (en) | Preparation and Application of ZnO/ZnSe/CdSe/MoS2 Core-Shell Structure Thin Film Electrodes | |
Wang et al. | Enhanced photocatalytic performance and stability of multi-layer core-shell nanocomposite C@ Pt/MoS2@ CdS with full-spectrum response | |
CN113617367B (en) | A kind of precious metal ruthenium single-atom supported catalyst and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |