CN110501805A - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
CN110501805A
CN110501805A CN201910866380.XA CN201910866380A CN110501805A CN 110501805 A CN110501805 A CN 110501805A CN 201910866380 A CN201910866380 A CN 201910866380A CN 110501805 A CN110501805 A CN 110501805A
Authority
CN
China
Prior art keywords
lens
optical imaging
imaging lens
object side
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910866380.XA
Other languages
English (en)
Inventor
张伊
张凯元
戴付建
赵烈烽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN201910866380.XA priority Critical patent/CN110501805A/zh
Publication of CN110501805A publication Critical patent/CN110501805A/zh
Priority to PCT/CN2020/104461 priority patent/WO2021047304A1/zh
Priority to US17/641,453 priority patent/US20220317416A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/58Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged - + + -

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学成像镜头,其沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜;具有光焦度的第二透镜;具有正光焦度的第三透镜;具有负光焦度的第四透镜,其物侧面为凸面。其中,光学成像镜头的总有效焦距f满足:20mm<f<30mm。

Description

光学成像镜头
技术领域
本申请涉及光学元件领域,具体地,涉及一种光学成像镜头。
背景技术
随着例如手机、平板电脑等便携式电子产品的普及,人们对其成像质量的要求也越来越高。同时,当前兴起的双摄技术一般需要利用长焦镜头来获得较高的空间角分辨率。
为了满足市场发展的需求,成像镜头需要用尽可能少的镜片数量以缩短镜头总长,但由此造成设计自由度的减少,却又难以满足成像质量的需求。
发明内容
本申请一方面提供了这样一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜;第二透镜;具有正光焦度的第三透镜;具有负光焦度的第四透镜,其物侧面为凸面。
在一个实施方式中,光学成像镜头的总有效焦距f可满足:20mm<f<30mm。
在一个实施方式中,第四透镜的物侧面的曲率半径R7、第四透镜的像侧面的曲率半径R8与第四透镜的有效焦距f4可满足:-1.7<(R7-R8)/f4<0。
在一个实施方式中,光学成像镜头的最大视场角FOV可满足:10°<FOV<15°。
在一个实施方式中,第三透镜的有效焦距f3、第三透镜的物侧面的有效半口径DT31与第三透镜的像侧面的有效半口径DT32可满足:1.2<f3/(DT31+DT32)<2.3。
在一个实施方式中,第一透镜的物侧面的有效半口径DT11与第四透镜的物侧面的有效半口径DT41可满足:0.8<DT11/DT41<1.2。
在一个实施方式中,第一透镜的折射率N1、第二透镜的折射率N2、第三透镜的折射率N3与第四透镜的折射率N4可满足:1.8<(N1+N2+N3+N4)/4<2.0。
在一个实施方式中,光学成像镜头还可包括光阑,第一透镜在光轴上的中心厚度CT1、第二透镜在光轴上的中心厚度CT2、第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光阑至成像面在光轴上的距离SL可满足:0.1<(CT1+CT2)/(TTL-SL)<0.9。
在一个实施方式中,第四透镜的像侧面至成像面在光轴上的距离BFL与光学成像镜头的总有效焦距f可满足:0.7<BFL/f<1.2。
在一个实施方式中,第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半径顶点在光轴上的距离SAG41、第四透镜的像侧面和光轴的交点至第四透镜的像侧面的有效半径顶点在光轴上的距离SAG42与光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH可满足:0.4<(SAG41+SAG42)/ImgH<1.6。
在一个实施方式中,第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点在光轴上的距离SAG11、第一透镜在光轴上的中心厚度CT1与第一透镜和第二透镜在光轴上的间隔距离T12可满足:0.1<|SAG11|/(CT1+T12)<0.8。
在一个实施方式中,第一透镜至第四透镜中的至少三片透镜可以由玻璃材料制成。
在一个实施方式中,第一透镜至第四透镜中的至少一片透镜的物侧面和像侧面可以是球面的。
本申请采用了四片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有超长焦、高分辨率、高成像质量等至少一个有益效果。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2C分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线以及畸变曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4C分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线以及畸变曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6C分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线以及畸变曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8C分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线以及畸变曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10C分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线以及畸变曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12C分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线以及畸变曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14C分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线以及畸变曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16C分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线以及畸变曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18C分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线以及畸变曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如四片具有光焦度的透镜,分别是第一透镜、第二透镜、第三透镜和第四透镜。这四片透镜沿着光轴从物侧至像侧依序排列。第一透镜至第四透镜中的任意相邻两透镜之间均可具有间隔距离。
在示例性实施方式中,第三透镜可具有正光焦度;第四透镜可具有负光焦度,其物侧面可为凸面。
在示例性实施方式中,根据本申请的光学成像镜头可满足:20mm<f<30mm,其中,f是光学成像镜头的总有效焦距。更具体地,f进一步可满足22mm<f<30mm。满足20mm<f<30mm,既可以保证光学成像镜头的小型化,又可以满足光学成像镜头超长焦的特点。
在示例性实施方式中,根据本申请的光学成像镜头可满足:-1.7<(R7-R8)/f4<0,其中,R7是第四透镜的物侧面的曲率半径,R8是第四透镜的像侧面的曲率半径,f4是第四透镜的有效焦距。满足-1.7<(R7-R8)/f4<0,可以有效地矫正光学成像镜头的像散量,进而保证光学成像镜头边缘视场的像质。
在示例性实施方式中,根据本申请的光学成像镜头可满足:10°<FOV<15°,其中,FOV是光学成像镜头的最大视场角。满足10°<FOV<15°,可以保证光学成像镜头的焦距在特定范围内,满足光学成像镜头的长焦特点。根据本申请的光学成像镜头可以与短焦广角镜头配合使用,从而实现较大的光学变焦倍数功能。
在示例性实施方式中,根据本申请的光学成像镜头可满足:1.2<f3/(DT31+DT32)<2.3,其中,f3是第三透镜的有效焦距,DT31是第三透镜的物侧面的有效半口径,DT32是第三透镜的像侧面的有效半口径。满足1.2<f3/(DT31+DT32)<2.3,可以增加光学成像镜头的相对照度,提升光学成像镜头在较暗环境下的成像质量。
在示例性实施方式中,根据本申请的光学成像镜头可满足:0.8<DT11/DT41<1.2,其中,DT11是第一透镜的物侧面的有效半口径,DT41是第四透镜的物侧面的有效半口径。满足0.8<DT11/DT41<1.2,可以有效地减小光学成像镜头的尺寸,满足镜头小型化,提升镜头的解像力。
在示例性实施方式中,根据本申请的光学成像镜头可满足:1.8<(N1+N2+N3+N4)/4<2.0,其中,N1是第一透镜的折射率,N2是第二透镜的折射率,N3是第三透镜的折射率,N4是第四透镜的折射率。更具体地,N1、N2、N3和N4进一步满足1.90<(N1+N2+N3+N4)/4<1.95。满足1.8<(N1+N2+N3+N4)/4<2.0,可以有效地分配每个透镜的光焦度,在满足系统较好像质的同时,还能达到较好的消温漂的效果。
在示例性实施方式中,根据本申请的光学成像镜头可包括用于调节光量的光阑。根据本申请的光学成像镜头可满足:0.1<(CT1+CT2)/(TTL-SL)<0.9,其中,CT1是第一透镜在光轴上的中心厚度,CT2是第二透镜在光轴上的中心厚度,TTL是第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离,SL是光阑至成像面在光轴上的距离。通过选择合适的光阑位置,可以有效地对光学成像镜头与光阑有关的像差(例如,慧差、像散、畸变和轴向色差)进行矫正。同时,合理控制第一透镜和第二透镜的中心厚度,可以有效地改善光学成像镜头的场曲问题。可选地,光阑可设置在第二透镜与第三透镜之间。
在示例性实施方式中,根据本申请的光学成像镜头可满足:0.7<BFL/f<1.2,其中,BFL是第四透镜的像侧面至光学成像镜头的成像面在光轴上的距离,f是光学成像镜头的总有效焦距。满足0.7<BFL/f<1.2,可以使得光学成像镜头在具有超长有效焦距的同时,也具有超长的后焦,便于光学成像镜头后期的模组组装。
在示例性实施方式中,根据本申请的光学成像镜头可满足:0.4<(SAG41+SAG42)/ImgH<1.6,其中,SAG41是第四透镜的物侧面和光轴的交点至第四透镜的物侧面的有效半径顶点在光轴上的距离,SAG42是第四透镜的像侧面和光轴的交点至第四透镜的像侧面的有效半径顶点在光轴上的距离,ImgH是成像面上有效像素区域的对角线长的一半。满足0.4<(SAG41+SAG42)/ImgH<1.6,既可以避免第四透镜过于弯曲,减少加工难度,减少光学成像镜头的球差;又可以在保持光学成像镜头成像质量的前提下,提升光学成像镜头的有效焦距;还可以增加光学成像镜头的相对照度,提升镜头在较暗环境下的成像质量。
在示例性实施方式中,根据本申请的光学成像镜头可满足:0.1<|SAG11|/(CT1+T12)<0.8,其中,SAG11是第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点在光轴上的距离,CT1是第一透镜在光轴上的中心厚度,T12是第一透镜和第二透镜在光轴上的间隔距离。满足0.1<|SAG11|/(CT1+T12)<0.8,可以有利于保证第一透镜的加工、成型以及组装,进而使光学成像镜头获得良好的成像质量。不合理的比值则可能导致成型面型调试困难,组装后容易产生变形,进而成像质量无法得到保证。
在示例性实施方式中,第一透镜至第四透镜中的至少三片透镜可以是由玻璃材料制成的透镜。由于玻璃材料的折射率范围较广,选择性较大,通过使用玻璃材料,能够有效地提升光学成像镜头的性能。而且,由于玻璃的膨胀系数相较于塑料来说较小,光学成像镜头中使用玻璃材料能够更好地起到消温漂的作用。可选地,第一透镜至第四透镜中的每一片透镜均是由玻璃材料制成的透镜。
在示例性实施方式中,第一透镜至第四透镜中的至少一片透镜的物侧面和像侧面可为球面。通过将第一透镜至第四透镜中的至少一片透镜的物侧面和像侧面设置为球面,可以有利于光学成像镜头的加工,减小加工成本。可选地,第一透镜至第四透镜中的每一片透镜的物侧面和像侧面均为球面。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
本发明提出了一种四片式的玻璃长焦光学成像镜头组。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度、曲率半径以及各透镜之间的轴上间距等,可以实现在采用较少的设计自由度同时,保证光学成像镜头具有长焦和高分辨率的特点。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以四个透镜为例进行了描述,但是该光学成像镜头不限于包括四个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2C描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表1示出了实施例1的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离、焦距和有效半口径的单位均为毫米(mm)。
面号 表面类型 曲率半径 厚度/距离 材质 折射率 阿贝数 焦距 有效半口径
OBJ 球面 无穷 无穷
S1 球面 11.1394 0.7465 玻璃 2.01 29.1 17.67 4.1750
S2 球面 28.7736 1.0286 4.1181
S3 球面 -12.3303 1.6377 玻璃 2.01 29.1 644.19 4.1082
S4 球面 -12.9068 0.0500 4.1417
STO 球面 无穷 0.0500 3.8027
S5 球面 6.6642 0.8642 玻璃 1.76 52.3 16.49 3.6657
S6 球面 13.4809 0.0500 3.5806
S7 球面 11.6986 0.5794 玻璃 1.93 20.9 -10.26 3.5363
S8 球面 5.1333 2.6268 3.1425
S9 球面 无穷 0.2100 玻璃 1.52 64.2 3.5000
S10 球面 无穷 18.6567 3.5000
S11 球面 无穷 2.7449
表1
在本示例中,光学成像镜头的总有效焦距f为27.50mm,光学成像镜头的总长度TTL(即,从第一透镜E1的物侧面S1至光学成像镜头的成像面S11在光轴上的距离)为26.50mm,光学成像镜头的成像面S11上有效像素区域的对角线长的一半ImgH为2.71mm,光学成像镜头的最大视场角FOV为11.23°。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。根据图2A至图2C可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述根据本申请实施例2的光学成像镜头。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本示例中,光学成像镜头的总有效焦距f为27.50mm,光学成像镜头的总长度TTL为26.57mm,光学成像镜头的成像面S11上有效像素区域的对角线长的一半ImgH为2.71mm,光学成像镜头的最大视场角FOV为11.24°。
表2示出了实施例2的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离、焦距和有效半口径的单位均为毫米(mm)。
面号 表面类型 曲率半径 厚度/距离 材质 折射率 阿贝数 焦距 有效半口径
OBJ 球面 无穷 无穷
S1 球面 9.6444 1.0150 玻璃 2.01 29.1 11.15 4.0934
S2 球面 64.8569 0.8530 4.0301
S3 球面 -11.9449 0.2400 玻璃 2.01 29.1 -11.01 4.0124
S4 球面 155.6927 0.0998 3.9766
STO 球面 无穷 0.1966 3.9118
S5 球面 -215.5270 0.9982 玻璃 1.76 52.3 13.97 3.9675
S6 球面 -10.1067 0.0500 3.9637
S7 球面 8.0144 0.3530 玻璃 1.93 20.9 -22.56 3.5389
S8 球面 5.6777 3.3013 3.3315
S9 球面 无穷 0.2100 玻璃 1.52 64.2 3.5000
S10 球面 无穷 19.2531 3.5000
S11 球面 无穷 2.7430
表2
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。根据图4A至图4C可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本示例中,光学成像镜头的总有效焦距f为28.00mm,光学成像镜头的总长度TTL为27.20mm,光学成像镜头的成像面S11上有效像素区域的对角线长的一半ImgH为2.71mm,光学成像镜头的最大视场角FOV为11.02°。
表3示出了实施例3的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离、焦距和有效半口径的单位均为毫米(mm)。
面号 表面类型 曲率半径 厚度/距离 材质 折射率 阿贝数 焦距 有效半口径
OBJ 球面 无穷 无穷
S1 球面 19.9729 0.7033 玻璃 2.01 29.1 19.45 4.2644
S2 球面 -1000.0000 0.8940 4.2278
S3 球面 -10.6825 1.9418 玻璃 2.01 29.1 638.08 4.2160
S4 球面 -11.4663 0.0500 4.3519
STO 球面 无穷 0.0500 16.52 3.9683
S5 球面 5.2137 1.1479 玻璃 1.76 52.3 3.8387
S6 球面 8.0874 0.1503 3.6762
S7 球面 8.9022 0.5164 玻璃 1.93 20.9 -10.29 3.6538
S8 球面 4.4839 2.5039 3.1833
S9 球面 无穷 0.2100 玻璃 1.52 64.2 3.5000
S10 球面 无穷 19.0324 3.5000
S11 球面 无穷 2.7558
表3
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。根据图6A至图6C可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本示例中,光学成像镜头的总有效焦距f为22.48mm,光学成像镜头的总长度TTL为27.13mm,光学成像镜头的成像面S11上有效像素区域的对角线长的一半ImgH为2.71mm,光学成像镜头的最大视场角FOV为13.76°。
表4示出了实施例4的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离、焦距和有效半口径的单位均为毫米(mm)。
面号 表面类型 曲率半径 厚度/距离 材质 折射率 阿贝数 焦距 有效半口径
OBJ 球面 无穷 无穷
S1 球面 28.6318 0.4812 玻璃 2.01 29.1 25.97 3.5466
S2 球面 -300.0000 0.7784 3.5171
S3 球面 -8.2340 2.9974 玻璃 2.01 29.1 -834.32 3.5141
S4 球面 -9.8344 0.0250 3.8649
STO 球面 无穷 0.0250 3.6038
S5 球面 6.7423 0.7490 玻璃 1.76 52.3 14.54 3.5606
S6 球面 16.5549 0.3000 3.5321
S7 球面 8.2657 0.2250 玻璃 1.93 20.9 -15.33 3.3578
S8 球面 5.1656 2.6528 3.1507
S9 球面 无穷 0.2100 玻璃 1.52 64.2 3.5000
S10 球面 无穷 18.6827 3.5000
S11 球面 无穷 2.7204
表4
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。根据图8A至图8C可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本示例中,光学成像镜头的总有效焦距f为21.25mm,光学成像镜头的总长度TTL为25.90mm,光学成像镜头的成像面S11上有效像素区域的对角线长的一半ImgH为2.71mm,光学成像镜头的最大视场角FOV为14.56°。
表5示出了实施例5的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离、焦距和有效半口径的单位均为毫米(mm)。
面号 表面类型 曲率半径 厚度/距离 材质 折射率 阿贝数 焦距 有效半口径
OBJ 球面 无穷 无穷
S1 球面 12.7162 0.4360 玻璃 2.01 29.1 30.40 3.3622
S2 球面 21.3735 0.8523 3.3138
S3 球面 -9.6743 2.8705 玻璃 2.01 29.1 -46.75 3.3115
S4 球面 -13.9890 0.0250 3.5245
STO 球面 无穷 0.0250 3.3674
S5 球面 9.9983 0.7273 玻璃 1.76 52.3 12.70 3.3866
S6 球面 -250.0000 0.3000 3.3610
S7 球面 7.2173 0.2250 玻璃 1.93 20.9 -21.18 3.1507
S8 球面 5.2037 2.1011 3.0026
S9 球面 无穷 0.2100 玻璃 1.52 64.2 3.5000
S10 球面 无穷 18.1309 3.5000
S11 球面 无穷 2.7261
表5
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。根据图10A至图10C可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本示例中,光学成像镜头的总有效焦距f为24.00mm,光学成像镜头的总长度TTL为35.90mm,光学成像镜头的成像面S11上有效像素区域的对角线长的一半ImgH为2.71mm,光学成像镜头的最大视场角FOV为12.93°。
表6示出了实施例6的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离、焦距和有效半口径的单位均为毫米(mm)。
面号 表面类型 曲率半径 厚度/距离 材质 折射率 阿贝数 焦距 有效半口径
OBJ 球面 无穷 无穷
S1 球面 -8.2041 4.0000 玻璃 2.01 29.1 -109.35 4.0330
S2 球面 -11.0331 2.9126 4.9106
S3 球面 35.4697 0.8481 玻璃 2.01 29.1 18.56 4.7210
S4 球面 -39.0353 0.0250 4.6987
STO 球面 无穷 0.0250 4.2548
S5 球面 8.2792 0.9894 玻璃 1.76 52.3 17.88 4.2589
S6 球面 20.1873 0.1631 4.1809
S7 球面 29.0273 0.3937 玻璃 1.93 20.9 -12.31 4.1704
S8 球面 8.1622 5.5216 3.8784
S9 球面 无穷 0.2100 玻璃 1.52 64.2 3.5000
S10 球面 无穷 20.8101 3.5000
S11 球面 无穷 2.7395
表6
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。根据图12A至图12C可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14C描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本示例中,光学成像镜头的总有效焦距f为29.75mm,光学成像镜头的总长度TTL为31.30mm,光学成像镜头的成像面S11上有效像素区域的对角线长的一半ImgH为2.71mm,光学成像镜头的最大视场角FOV为10.42°。
表7示出了实施例7的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离、焦距和有效半口径的单位均为毫米(mm)。
面号 表面类型 曲率半径 厚度/距离 材质 折射率 阿贝数 焦距 有效半口径
OBJ 球面 无穷 无穷
S1 球面 7.2445 0.2250 玻璃 2.01 29.1 -79.06 4.4824
S2 球面 6.5368 1.9191 4.3478
S3 球面 9.1382 0.2290 玻璃 2.01 29.1 493.93 4.3651
S4 球面 9.1922 1.1009 4.3284
STO 球面 无穷 0.0250 4.3060
S5 球面 6.7312 1.5261 玻璃 1.76 52.3 14.16 4.6776
S6 球面 16.3055 0.7141 4.5893
S7 球面 5.1095 0.2260 玻璃 1.93 20.9 -31.30 3.9951
S8 球面 4.2543 4.9173 3.6943
S9 球面 无穷 0.2100 玻璃 1.52 64.2 3.5000
S10 球面 无穷 20.2058 3.5000
S11 球面 无穷 2.7296
表7
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。根据图14A至图14C可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16C描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本示例中,光学成像镜头的总有效焦距f为25.14mm,光学成像镜头的总长度TTL为28.07mm,光学成像镜头的成像面S11上有效像素区域的对角线长的一半ImgH为2.71mm,光学成像镜头的最大视场角FOV为12.26°。
表8示出了实施例8的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离、焦距和有效半口径的单位均为毫米(mm)。
表8
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。根据图16A至图16C可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18C描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
在本示例中,光学成像镜头的总有效焦距f为27.00mm,光学成像镜头的总长度TTL为33.32mm,光学成像镜头的成像面S11上有效像素区域的对角线长的一半ImgH为2.71mm,光学成像镜头的最大视场角FOV为11.47°。
表9示出了实施例9的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离、焦距和有效半口径的单位均为毫米(mm)。
表9
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视场角对应的畸变大小值。根据图18A至图18C可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表10中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8 9
f(mm) 27.50 27.50 28.00 22.48 21.25 24.00 29.75 25.14 27.00
(R7-R8)/f4 -0.64 -0.10 -0.43 -0.20 -0.10 -1.69 -0.03 -0.02 -0.02
FOV(°) 11.23 11.24 11.02 13.76 14.56 12.93 10.42 12.26 11.47
f3/(DT31+DT32) 2.28 1.76 2.20 2.05 1.88 2.12 1.53 1.24 1.33
DT11/DT41 1.18 1.16 1.17 1.06 1.07 0.97 1.12 1.13 1.11
(N1+N2+N3+N4)/4 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93
(CT1+CT2)/(TTL-SL) 0.69 0.57 0.74 0.81 0.79 0.62 0.13 0.20 0.44
BFL/f 0.78 0.83 0.78 0.96 0.96 1.11 0.85 0.76 0.87
(SAG41+SAG42)/ImgH 0.60 0.70 0.78 0.66 0.62 0.47 1.50 0.99 1.00
|SAG11|/(CT1+T12) 0.46 0.49 0.29 0.18 0.35 0.15 0.72 0.50 0.28
表10
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

1.光学成像镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
具有光焦度的第一透镜;
具有光焦度的第二透镜;
具有正光焦度的第三透镜;
具有负光焦度的第四透镜,其物侧面为凸面;
其中,所述光学成像镜头的总有效焦距f满足:20mm<f<30mm。
2.根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜的物侧面的曲率半径R7、所述第四透镜的像侧面的曲率半径R8与所述第四透镜的有效焦距f4满足:-1.7<(R7-R8)/f4<0。
3.根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3、所述第三透镜的物侧面的有效半口径DT31与所述第三透镜的像侧面的有效半口径DT32满足:1.2<f3/(DT31+DT32)<2.3。
4.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的有效半口径DT11与所述第四透镜的物侧面的有效半口径DT41满足:0.8<DT11/DT41<1.2。
5.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的折射率N1、所述第二透镜的折射率N2、所述第三透镜的折射率N3与所述第四透镜的折射率N4满足:1.8<(N1+N2+N3+N4)/4<2.0。
6.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头还包括光阑,
所述第一透镜在所述光轴上的中心厚度CT1、所述第二透镜在所述光轴上的中心厚度CT2、所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光阑至所述成像面在所述光轴上的距离SL满足:0.1<(CT1+CT2)/(TTL-SL)<0.9。
7.根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜的像侧面至所述光学成像镜头的成像面在所述光轴上的距离BFL与所述光学成像镜头的总有效焦距f满足:0.7<BFL/f<1.2。
8.根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜的物侧面和所述光轴的交点至所述第四透镜的物侧面的有效半径顶点在所述光轴上的距离SAG41、所述第四透镜的像侧面和所述光轴的交点至所述第四透镜的像侧面的有效半径顶点在所述光轴上的距离SAG42与所述光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH满足:0.4<(SAG41+SAG42)/ImgH<1.6。
9.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面和所述光轴的交点至所述第一透镜的物侧面的有效半径顶点在所述光轴上的距离SAG11、所述第一透镜在所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足:0.1<|SAG11|/(CT1+T12)<0.8。
10.根据权利要求1至9中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的最大视场角FOV满足:10°<FOV<15°。
CN201910866380.XA 2019-09-12 2019-09-12 光学成像镜头 Pending CN110501805A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910866380.XA CN110501805A (zh) 2019-09-12 2019-09-12 光学成像镜头
PCT/CN2020/104461 WO2021047304A1 (zh) 2019-09-12 2020-07-24 光学成像镜头
US17/641,453 US20220317416A1 (en) 2019-09-12 2020-07-24 Optical Imaging Lens Assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910866380.XA CN110501805A (zh) 2019-09-12 2019-09-12 光学成像镜头

Publications (1)

Publication Number Publication Date
CN110501805A true CN110501805A (zh) 2019-11-26

Family

ID=68591790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910866380.XA Pending CN110501805A (zh) 2019-09-12 2019-09-12 光学成像镜头

Country Status (3)

Country Link
US (1) US20220317416A1 (zh)
CN (1) CN110501805A (zh)
WO (1) WO2021047304A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047304A1 (zh) * 2019-09-12 2021-03-18 浙江舜宇光学有限公司 光学成像镜头
CN116931237A (zh) * 2023-09-14 2023-10-24 江西联益光学有限公司 光学镜头及光学系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730517B (zh) 2019-11-29 2021-06-11 大立光電股份有限公司 透鏡系統及電子裝置
US20210247592A1 (en) * 2020-02-10 2021-08-12 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN113534419A (zh) * 2021-09-15 2021-10-22 宁波永新光学股份有限公司 一种超高清车载光学成像镜头

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184783A (ja) * 2004-12-28 2006-07-13 Fujinon Corp 撮像装置
JP2009020339A (ja) * 2007-07-12 2009-01-29 Nikon Corp 撮像レンズ及び光学装置
US20110128637A1 (en) * 2009-12-02 2011-06-02 Takashi Kubota Imaging lens system and imaging apparatus
US20150358516A1 (en) * 2013-01-30 2015-12-10 Sony Corporation Imaging apparatus and electronic device
CN106324802A (zh) * 2015-07-02 2017-01-11 先进光电科技股份有限公司 光学成像系统
JP2017102314A (ja) * 2015-12-03 2017-06-08 株式会社ニコン 接眼レンズ及び光学機器
CN106997089A (zh) * 2017-05-27 2017-08-01 浙江舜宇光学有限公司 光学镜片组
CN107884906A (zh) * 2016-09-30 2018-04-06 大立光电股份有限公司 光学影像撷取系统镜组、取像装置及电子装置
CN109143547A (zh) * 2018-09-07 2019-01-04 北京点阵虹光光电科技有限公司 一种宽光谱镜头
CN210666167U (zh) * 2019-09-12 2020-06-02 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101223466B (zh) * 2005-07-19 2010-05-19 松下电器产业株式会社 变焦透镜系统和使用该变焦透镜系统的成像光学装置
CN110501805A (zh) * 2019-09-12 2019-11-26 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184783A (ja) * 2004-12-28 2006-07-13 Fujinon Corp 撮像装置
JP2009020339A (ja) * 2007-07-12 2009-01-29 Nikon Corp 撮像レンズ及び光学装置
US20110128637A1 (en) * 2009-12-02 2011-06-02 Takashi Kubota Imaging lens system and imaging apparatus
US20150358516A1 (en) * 2013-01-30 2015-12-10 Sony Corporation Imaging apparatus and electronic device
CN106324802A (zh) * 2015-07-02 2017-01-11 先进光电科技股份有限公司 光学成像系统
JP2017102314A (ja) * 2015-12-03 2017-06-08 株式会社ニコン 接眼レンズ及び光学機器
CN107884906A (zh) * 2016-09-30 2018-04-06 大立光电股份有限公司 光学影像撷取系统镜组、取像装置及电子装置
CN106997089A (zh) * 2017-05-27 2017-08-01 浙江舜宇光学有限公司 光学镜片组
CN109143547A (zh) * 2018-09-07 2019-01-04 北京点阵虹光光电科技有限公司 一种宽光谱镜头
CN210666167U (zh) * 2019-09-12 2020-06-02 浙江舜宇光学有限公司 光学成像镜头

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047304A1 (zh) * 2019-09-12 2021-03-18 浙江舜宇光学有限公司 光学成像镜头
CN116931237A (zh) * 2023-09-14 2023-10-24 江西联益光学有限公司 光学镜头及光学系统
CN116931237B (zh) * 2023-09-14 2024-01-05 江西联益光学有限公司 光学镜头及光学系统

Also Published As

Publication number Publication date
WO2021047304A1 (zh) 2021-03-18
US20220317416A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
CN109085693A (zh) 光学成像镜头
CN110456490A (zh) 摄像透镜组
CN109725408A (zh) 成像镜头
CN110501805A (zh) 光学成像镜头
CN109239891A (zh) 光学成像透镜组
CN209102995U (zh) 光学成像透镜组
CN109358410A (zh) 光学成像镜片组
CN109116520A (zh) 光学成像镜头
CN208506348U (zh) 摄像镜头
CN107219614A (zh) 光学成像镜头
US20220269044A1 (en) Camera Lens Group
CN108490588A (zh) 光学成像镜头
CN108802972A (zh) 光学成像系统
CN109298513A (zh) 光学成像镜头
CN110426823A (zh) 光学成像透镜组
CN209148942U (zh) 光学成像镜头
CN110275278A (zh) 光学成像镜头
CN208477188U (zh) 摄影镜头
CN108535844A (zh) 摄影镜头
CN110456487A (zh) 光学成像镜头
CN207096550U (zh) 光学成像镜头
CN208477194U (zh) 光学成像系统
CN208477187U (zh) 成像镜头
CN109856782A (zh) 光学成像镜头
CN211086753U (zh) 光学成像镜头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination