CN110507858A - 一种纳米凹凸棒石的骨修复支架制备方法及其应用 - Google Patents

一种纳米凹凸棒石的骨修复支架制备方法及其应用 Download PDF

Info

Publication number
CN110507858A
CN110507858A CN201910937886.5A CN201910937886A CN110507858A CN 110507858 A CN110507858 A CN 110507858A CN 201910937886 A CN201910937886 A CN 201910937886A CN 110507858 A CN110507858 A CN 110507858A
Authority
CN
China
Prior art keywords
nano
preparation
printing
attapulgite stone
stem cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910937886.5A
Other languages
English (en)
Inventor
李辰凯
秦文
赵红斌
倪新晔
周栋
陈文扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Second Peoples Hospital
Original Assignee
Changzhou Second Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Second Peoples Hospital filed Critical Changzhou Second Peoples Hospital
Priority to CN201910937886.5A priority Critical patent/CN110507858A/zh
Publication of CN110507858A publication Critical patent/CN110507858A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Textile Engineering (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Robotics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种纳米凹凸棒石的骨修复支架制备方法及其应用,包括以下制备步骤:(1)、骨髓间充质干细胞的培养(2)、凹凸棒石纳米的制备(3)、电纺3D打印制备含纳米凹凸棒石骨修复支架(4)、骨髓间充质干细胞的种植本发明基于电纺3D打印技术,采用多材料、多维度方向发展的3D打印技术则为骨软骨修复,利用3D打印技术,可于时间和空间上精确、按需组合不同生理物理特性的材料(包括细胞、具有生物相容性且可降解的水凝胶、生长因子等),从而解决传统治疗方法存在的不足。

Description

一种纳米凹凸棒石的骨修复支架制备方法及其应用
技术领域
本发明涉及骨软骨生物材料技术领域,具体是指一种纳米凹凸棒石的骨修复支架制备方法及其应用。
背景技术
骨软骨作为关节的重要组成部分,可避免软骨间的冲击与摩擦。在关节等特殊压力环境下的软骨,易受创伤、疾病等问题的影响而发生损伤与病变。其主要与软骨细胞营养代谢、细胞外基质异常降解、生物力学平衡被打破等因素有关。由于软骨组织中缺乏血管与神经,致使软骨损伤后的自我修复能力相当有限,往往引发骨关节炎等疾病,引起关节功能障碍,严重影响患者生活。伴随损伤引发的炎症,引起细胞凋亡,还会通过抑制Ⅱ型胶原合成,促进IL-1β、TNF-α和MMP-13的分泌表达,从而间接的导致软骨支撑作用和保护机制的减弱,加快关节软骨的退变,使正常的软骨细胞向骨关节炎样细胞转化,或加重关节炎的病理改变。对骨软骨损伤成因及修复的研究,已成为再生医学的一个研究重点。
现有骨软骨损伤修复方法主要有传统方法与3D打印两大类。传统的软骨组织治疗方法包括保守治疗和外科治疗。其中,外科治疗包括自体软骨组织细胞移植、微骨折术、软骨下钻孔减压术、关节融合术等,但以上方法存在供体有限、免疫排斥反应、再生能力弱等问题。
现有已应用于临床的金属、陶瓷、无机复合材料支架,往往更着眼于材料的物理特性,在满足生物相容性条件下追求更好的支撑性与耐用性,虽为骨软骨修复提供了空间但缺乏对软骨细胞增殖修复的促进作用。为解决以上问题,科研人员通过多材料并用、改变材料的结构、修饰材料分子基团和应用不同交联剂等方式,进行了各种尝试,这些材料支架在不同程度上展示了各材料的物理特性、打印成型可行性、骨细胞与软骨细胞在不同支架材料上的存活、增殖、分化能力。但目前仍然存在以下问题:(1)不同材料的生物相容性不同,有些材料组分在不同浓度下甚至较大细胞毒性;(2)材料物理性能、降解性能不同,影响软骨再生;(3)不能完全模拟软骨细胞所处的微环境。
发明内容
本发明要解决的技术问题是,针对以上问题提供一种纳米凹凸棒石的骨修复支架制备方法及其应用。
为解决上述技术问题,本发明提供的技术方案为:一种纳米凹凸棒石的骨修复支架制备方法及其应用,包括以下制备步骤:
(1)、骨髓间充质干细胞的培养
(2)、凹凸棒石纳米的制备
使用变频式行星球磨机,六偏磷酸钠为助磨剂和分散剂,以纯水为研磨介质,2000rpm研磨凹凸棒粉末1-2小时,通过吸附、电化学作用和化学反应,使凹凸晶体充分分散为200-500纳米级晶体颗粒。
(3)、电纺3D打印制备含纳米凹凸棒石骨修复支架
(3-1)、模型的建立
采用Auto CAD和Materialise Mimics结合3D打印机配套软件建立打印模型,为多层立方体状,各层结构路径间隙根据需要进行调整,保存后输出打印程序代码。
(3-2)、打印材料的制备
取适量生物高分子材料A在温和搅拌下,缓慢加入分散剂B中至混匀。继续搅拌并缓慢加入0.1%-30%(质量体积比)的纳米凹凸棒,制得分散液并加入3D打印机静电纺丝喷头料筒中待用。
(3-3)、打印设备的参数配置
调节熔融静电纺丝3D打印设备的工艺参数,将步骤2制得的分散液放入料筒后接入3D打印机,加热至65℃-80℃,以恒定流速0.8-5mL/hr通过20号针头递送,喷头移动速度25-50mm/s。针尖部位施加高压5-20kV,接受面施加2-15kV的负电压。分散液在电压作用下从喷头出信长流体射流,当射流向接受面加速时,溶剂蒸发,带电聚合物裹挟着纳米凹凸棒石按程序设定在接受面沉积成3D支架。打印完成后,-40℃真空冻干24-72。
(4)、骨髓间充质干细胞的种植:取适量骨髓间充质干细胞种植于各支架区域。
本发明与现有技术相比的优点在于:本发明基于电纺3D打印技术,采用多材料、多维度方向发展的3D打印技术则为骨软骨修复,利用3D打印技术,可于时间和空间上精确、按需组合不同生理物理特性的材料(包括细胞、具有生物相容性且可降解的水凝胶、生长因子等),从而解决传统治疗方法存在的不足。
作为改进,所述生物高分子材料A由聚乳酸、聚己内酯、聚乳酸-羟基乙酸共聚物和聚对二氧环己酮中的一种或几种构成。
作为改进,所述分散剂B为聚乙烯醇、聚乙二醇、二氯甲烷、六氟异丙醇和聚乙烯吡咯烷酮中的一种或多种的混合物。
作为改进,所述骨髓间充质干细胞的种植方法如下:移除贴壁生长的骨髓间充质干细胞周围培养基,使用0.01M PBS洗两遍,加入适量为0.25%(质量百分比)胰酶消化3分钟,观察细胞脱落状况,适时使用含血清培养基中止胰酶效果。收集细胞悬液,离心弃上清,培养基重悬后,接种于各支架区域,24小时后更换新鲜培养基,此后每隔2天换液继续培养,待后续实验。
附图说明
图1为一种纳米凹凸棒石的骨修复支架制备方法及其应用的骨修复支架。
图2为一种纳米凹凸棒石的骨修复支架制备方法及其应用的骨修复支架微观结构。
图3为一种纳米凹凸棒石的骨修复支架制备方法及其应用的骨修复支架电镜图(×100)。
图4为一种纳米凹凸棒石的骨修复支架制备方法及其应用的骨修复支架电镜图(×1000)。
图5为细胞在支架表面粘附生长的电镜图。
图6为CCK8法检测支架对细胞增殖影响的结果图。
图7为qRT-PCR检测成骨相关基因结果图。
图8为Westernblot法检测成骨相关蛋白表达结果图。
具体实施方式
下面结合附图对本发明做进一步的详细说明。
本发明在具体实施时,一种纳米凹凸棒石的骨修复支架制备方法及其应用,包括以下制备步骤:
(1)、骨髓间充质干细胞的培养
(2)、凹凸棒石纳米的制备
使用变频式行星球磨机,六偏磷酸钠为助磨剂和分散剂,以纯水为研磨介质,2000rpm研磨凹凸棒粉末1-2小时,通过吸附、电化学作用和化学反应,使凹凸晶体充分分散为200-500纳米级晶体颗粒。
(3)、电纺3D打印制备含纳米凹凸棒石骨修复支架
(3-1)、模型的建立
采用Auto CAD和Materialise Mimics结合3D打印机配套软件建立打印模型,为多层立方体状,各层结构路径间隙根据需要进行调整,保存后输出打印程序代码。
(3-2)、打印材料的制备
取适量生物高分子材料A在温和搅拌下,缓慢加入分散剂B中至混匀。继续搅拌并缓慢加入0.1%-30%(质量体积比)的纳米凹凸棒,制得分散液并加入3D打印机静电纺丝喷头料筒中待用。
(3-3)、打印设备的参数配置
调节熔融静电纺丝3D打印设备的工艺参数,将步骤2制得的分散液放入料筒后接入3D打印机,加热至65℃-80℃,以恒定流速0.8-5mL/hr通过20号针头递送,喷头移动速度25-50mm/s。针尖部位施加高压5-20kV,接受面施加2-15kV的负电压。分散液在电压作用下从喷头出信长流体射流,当射流向接受面加速时,溶剂蒸发,带电聚合物裹挟着纳米凹凸棒石按程序设定在接受面沉积成3D支架。打印完成后,-40℃真空冻干24-72。
(4)、骨髓间充质干细胞的种植:取适量骨髓间充质干细胞种植于各支架区域。
所述骨髓间充质干细胞的种植方法如下:移除贴壁生长的骨髓间充质干细胞周围培养基,使用0.01M PBS洗两遍,加入适量为0.25%(质量百分比)胰酶消化3分钟,观察细胞脱落状况,适时使用含血清培养基中止胰酶效果。收集细胞悬液,离心弃上清,培养基重悬后,接种于各支架区域,24小时后更换新鲜培养基,此后每隔2天换液继续培养,待后续实验。
所述生物高分子材料A由聚乳酸、聚己内酯、聚乳酸-羟基乙酸共聚物和聚对二氧环己酮中的一种或几种构成。
所述分散剂B为聚乙烯醇、聚乙二醇、二氯甲烷、六氟异丙醇和聚乙烯吡咯烷酮中的一种或多种的混合物。
本发明的工作原理:本发明基于基于电纺3D打印技术,采用多材料、多维度方向发展的3D打印技术则为骨软骨修复。
实施例1
1)使用三维打印软件建立打印模型,为多层立方体结构,设定各层打印间隙及路径,保存;
2)取适量高分子材料聚己内酯,缓慢加入含50%(质量百分比)的聚乙二醇的二氯甲烷溶液中至混匀,继续搅拌并缓慢加入1%-10%(质量百分比)的凹凸棒石纳米纳米,制得分散液并加入3D打印机静电纺丝喷头的料筒中待用。
3)打印设备的参数配置调节熔融静电纺丝3D打印设备的工艺参数,将步骤2制得的分散液放入料筒后,接入3D打印机,加热至65℃,以恒定流速0.8-5ml/hr通过20号针头递送,喷头移动速度25-50mm/s。针尖部位施加高压5.0-20kV,接受面施加2-15kV的负电压。分散液在电压下从喷头出信长流体射流,当射流向接受面加速时,溶剂蒸发,带电聚合物裹挟着凹凸棒石纳米按程序设定在接受面沉积成3D支架。打印完成后,冻干24-72小时以出去残留溶剂。通过乙醇溶液中浸泡(75%乙醇)进行灭菌。
实施例2
1)取适量高分子材料聚己内酯,缓慢加入含30%聚乙烯醇的水溶液中至混匀,继续搅拌并缓慢加入5%的纳米凹凸棒石,制得分散液并加入3D打印机静电纺丝喷头的料筒中待用。
2)打印设备的参数配置调节熔融静电纺丝3D打印设备的工艺参数,将步骤2制得的分散液放入料筒后接入3D打印机,加热至65℃-80℃,以恒定流速0.8-5.0ml/hr通过20号针头递送,喷头移动速度25-50mm/s。针尖部位施加高压5.0-20kV,接受面施加2.0-15kV的负电压。分散液在电压下从喷头出信长流体射流,当射流向接受面加速时,溶剂蒸发,带电聚合物裹挟着凹凸棒石纳米纳米按程序设定在接受面沉积成3D支架。打印完成后,冻干24-72小时以出去残留溶剂。75%(质量百分比)乙醇溶液中浸泡(75%乙醇)灭菌。
实施例3
1)取适量高分子材料聚己内酯,缓慢加入含30%(质量百分比)聚乙烯醇的水溶液中至混匀,继续搅拌并缓慢加入10%(质量百分比)的凹凸棒石纳米纳米,制得分散液并加入3D打印机静电纺丝喷头的料筒中待用。
2)打印设备的参数配置调节熔融静电纺丝3D打印设备的工艺参数,将步骤2制得的分散液放入料筒后接入3D打印机,加热至65℃-80℃,以恒定流速0.8-5.0ml/hr通过20号针头递送,喷头移动速度25-50mm/s。针尖部位施加高压5.0-20kV,接受面施加2.0-15kV的负电压。分散液在电压下从喷头出信长流体射流,当射流向接受面加速时,溶剂蒸发,带电聚合物裹挟着凹凸棒石纳米纳米按程序设定在接受面沉积成3D支架。打印完成后,冻干24-72小时以出去残留溶剂。通过乙醇溶液中浸泡(75%乙醇)进行灭菌。
对比例
将上述实施例1-3中得到的电纺3D打印支架进,种植骨髓干细胞,放入培养箱中培养,以单纯聚己内酯电纺3D打印得到的支架,种植骨髓间充质干细胞为对照组,分别与其余支架作对比,分别培养1、3、5天后,利用其余CCK8法检测支架中的细胞活力,结果如图2、3所示,显示带有纳米凹凸棒石的静电纺丝3D打印技术得到的支架上的细胞具有良好的增殖行为,细胞活力较好,且较对照组增殖行为更加显著。培养3、7、14天后,实时荧光定量(qRT-PCR)法检测(图4)显示,实验组较对照组成骨相关基因表达量有不同程度上调。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”,“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (4)

1.一种纳米凹凸棒石的骨修复支架制备方法及其应用,包括以下制备步骤:
(1)、骨髓间充质干细胞的培养
(2)、凹凸棒石纳米的制备
使用变频式行星球磨机,六偏磷酸钠为助磨剂和分散剂,以纯水为研磨介质,2000rpm研磨凹凸棒粉末1~2小时,通过吸附、电化学作用和化学反应,使凹凸晶体充分分散为200~500纳米级晶体颗粒。
(3)、电纺3D打印制备含纳米凹凸棒石骨修复支架
(3-1)、模型的建立
采用Auto CAD和Materialise Mimics结合3D打印机配套软件建立打印模型,为多层立方体状,各层结构路径间隙根据需要进行调整,保存后输出打印程序代码。
(3-2)、打印材料的制备
取适量生物高分子材料A在温和搅拌下,缓慢加入分散剂B中至混匀。继续搅拌并缓慢加入0.1%~30%(质量体积比)的纳米凹凸棒,制得分散液并加入3D打印机静电纺丝喷头料筒中待用。
(3-3)、打印设备的参数配置
调节熔融静电纺丝3D打印设备的工艺参数,将步骤2制得的分散液放入料筒后接入3D打印机,加热至65℃~80℃,以恒定流速0.8~5mL/hr通过20号针头递送,喷头移动速度25~50mm/s。针尖部位施加高压5~20kV,接受面施加2~15kV的负电压。分散液在电压作用下从喷头出信长流体射流,当射流向接受面加速时,溶剂蒸发,带电聚合物裹挟着纳米凹凸棒石按程序设定在接受面沉积成3D支架。打印完成后,-40℃真空冻干24~72。
(4)、骨髓间充质干细胞的种植:取适量骨髓间充质干细胞种植于各支架区域。
2.根据权利要求1所述的一种纳米凹凸棒石的骨修复支架制备方法及其应用,其特征在于:所述生物高分子材料A由聚乳酸、聚己内酯、聚乳酸-羟基乙酸共聚物和聚对二氧环己酮中的一种或几种构成。
3.根据权利要求1所述的一种纳米凹凸棒石的骨修复支架制备方法及其应用,其特征在于:所述分散剂B为聚乙烯醇、聚乙二醇、二氯甲烷、六氟异丙醇和聚乙烯吡咯烷酮中的一种或多种的混合物。
4.根据权利要求1所述的一种纳米凹凸棒石的骨修复支架制备方法及其应用,其特征在于:所述骨髓间充质干细胞的种植方法如下:移除贴壁生长的骨髓间充质干细胞周围培养基,使用0.01M PBS洗两遍,加入适量为0.25%(质量百分比)胰酶消化3分钟,观察细胞脱落状况,适时使用含血清培养基中止胰酶效果。收集细胞悬液,离心弃上清,培养基重悬后,接种于各支架区域,24小时后更换新鲜培养基,此后每隔2天换液继续培养,待后续实验。
CN201910937886.5A 2019-09-30 2019-09-30 一种纳米凹凸棒石的骨修复支架制备方法及其应用 Pending CN110507858A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910937886.5A CN110507858A (zh) 2019-09-30 2019-09-30 一种纳米凹凸棒石的骨修复支架制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910937886.5A CN110507858A (zh) 2019-09-30 2019-09-30 一种纳米凹凸棒石的骨修复支架制备方法及其应用

Publications (1)

Publication Number Publication Date
CN110507858A true CN110507858A (zh) 2019-11-29

Family

ID=68634072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910937886.5A Pending CN110507858A (zh) 2019-09-30 2019-09-30 一种纳米凹凸棒石的骨修复支架制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110507858A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112915263A (zh) * 2021-01-19 2021-06-08 常州市第二人民医院 一种经3d打印制备的具有引导骨组织生长的骨修复支架材料
CN113209371A (zh) * 2020-12-29 2021-08-06 常州市第二人民医院 一种具有引导骨组织生长的纳米纤维膜材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104258464A (zh) * 2014-08-28 2015-01-07 东华大学 一种凹凸棒石掺杂的plga纳米纤维毡及其制备和应用
CN109837215A (zh) * 2019-01-25 2019-06-04 上海交通大学医学院附属第九人民医院 熔融电纺三维打印制备的腱骨联合三相支架
CN110201221A (zh) * 2019-04-26 2019-09-06 广东工业大学 一种凹凸棒基复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104258464A (zh) * 2014-08-28 2015-01-07 东华大学 一种凹凸棒石掺杂的plga纳米纤维毡及其制备和应用
CN109837215A (zh) * 2019-01-25 2019-06-04 上海交通大学医学院附属第九人民医院 熔融电纺三维打印制备的腱骨联合三相支架
CN110201221A (zh) * 2019-04-26 2019-09-06 广东工业大学 一种凹凸棒基复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209371A (zh) * 2020-12-29 2021-08-06 常州市第二人民医院 一种具有引导骨组织生长的纳米纤维膜材料的制备方法
CN112915263A (zh) * 2021-01-19 2021-06-08 常州市第二人民医院 一种经3d打印制备的具有引导骨组织生长的骨修复支架材料

Similar Documents

Publication Publication Date Title
Chen et al. Investigation of silk fibroin nanoparticle-decorated poly (l-lactic acid) composite scaffolds for osteoblast growth and differentiation
Ding et al. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering
Demirtaş et al. A bioprintable form of chitosan hydrogel for bone tissue engineering
Zhou et al. Polymer-based porous microcarriers as cell delivery systems for applications in bone and cartilage tissue engineering
Zhou et al. Recent progress of fabrication of cell scaffold by electrospinning technique for articular cartilage tissue engineering
US8202551B2 (en) Tissue engineered cartilage, method of making same, therapeutic and cosmetic surgical applications using same
Ko et al. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes
Venugopal et al. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration
Müller et al. Cellulose-based scaffold materials for cartilage tissue engineering
Di Martino et al. Electrospun scaffolds for bone tissue engineering
Yan et al. Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation
Biazar et al. A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to Rat sciatic nerve regeneration across a 30-mm defect bridge
Lan et al. Bioprinting of human nasoseptal chondrocytes‐laden collagen hydrogel for cartilage tissue engineering
CN110507858A (zh) 一种纳米凹凸棒石的骨修复支架制备方法及其应用
Xue et al. Preparation, properties, and application of graphene-based materials in tissue engineering scaffolds
Kashte et al. Layer-by-layer decorated herbal cell compatible scaffolds for bone tissue engineering: A synergistic effect of graphene oxide and Cissus quadrangularis
Thakare et al. Fabrication of polycaprolactone/zirconia nanofiber scaffolds using electrospinning technique
Abazari et al. Poly (glycerol sebacate) and polyhydroxybutyrate electrospun nanocomposite facilitates osteogenic differentiation of mesenchymal stem cells
Li et al. Recent progress in electrospun nanofiber-based degenerated intervertebral disc repair
Biazar et al. Development of chitosan-crosslinked nanofibrous PHBV guide for repair of nerve defects
Cai et al. Biomaterials with stiffness gradient for interface tissue engineering
Altunbek et al. Design and bioprinting for tissue interfaces
Ma et al. Integrated design and fabrication strategies based on bioprinting for skeletal muscle regeneration: current status and future perspectives
Lim Bone mineralization in electrospun-based bone tissue engineering
Trikalitis et al. Embedded 3D printing of dilute particle suspensions into dense complex tissue fibers using shear thinning xanthan baths

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191129