CN110495887A - 一种针对磁共振双信号纳米探针使用rarevtr序列同时获得t1加权成像方法 - Google Patents

一种针对磁共振双信号纳米探针使用rarevtr序列同时获得t1加权成像方法 Download PDF

Info

Publication number
CN110495887A
CN110495887A CN201910696879.0A CN201910696879A CN110495887A CN 110495887 A CN110495887 A CN 110495887A CN 201910696879 A CN201910696879 A CN 201910696879A CN 110495887 A CN110495887 A CN 110495887A
Authority
CN
China
Prior art keywords
probe
value
signal
sequence
rarevtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910696879.0A
Other languages
English (en)
Other versions
CN110495887B (zh
Inventor
孙夕林
王凯
阿荣
杨丽丽
姜萌
姜炜琪
乔文菊
孙晓红
程立欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Harbin Medical University
Original Assignee
Harbin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Medical University filed Critical Harbin Medical University
Priority to CN201910696879.0A priority Critical patent/CN110495887B/zh
Publication of CN110495887A publication Critical patent/CN110495887A/zh
Priority to NL2025766A priority patent/NL2025766B1/en
Application granted granted Critical
Publication of CN110495887B publication Critical patent/CN110495887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5602Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by filtering or weighting based on different relaxation times within the sample, e.g. T1 weighting using an inversion pulse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5617Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using RF refocusing, e.g. RARE
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Signal Processing (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及医学成像序列参数的优化技术领域,即一种针对磁共振双信号纳米探针使用RAREVTR序列同时获得T1加权成像方法。其步骤如下:(1)配备不同浓度的具有T1、T2双对比信号的纳米探针,配备浓度分别为0.05mM,0.1mM,0.2mM,0.4mM。(2)配好的探针phantom固定一起,置于磁体中间扫描床并进行调谐,之后在ParaVision6.0.1成像系统上常规扫RAREVTR和MSME序列,得到不同浓度探针对应的T1值和T2值。(3)步骤(2)之后根据Y=[A+C*(1‑exp(‑TR/T1))]*exp(‑TE/T2)方程设置针对探针溶液的最佳TE值和TR值。当双信号探针T1mapping成像时,优化参数后的RAREVTR序列能够消除探针T2信号的影响。当双信号探针T2mapping成像时,优化参数后的MSME序列能够消除探针T1信号的影响。优化参数后的RAREVTR序列既能得到准确T1值又能得到近似T1WI图像。

Description

一种针对磁共振双信号纳米探针使用RAREVTR序列同时获得 T1加权成像方法
技术领域
本发明涉及医学成像序列参数的优化技术领域,即一种针对磁共振双信号纳米探针使用RAREVTR(多重复时间快速自旋回波)序列同时获得T1(纵向弛豫时间)加权成像方法,具体是布鲁克9.4T(9.4特斯拉)小动物核磁共振(BioSpec94/20USR)ParaVision6.0.1系统上使用RAREVTR序列针对双信号纳米探针的成像消除T2(横向弛豫时间)混淆信号的影响的同时实现T1加权成像的方法。
背景技术
在现有技术中,磁共振成像技术(magnetic resonance imaging, MRI)是目前医学成像领域中兼具扫描无损伤性和图像高分辨率两大优点的成像技术,是一门在生物医学基础研究和疾病相关应用研究中都具有广阔前景的交叉性技术。各类影像学手段中,核磁共振成像是目前动物模型研究中不可或缺的工具之一。以动物模型为对象的生物医学研究可以避免在人身上进行实验所带来的风险,克服某些疾病潜伏期长、病程长的缺点。
临床用新型造影剂、纳米探针及新型药物的开发伴随医疗技术水平的提升越来越受到广大科研人员的关注。高场强、高均匀度的MRI/MRS(磁共振成像/磁共振波普)系统为这些新药、新材料的结构、功能及性能的表征以及临床前生物安全性的评估等都提供了快捷、有效的观测条件。
各种组织的T1、T2及T2 mapping测量,提供正常组织、肿瘤组织及脑损伤等的差异;T1加权成像(T1WI,T1 weighted image)突出组织T1弛豫(纵向弛豫)差别,能够较好的显示组织器官解剖结构;而T2加权成像(T2WI,T2 weighted image)突出组织T2弛豫(横向弛豫)差别,能够较好的显示病变组织,如肿瘤。T1加权像特点为短TR(重复时间,Repetition Time)、短TE(回波时间,Echo Time),组织的T1越短,恢复越快,信号越强;组织的T1越长,恢复越慢,信号越弱。T2加权像特点为长TR(重复时间)、长TE,组织的T2越长,恢复越慢,信号越强;组织的T2越短,恢复越快,信号越弱。MRI 的T1 Mapping图像可由RAREVTR(多重复时间快速自旋回波序列,Rapid Acquisition Relaxation Enhancement,RARE with variable repetition time TR )序列获得,以T1弛豫时间做信号加权,得到图像每一点的T1(纵向弛豫时间)值,并把这个T1值作为图像该点的灰度值。而MR采集到的信号本身除了与T1的指数衰减相关,也与T2值相关,因此当做双信号探针体外成像时得到的图像信号并非其真实的T1加权信号,即实际上采集到的是k空间的“信号”强度而非实际图像空间的信号。这个信号是通过时间的指数形式与实际图像联系起来的。因此,当研究用纳米探针有双信号(T1加权信号、T2加权信号)特性时,实际得到的图像受其T2值影响不能反映其T1或T2加权的近似图像。
发明内容
本发明目的是为了解决现有ParaVision6.0.1成像系统RAREVTR序列(T1mapping成像所用序列)T1、T2双信号探针成像时出现的混淆信号影响,通过参数的优化,实现得到常规T1值的同时得到T1加权图像。
本发明技术解决方案是:一种针对磁共振双信号纳米探针使用RAREVTR序列同时获得T1加权成像方法,其特征在于步骤如下:
(1)配备不同浓度的具有T1、T2双对比信号的纳米探针,配备浓度分别为0.05mM,0.1mM,0.2mM,0.4mM(毫摩尔)。
(2)配好的探针phantom(水膜)固定一起,置于磁体中间扫描床并进行调谐,之后在ParaVision6.0.1成像系统上常规扫RAREVTR和MSME序列,得到不同浓度探针对应的T1值和T2值。
(3)步骤(2)之后根据Y=[A+C*(1-exp(-TR/T1))]*exp(-TE/T2)方程设置针对探针溶液的最佳TE值和TR值。
其中步骤(2)所述的方程里:
所述A代表的是绝对偏差。
所述C代表的是信号强度,与质子密度成正比关系。
所述TR是指磁共振成像时的重复时间,具体指两个激发脉冲间的间隔时间称为重复时间。
TR决定激发脉冲发射之前纵向磁化矢量恢复的大小,是一个决定信号强度的因素。
TE是在激励射频脉冲作用后,从横向磁化强度最初产生到接收信号间的时间间隔被称为回波时间,又称为回波延迟时间。
本发明有益效果是:
1、当双信号探针T1mapping成像时,优化参数后的RAREVTR(多重复时间快速自旋回波序列)序列能够消除探针T2(横向弛豫)信号的影响。
2、当双信号探针T2mapping成像时,优化参数后的MSME(多层多回波序列)序列能够消除探针T1信号的影响。
3、优化参数后的RAREVTR(多重复时间快速自旋回波序列)序列既能得到准确T1(纵向弛豫)值又能得到近似T1WI(T1加权)图像。
4、优化参数后的MSME序列既能得到准确T2(横向弛豫)值又能得到近似T2WI(T2加权)图像。
附图说明
图1是RAREVTR序列成像参数优化前的T1mapping图,信号强度图,纵向弛豫时间图。
图2是RAREVTR序列成像参数优化后的T1mapping图,信号强度图,纵向弛豫时间图。
图3是MSME序列-探针T2对比效果图-T2mapping图,信号强度图,横向弛豫时间图。
图4是根据最佳TE值、TR值设置FLASH(扰相位梯度回波脉冲序列)序列得到的T1加权图像。
具体实施方式
参见图1,与质子密度相关的信号强度极度不均一,得到的T1mapping图像像素值不能反映T1加权信号。
参见图2,与质子密度相关的信号强度高度均匀,得到的T1mapping图像像素值可反映T1加权信号。
参见图3,同时可得到T2对比效果图像,其信号强度与探针溶液浓度成反比关系。
参见图4,结果表明,参数优化后的T1mapping成像得到的图像与FLASH成像得到的图像相较成像效果无差别,即通过参数的优化从T1mapping成像可以得到T1WI图像,同时得到常规的T1值,实现T1mapping成像序列的最优化以及高效使用。
一种针对磁共振双信号纳米探针使用RAREVTR序列同时获得T1加权成像方法,其步骤如下:
1、配备不同浓度的具有T1、T2双对比信号的纳米探针,配备浓度分别为0.05mM,0.1mM,0.2mM,0.4mM。
2、配好的探针phantom固定一起,置于磁体中间扫描床并进行调谐,之后在ParaVision6.0.1成像系统上常规扫RAREVTR(T1mapping成像)和MSME(Multi-Slice MultiEcho ,T2mapping成像)序列,得到不同浓度探针对应的T1值和T2值。
3、步骤2之后根据Y=[A+C*(1-exp(-TR/T1))]*exp(-TE/T2)方程设置针对探针溶液的最佳TE(Echo Time)值和TR(Repetision Time)值,以消除探针溶液T2信号对T1mapping图像像素值的影响;消除探针溶液T1信号对探针溶液T2mapping图像像素值的影响。从而实现RAREVTR或MSME(T1mapping或T2mapping成像)序列除了可以得到常规T1值或T2值外还可得到T1加权或T2加权图像,即,使T1mapping成像得到的图像像素值反映该双信号探针溶液的T1加权信号;实现使T2mapping成像得到的图像像素值反映该双信号探针溶液的T2加权信号。
其中步骤2所述的方程里:
所述A代表的是绝对偏差。
所述C代表的是信号强度(与质子密度成正比关系)。
所述TR是指磁共振成像时的重复时间,具体指两个激发脉冲间的间隔时间称为重复时间(repetition time,TR),TR决定激发脉冲发射之前纵向磁化矢量恢复的大小,是一个决定信号强度的因素,回波信号的大小取决于读出信号时的横向磁化矢量的大小,横向磁化矢量的大小又依赖于翻转的纵向磁化矢量的大小,因此延长TR可以使纵向磁化恢复增多,所以下一次激励时将有更多的横向磁化,产生的信号强度增大,提高图像信噪比;反之缩短TR,仅有部分纵向磁化恢复,在下一次激励时的横向磁化就小,信号就少,降低图像信噪比。
TE是在激励射频脉冲作用后,从横向磁化强度最初产生到接收信号间的时间间隔被称为回波时间(echo time,TE),又称为回波延迟时间。
所述最佳TE值是针对双信号探针的T2值而言,在RAREVTR序列中,根据其T2值设定短TE值(T2值的1/5~1/4),涉及到所述方程的exp(-TE/T2)部分,减少对信号强度C的影响,从而在RAREVTR(T1mapping成像)序列中消除T2(横向弛豫)信号的混淆信号影响,得到双信号探针的近似T1WI图像。
所述的最佳TR值是针对双信号探针的T1值而言,在T2mapping序列中,根据其T1值使其设置为长TR(T1值的4倍~5倍),此部分涉及到所述方程的exp(-TR/T1),减少其对信号强度C的影响,从而在MSME(T2mapping成像)序列中消除T2信号的混淆信号影响,得到双信号探针的近似T2WI(T2加权)图像。
实施例1:为消除T2混淆信号影响,实现T1加权成像,在原有的成像序列参数基础上最大TR设置为小于1/5T1值,所述T1为探针溶液的纵向弛豫时间。
实施例2:为消除T2混淆信号影响,实现T1加权成像,在原有的成像序列参数基础上TE设置为小于1/5T2; 最大TR设置为小于1/5T1值,所述T1为探针溶液的纵向弛豫时间,T2为探针溶液的横向弛豫时间。
实施例3:为消除T2混淆信号影响,实现T1加权成像,在原有的成像序列参数基础上TE设置为小于1/5T2; TR设置为多个值,最大值为4000ms,所述T1为探针溶液的纵向弛豫时间,T2为探针溶液的横向弛豫时间。
实施例1、2、3具体实施参数为:
*RAREVTR序列参数优化前的VTR分别为254.383,450,900,1200,2000,3000,4000,5000(ms,毫秒)。
*测量顺序分别为对照(水),0.05mM,0.1mM,0.2mM,0.4mM毫摩尔(不同浓度的T1、T2双信号探针)
上面描述,只是本发明的具体实施方式,各种举例说明不对本发明的实质内容构成限制。

Claims (1)

1.一种针对磁共振双信号纳米探针使用RAREVTR序列同时获得T1加权成像方法,其特征在于步骤如下:
(1)配备不同浓度的具有T1、T2双对比信号的纳米探针,配备浓度分别为0.05mM,0.1mM,0.2mM,0.4mM;
(2)配好的探针phantom固定一起,置于磁体中间扫描床并进行调谐,之后在ParaVision6.0.1成像系统上常规扫RAREVTR和MSME序列,得到不同浓度探针对应的T1值和T2值;
(3)步骤(2)之后根据Y=[A+C*(1-exp(-TR/T1))]*exp(-TE/T2)方程设置针对探针溶液的最佳TE值和TR值;
其中步骤(2)所述的方程里:
所述A代表的是绝对偏差;
所述C代表的是信号强度,与质子密度成正比关系;
所述TR是指磁共振成像时的重复时间,具体指两个激发脉冲间的间隔时间称为重复时间;
TR决定激发脉冲发射之前纵向磁化矢量恢复的大小,是一个决定信号强度的因素;
TE是在激励射频脉冲作用后,从横向磁化强度最初产生到接收信号间的时间间隔被称为回波时间,又称为回波延迟时间。
CN201910696879.0A 2019-07-30 2019-07-30 一种针对磁共振双信号纳米探针使用rarevtr序列同时获得t1加权成像方法 Active CN110495887B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910696879.0A CN110495887B (zh) 2019-07-30 2019-07-30 一种针对磁共振双信号纳米探针使用rarevtr序列同时获得t1加权成像方法
NL2025766A NL2025766B1 (en) 2019-07-30 2020-06-05 METHOD FOR SIMULTANEOUSLY OBTAINING T1 WEIGHTED IMAGE OF MAGNETIC RESONANCE Dual-SIGNAL NANOPROBE BY USING RAREVTR SEQUENCE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910696879.0A CN110495887B (zh) 2019-07-30 2019-07-30 一种针对磁共振双信号纳米探针使用rarevtr序列同时获得t1加权成像方法

Publications (2)

Publication Number Publication Date
CN110495887A true CN110495887A (zh) 2019-11-26
CN110495887B CN110495887B (zh) 2022-02-15

Family

ID=68587853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910696879.0A Active CN110495887B (zh) 2019-07-30 2019-07-30 一种针对磁共振双信号纳米探针使用rarevtr序列同时获得t1加权成像方法

Country Status (2)

Country Link
CN (1) CN110495887B (zh)
NL (1) NL2025766B1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982160A (en) * 1988-09-13 1991-01-01 Kabushiki Kaisha Toshiba Method and system for controlling magnetic resonance signal acquisition sequence
US5655532A (en) * 1992-02-28 1997-08-12 Hitachi Medical Corporation Magnetic resonance imaging apparatus and its method
US20050110489A1 (en) * 2003-11-21 2005-05-26 Mitsuharu Miyoshi MRI method and MRI apparatus
US20170209067A1 (en) * 2015-08-06 2017-07-27 Hitachi, Ltd. Magnetic resonance imaging apparatus
US20190184037A1 (en) * 2017-12-15 2019-06-20 University Of Washington Paramagnetic boron-doped graphene quantum dots and their application for safe magnetic resonance imaging

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2757386A1 (en) * 2013-01-17 2014-07-23 Ruprecht-Karls-Universität Heidelberg Synthetic parameter-weigthed images based on relaxometry (SPARE)
US10955496B2 (en) * 2016-07-28 2021-03-23 California Institute Of Technology Gas-filled structures and related compositions, methods and systems for magnetic resonance imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982160A (en) * 1988-09-13 1991-01-01 Kabushiki Kaisha Toshiba Method and system for controlling magnetic resonance signal acquisition sequence
US5655532A (en) * 1992-02-28 1997-08-12 Hitachi Medical Corporation Magnetic resonance imaging apparatus and its method
US20050110489A1 (en) * 2003-11-21 2005-05-26 Mitsuharu Miyoshi MRI method and MRI apparatus
US20170209067A1 (en) * 2015-08-06 2017-07-27 Hitachi, Ltd. Magnetic resonance imaging apparatus
US20190184037A1 (en) * 2017-12-15 2019-06-20 University Of Washington Paramagnetic boron-doped graphene quantum dots and their application for safe magnetic resonance imaging

Also Published As

Publication number Publication date
NL2025766B1 (en) 2021-06-07
CN110495887B (zh) 2022-02-15
NL2025766A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
Henderson et al. A fast 3D look-locker method for volumetric T1 mapping
US6603989B1 (en) T2 contrast in magnetic resonance imaging with gradient echoes
US10663548B2 (en) System and method for magnetic resonance imaging
Zöllner et al. Quantitative sodium MRI of kidney
US7800367B2 (en) Method and apparatus for generating T2* weighted magnetic resonance images
US10175332B2 (en) Motion triggered MR imaging using APT/CEST
Ungersma et al. Magnetic resonance imaging with T1 dispersion contrast
Gallichan Diffusion MRI of the human brain at ultra-high field (UHF): A review
US9131870B2 (en) Blood signal suppressed contrast enhanced magnetic resonance imaging
Matsuda et al. Imaging of a large collection of human embryo using a super-parallel MR microscope
Paschke et al. Influence of gadolinium-based contrast agents on tissue sodium quantification in sodium magnetic resonance imaging
US9149203B2 (en) Blood signal suppressed enhanced magnetic resonance imaging
Maki et al. SNR improvement in NMR microscopy using DEFT
Engelhardt et al. T1ρ relaxation and its application to MR histology
Cho et al. Recent progress in NMR microscopy towards cellular imaging
Olsrud et al. A two-compartment gel phantom for optimization and quality assurance in clinical BOLD fMRI
GB2167564A (en) Method of mapping the nuclear magnetic properties of an object to be examined
JP2002209868A (ja) 原子核スピン緩和及び分子拡散の促進方法並びに磁気共鳴撮像装置
CN110495887A (zh) 一种针对磁共振双信号纳米探针使用rarevtr序列同时获得t1加权成像方法
US4743850A (en) Method of mapping the nuclear magnetic properties of an object to be examined
FI86506B (fi) Avbildningsfoerfarande.
US7339375B1 (en) Driven equilibrium and fast-spin echo scanning
US20030080737A1 (en) Method for generating image data by means of magnetic resonance
Krishna et al. The development of time-domain in vivo EPR imaging at NCI
Molendowska Diffusion MRI of the prostate at 300 mT/m

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant