CN110492185A - 一种锂电池组均衡方法及系统 - Google Patents

一种锂电池组均衡方法及系统 Download PDF

Info

Publication number
CN110492185A
CN110492185A CN201910238139.2A CN201910238139A CN110492185A CN 110492185 A CN110492185 A CN 110492185A CN 201910238139 A CN201910238139 A CN 201910238139A CN 110492185 A CN110492185 A CN 110492185A
Authority
CN
China
Prior art keywords
battery
charge
state
soc
optimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910238139.2A
Other languages
English (en)
Other versions
CN110492185B (zh
Inventor
蒋建华
夏先龙
李曦
邓忠华
李结胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201910238139.2A priority Critical patent/CN110492185B/zh
Publication of CN110492185A publication Critical patent/CN110492185A/zh
Application granted granted Critical
Publication of CN110492185B publication Critical patent/CN110492185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种电池均衡效率优化方法及系统,属于电池技术领域。一个电池组包含有若干电池,各个电池的荷电状态不一致,需要进行能量转移来使各个电池的荷电状态趋于一致,在进行能量转移的过程中,各个电池的荷电状态是实时变化的,所以在每一次均衡的过程中,利用最优荷电状态作为均衡目标,使目标电池经过均衡能够达到目标均衡值。在此次均衡完成后,根据各个电池的最新荷电状态计算下次均衡的最优荷电状态,在不断重复上述过程中,系统能够在最短的时间内快速达到各个电池的荷电状态在允许误差范围内具有一致性的目标,使得均衡系统的能量转移效率大幅度提高。

Description

一种锂电池组均衡方法及系统
技术领域
本发明属于电池储能技术领域,具体而言,涉及一种锂电池组均衡方法及系统。
背景技术
电池作为汽车动力来源,必须串联使用才能达到电压要求,而多个电池串联使用一段时间后,电池内阻和电压产生波动,单体电池的状态差异会逐渐显现出来,不断循环的充放电过程加剧了单体电池之间的不一致性。电池成组后,大功率充放电时,电池组发热,在电池模块内形成一定的温度梯度,使各单体电池工作时环境温度不一致,将削弱单体电池间的一致性,降低电池组充放电能力。例如,磷酸铁锂电池的单体电芯循环寿命可以达到3000次以上,然而成组后,由于各种原因导致的不一致性,整体循环寿命很难达到2000次。此外,大规模储电系统中电池成本约占总成本的一半。串联成组的电池系统,只要其中一节失效,如不及时发现,整串电池都会跟着报废。损失的不仅仅是昂贵的电池,由于电池状态不确定性造成的系统瘫痪、数据丢失,后果不堪设想。为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效地管理和控制。电池管理系统对电池组的使用过程进行管理,对电池组中各单体电池的状态进行监控,可以维持电池组中单体电池的状态一致性,避免电池状态差异造成电池组性能的衰减和安全性问题。
电动汽车用电池管理系统具有系统结构复杂、工况复杂、外接设备复杂等特点。因此,亟需提出一种高效、易实现、可靠性高的均衡算法和策略。使得串联电池组各单体电池的荷电状态(SOC)快速趋于一致,从而大大延长了锂电池组的使用寿命并且提高其性能。
发明内容
本发明针对现有技术的不足,提出一种锂电池均衡效率优化方法及系统,在现有电池管理系统的硬件结构基础上,加以此均衡策略,实现高效的能量转移,在较短的时间内能够实现各个单体电池的SOC值趋于一致。
一种电池组均衡效率优化方法,包括以下步骤:
(1)实时采集电池组内每个电池的电压和电流,依据采集的电压和电流计算每个电池的荷电状态SOCk,i
(2)以电池自适应函数值最小为目标,确定电池最优荷电状态SOC最优,所述电池自适应函数值Y表示为:
其中,参数SOCk,i为第i个电池的荷电状态,N为电池总数,I为充放电电流大小,η为库伦效率,C为电池的容量,第一权重系数α1∈[0,1],第二权重系数α2∈[0,1],Max为取最大;
(3)计算每个电池的荷电状态SOCk,i与电池最优荷电状态SOC最优的差值,选取差值最大的电池作为均衡电池对象;
(4)选中均衡电池对象进行充电或放电,直至均衡电池对象的荷电状态至SOC最优
进一步地,若所述均衡电池对象的荷电状态大于SOC最优,则对其放电;若所述均衡电池对象的荷电状态小于SOC最优,则对其充电。
进一步地,所述步骤(3)还判定电池的荷电状态SOCk,i最大值与最小值的差值是否小于预定阈值,若小于,则结束,否则进入步骤(4)。
进一步地,在持续工作时段内反复重复步骤(1)-(4).
进一步地,采用开路电压法、安时积分法、卡尔曼滤波中的任意一种方法计算电池的荷电状态。
一种电池组均衡效率优化系统,包括:
电压采集器,用于实时采集电池组内每个电池的电压;
电流采集器,用于实时采集电池组内每个电池的电流;
控制器,用于依据采集的电压和电流计算每个电池的荷电状态SOCk,i;以电池自适应函数值最小为目标,确定电池最优荷电状态SOC最优;计算每个电池的荷电状态SOCk,i与电池最优荷电状态SOC最优的差值,选取差值最大的电池作为均衡电池对象;向开关阵列发出控制指令以对均衡电池对象进行充放电,直至均衡电池对象的荷电状态至SOC最优
所述电池自适应函数值Y表示为:
其中,参数SOCk,i为第i个电池的荷电状态,N为电池总数,I为充放电电流大小,η为库伦效率,C为电池的容量,第一权重系数α1∈[0,1],第二权重系数α2∈[0,1],Max为取最大。
进一步地,若所述均衡电池对象的荷电状态大于SOC最优,则向开关阵列发出控制指令以对均衡电池对象放电;若所述均衡电池对象的荷电状态小于SOC最优,则向开关阵列发出控制指令以对均衡电池对象充电。
进一步地,还包括定时模块,用于定时触发控制器工作。
本发明的有益技术效果体现在:
本发明方法通过不断寻找当前最优SOC,来缩减能量转移的时间。使各SOC能够高效的达到一致性。在每次进行能量转移之前,先根据各个单体电池的SOC值计算出目标单体电池序列号i和SOC最优。由此,硬件电路可以选通目标电池与整个电池组进行能量转移,直至目标电池的SOC变成SOC最优为止。重复以上过程,便可以使整个电池组在较短的时间内达到SOC一致性的目标。
附图说明
图1是本发明实施例均衡硬件结构图。
图2是应用本发明方法的锂电池SOC均衡效果图。
图3是本发明方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明公开了一种电池均衡效率优化方法,此方法可以优化获得电池组进行动态均衡的最佳目标平均荷电状态数值,使得电池管理系统能够在最短时间内高效地实现各个电池荷电状态的一致性均衡。一个锂电池组包含有若干电池,各个电池的荷电状态不一致。需要进行能量转移来使各个电池的荷电状态趋于一致,在进行能量转移的过程中,各个电池的荷电状态是实时变化的,所以在每一次均衡的过程中,需要有最优SOC来作为均衡目标,使目标电池经过均衡能够达到目标均衡值。在此次均衡完成后,根据各个电池的最新荷电状态来计算下次均衡的最优目标SOC,在不断重复上述过程中,系统能够在最短的时间内快速达到各个电池的SOC在允许误差范围内具有一致性的目标,使得均衡系统的能量转移效率大幅度提高。
图1所示为通用均衡硬件一个实施例结构图。一组锂电池内有7块电池,即图中的cell1至cell7。每节单体电池都与开关阵列连接,开关阵列的作用是选中某节单体电池接入DC/DC的左端。DC/DC的右端与整组电池的总正总负连接,是典型的cell to pack式的能量转移拓扑结构。
图2所示为实施例应用本发明方法的锂电池SOC均衡效果图。7块电池的SOC值由7个高度不一的点表示。箭头方向向上代表该单体电池处于SOC上升状态,即充电状态。反之,代表SOC下降状态,即放电状态。箭头长度的大小体现在充放电速率v。根据该电池型号的充放电特性曲线即可知道任意点的SOC处,上升或下降速率。如果说第一节电池的能量最少,整个电池组会对目标单体电池进行充电,SOC处于上升状态,第一个点的箭头向上,其余点的箭头向下。其他与此类似。
本发明提供了实现上述方法的系统,包括:电压采集器,用于实时采集电池组内每个电池的电压;电流采集器,用于实时采集电池组内每个电池的电流;控制器,用于依据采集的电压和电流计算每个电池的荷电状态SOCk,i;以电池自适应函数值最小为目标,确定电池最优荷电状态SOC最优;计算每个电池的荷电状态SOCk,i与电池最优荷电状态SOC最优的差值,选取差值最大的电池作为均衡电池对象;向开关阵列发出控制指令以对均衡电池对象进行充放电,直至均衡电池对象的荷电状态至SOC最优;定时模块,用于定时触发控制器工作。
图3为实施例应用本发明方法流程图,具体步骤为:
1、根据对本组内电池实时采集到的电压、电流,估计出每块电池的SOC,即SOC1、SOC2、SOC3、SOC4、SOC5、SOC6和SOC7,并对7个SOC进行排序,求出最大值SOCmax和最小值SOCmin。如果SOCmax-SOCmin<ε(ε表示组内电池允许的最大差值,试验设定),则直接进入步骤4,否则进入步骤2。
SOC的预估可采用开路电压法、安时积分法、卡尔曼滤波中或其他任意一种现有估计方法。
2、以电池自适应函数值最小为目标,确定电池最优荷电状态SOC最优,所述电池自适应函数值Y表示为:
其中,参数SOCk,i为第i个电池的荷电状态,N=7为电池总数,I为充放电电流大小,η为库伦效率,C为电池的容量,第一权重系数α1∈[0,1],第二权重系数α2∈[0,1],Max为取最大;
3、确定Max{|SOCk,i-SOC最优|}中的电池为目标单体电池。
4、开关阵列选中目标单体电池与整个电池组进行能量转移,直至第i块电池充放电至其SOC为SOC最优
若目标单体电池的荷电状态大于电池最优荷电状态SOC最优,则放电,反之则充电,直至SOC最优
5、整个状态持续一定时间后,跳回第1步,继续下一个循环。
以上的均衡方法为每一组内的均衡方法。每一组的均衡均独立进行。在每一组都在进行组内均衡的过程中,由于本发明独创的均衡结构就可以实现各个组之间的组间均衡。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种锂电池组均衡效率优化方法,其特征在于,包括以下步骤:
(1)实时采集锂电池组内每个电池的电压和电流,依据采集的电压和电流计算每个电池的荷电状态SOCk,i
(2)以电池自适应函数值最小为目标,确定电池最优荷电状态SOC最优,所述电池自适应函数值Y表示为:
其中,参数SOCk,i为第i个电池的荷电状态,N为电池总数,I为充放电电流大小,η为库伦效率,C为电池的容量,第一权重系数α1∈[0,1],第二权重系数α2∈[0,1],Max为取最大;
(3)计算每个电池的荷电状态SOCk,i与电池最优荷电状态SOC最优的差值,选取差值最大的电池作为均衡电池对象;
(4)选中均衡电池对象进行充电或放电,直至均衡电池对象的荷电状态至SOC最优
2.根据权利要求1所述的锂电池组均衡效率优化方法,其特征在于,若所述均衡电池对象的荷电状态大于SOC最优,则对其放电;若所述均衡电池对象的荷电状态小于SOC最优,则对其充电。
3.根据权利要求1或2所述的锂电池组均衡效率优化方法,其特征在于,所述步骤(3)还判定电池的荷电状态SOCk,i最大值与最小值的差值是否小于预定阈值,若小于,则结束,否则进入步骤(4)。
4.根据权利要求1或2所述的锂电池组均衡效率优化方法,其特征在于,在持续工作时段内反复重复步骤(1)-(4)。
5.根据权利要求1或2所述的锂电池组均衡效率优化方法,其特征在于,采用开路电压法、安时积分法、卡尔曼滤波中的任意一种方法计算电池的荷电状态。
6.一种锂电池组均衡效率优化系统,其特征在于,包括:
电压采集器,用于实时采集电池组内每个电池的电压;
电流采集器,用于实时采集电池组内每个电池的电流;
控制器,用于依据采集的电压和电流计算每个电池的荷电状态SOCk,i;以电池自适应函数值最小为目标,确定电池最优荷电状态SOC最优;计算每个电池的荷电状态SOCk,i与电池最优荷电状态SOC最优的差值,选取差值最大的电池作为均衡电池对象;向开关阵列发出控制指令以对均衡电池对象进行充放电,直至均衡电池对象的荷电状态至SOC最优
所述电池自适应函数值Y表示为:
其中,参数SOCk,i为第i个电池的荷电状态,N为电池总数,I为充放电电流大小,η为库伦效率,C为电池的容量,第一权重系数α1∈[0,1],第二权重系数α2∈[0,1],Max为取最大。
7.根据权利要求6所述的锂电池组均衡效率优化系统,其特征在于,若所述均衡电池对象的荷电状态大于SOC最优,则向开关阵列发出控制指令以对均衡电池对象放电;若所述均衡电池对象的荷电状态小于SOC最优,则向开关阵列发出控制指令以对均衡电池对象充电。
8.根据权利要求6或7所述的锂电池组均衡效率优化系统,其特征在于,还包括定时模块,用于定时触发控制器工作。
CN201910238139.2A 2019-03-27 2019-03-27 一种锂电池组均衡方法及系统 Active CN110492185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910238139.2A CN110492185B (zh) 2019-03-27 2019-03-27 一种锂电池组均衡方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910238139.2A CN110492185B (zh) 2019-03-27 2019-03-27 一种锂电池组均衡方法及系统

Publications (2)

Publication Number Publication Date
CN110492185A true CN110492185A (zh) 2019-11-22
CN110492185B CN110492185B (zh) 2020-10-02

Family

ID=68545827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910238139.2A Active CN110492185B (zh) 2019-03-27 2019-03-27 一种锂电池组均衡方法及系统

Country Status (1)

Country Link
CN (1) CN110492185B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355284A (zh) * 2020-04-15 2020-06-30 重庆大学 一种锂电池组层级控制的能量均衡方法
CN111439161A (zh) * 2020-05-12 2020-07-24 安徽优旦科技有限公司 一种基于新能源汽车电池的优化控制系统
CN111746350A (zh) * 2020-06-28 2020-10-09 江苏工程职业技术学院 一种电池箱soc均衡管理系统及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043225A2 (en) * 2007-09-27 2009-04-01 Sanyo Electric Co., Ltd. State of charge optimizing device and assembled battery system including same
EP2400626A2 (en) * 2010-06-28 2011-12-28 Hitachi Vehicle Energy, Ltd. Battery control circuit
CN103020445A (zh) * 2012-12-10 2013-04-03 西南交通大学 一种电动车车载磷酸铁锂电池的soc与soh预测方法
CN105633487A (zh) * 2016-01-13 2016-06-01 河南理工大学 一种锂离子电池智能管理系统
CN106501721A (zh) * 2016-06-03 2017-03-15 湘潭大学 一种基于生物进化的锂电池soc估算方法
CN108460451A (zh) * 2018-02-12 2018-08-28 北京新能源汽车股份有限公司 基于粒子群算法优化电池荷电状态估算用关键参数的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043225A2 (en) * 2007-09-27 2009-04-01 Sanyo Electric Co., Ltd. State of charge optimizing device and assembled battery system including same
EP2400626A2 (en) * 2010-06-28 2011-12-28 Hitachi Vehicle Energy, Ltd. Battery control circuit
CN103020445A (zh) * 2012-12-10 2013-04-03 西南交通大学 一种电动车车载磷酸铁锂电池的soc与soh预测方法
CN105633487A (zh) * 2016-01-13 2016-06-01 河南理工大学 一种锂离子电池智能管理系统
CN106501721A (zh) * 2016-06-03 2017-03-15 湘潭大学 一种基于生物进化的锂电池soc估算方法
CN108460451A (zh) * 2018-02-12 2018-08-28 北京新能源汽车股份有限公司 基于粒子群算法优化电池荷电状态估算用关键参数的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355284A (zh) * 2020-04-15 2020-06-30 重庆大学 一种锂电池组层级控制的能量均衡方法
CN111439161A (zh) * 2020-05-12 2020-07-24 安徽优旦科技有限公司 一种基于新能源汽车电池的优化控制系统
CN111746350A (zh) * 2020-06-28 2020-10-09 江苏工程职业技术学院 一种电池箱soc均衡管理系统及控制方法

Also Published As

Publication number Publication date
CN110492185B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN101882699B (zh) 动力电池组充放电均衡控制方法
Jiaqiang et al. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge
CN105449740B (zh) 一种储能锂电池主动均衡控制系统及控制方法
CN103326439B (zh) 电池组的均衡电路及方法
CN108790893B (zh) 一种交流充电桩及充电控制方法
CN106300545B (zh) 一种用于液态金属电池的主动均衡控制装置及控制方法
CN107612076A (zh) 电池充电方法、装置、设备和存储介质
CN110247451B (zh) 一种锂离子动力电池组全寿命周期均衡控制方法
CN110492185A (zh) 一种锂电池组均衡方法及系统
CN103501025A (zh) 一种电池组主动均衡系统
CN110450677B (zh) 一种基于电池老化状态估计的复合储能电动汽车的能量管理方法
CN102355031A (zh) 一种磷酸铁锂动力电池组主动均衡充电方法及装置
CN103633695A (zh) 一种改进的锂电池组均衡方法及其均衡电路
CN102082312B (zh) 一种大容量储能设备
CN110970969B (zh) 一种电动船用锂离子动力电池轮休平衡拓扑及控制方法
CN107045104B (zh) 一种钛酸锂电池容量的在线估计方法
CN102255114A (zh) 电池均衡充放电方法及装置
CN106655408A (zh) 电池组均衡控制方法和控制装置
CN116345648B (zh) 大型储能系统电池簇soc平衡方法、设备和存储介质
CN109616710A (zh) 基于全生命周期模型的多旋翼无人机电池充放电管控方法
CN204424402U (zh) 磷酸铁锂电池组的被动均衡系统
CN110401247A (zh) 一种电池主动均衡方法
CN108732499A (zh) 一种检测锂离子电池循环寿命的方法和系统
CN108365281A (zh) 一种bms电池管理系统的容量均衡健康管理方法
CN108336435A (zh) 一种考虑充电能量效率的锂离子电池充电方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant