CN110490053B - 一种基于三目摄像头深度估计的人脸属性识别方法 - Google Patents
一种基于三目摄像头深度估计的人脸属性识别方法 Download PDFInfo
- Publication number
- CN110490053B CN110490053B CN201910608988.2A CN201910608988A CN110490053B CN 110490053 B CN110490053 B CN 110490053B CN 201910608988 A CN201910608988 A CN 201910608988A CN 110490053 B CN110490053 B CN 110490053B
- Authority
- CN
- China
- Prior art keywords
- face attribute
- face
- training
- attribute
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000012549 training Methods 0.000 claims abstract description 33
- 230000006403 short-term memory Effects 0.000 claims abstract description 17
- 230000007787 long-term memory Effects 0.000 claims abstract description 16
- 238000012360 testing method Methods 0.000 claims abstract description 14
- 238000012795 verification Methods 0.000 claims abstract description 7
- 238000000605 extraction Methods 0.000 claims abstract description 6
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 238000013527 convolutional neural network Methods 0.000 claims description 19
- 230000006870 function Effects 0.000 claims description 18
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 6
- 230000015654 memory Effects 0.000 claims description 5
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 4
- 235000002566 Capsicum Nutrition 0.000 claims description 3
- 239000006002 Pepper Substances 0.000 claims description 3
- 235000016761 Piper aduncum Nutrition 0.000 claims description 3
- 235000017804 Piper guineense Nutrition 0.000 claims description 3
- 235000008184 Piper nigrum Nutrition 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 244000203593 Piper nigrum Species 0.000 claims 1
- 238000013528 artificial neural network Methods 0.000 abstract description 6
- 230000008447 perception Effects 0.000 abstract description 4
- 230000002708 enhancing effect Effects 0.000 abstract description 3
- 230000002787 reinforcement Effects 0.000 abstract description 2
- 239000013589 supplement Substances 0.000 abstract description 2
- 238000013461 design Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 241000722363 Piper Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
- G06V40/166—Detection; Localisation; Normalisation using acquisition arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Biophysics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
- Collating Specific Patterns (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910608988.2A CN110490053B (zh) | 2019-07-08 | 2019-07-08 | 一种基于三目摄像头深度估计的人脸属性识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910608988.2A CN110490053B (zh) | 2019-07-08 | 2019-07-08 | 一种基于三目摄像头深度估计的人脸属性识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110490053A CN110490053A (zh) | 2019-11-22 |
CN110490053B true CN110490053B (zh) | 2023-03-14 |
Family
ID=68545941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910608988.2A Active CN110490053B (zh) | 2019-07-08 | 2019-07-08 | 一种基于三目摄像头深度估计的人脸属性识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110490053B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111368977B (zh) * | 2020-02-28 | 2023-05-02 | 交叉信息核心技术研究院(西安)有限公司 | 一种提高卷积神经网络精确性和鲁棒性的增强数据增强方法 |
CN111695421B (zh) * | 2020-04-30 | 2023-09-22 | 北京迈格威科技有限公司 | 图像识别方法、装置及电子设备 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9301372B2 (en) * | 2011-11-11 | 2016-03-29 | Osram Sylvania Inc. | Light control method and lighting device using the same |
CN107688821B (zh) * | 2017-07-11 | 2021-08-06 | 西安电子科技大学 | 基于视觉显著性与语义属性跨模态图像自然语言描述方法 |
CN109190514B (zh) * | 2018-08-14 | 2021-10-01 | 电子科技大学 | 基于双向长短期记忆网络的人脸属性识别方法及系统 |
-
2019
- 2019-07-08 CN CN201910608988.2A patent/CN110490053B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110490053A (zh) | 2019-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110458844B (zh) | 一种低光照场景的语义分割方法 | |
CN108537743B (zh) | 一种基于生成对抗网络的面部图像增强方法 | |
CN106157307B (zh) | 一种基于多尺度cnn和连续crf的单目图像深度估计方法 | |
WO2018023734A1 (zh) | 一种3d图像的显著性检测方法 | |
CN110717411A (zh) | 一种基于深层特征融合的行人重识别方法 | |
CN110378208B (zh) | 一种基于深度残差网络的行为识别方法 | |
CN108256426A (zh) | 一种基于卷积神经网络的人脸表情识别方法 | |
CN108009493B (zh) | 基于动作增强的人脸防欺骗识别方法 | |
CN106096535A (zh) | 一种基于双线性联合cnn的人脸验证方法 | |
CN103080979B (zh) | 从照片合成肖像素描的系统和方法 | |
CN103258332B (zh) | 一种抗光照变化的运动目标的检测方法 | |
CN104866829A (zh) | 一种基于特征学习的跨年龄人脸验证方法 | |
CN111539247B (zh) | 一种超光谱人脸识别方法、装置、电子设备及其存储介质 | |
CN113536972B (zh) | 一种基于目标域伪标签的自监督跨域人群计数方法 | |
TWI441096B (zh) | 適用複雜場景的移動偵測方法 | |
WO2023109709A1 (zh) | 一种基于注意力机制的图像拼接定位检测方法 | |
CN107273870A (zh) | 一种监控场景下融合上下文信息的行人位置检测方法 | |
CN108960404A (zh) | 一种基于图像的人群计数方法及设备 | |
CN105740891A (zh) | 基于多层次特征提取和上下文模型的目标检测 | |
CN113158943A (zh) | 一种跨域红外目标检测方法 | |
CN110490053B (zh) | 一种基于三目摄像头深度估计的人脸属性识别方法 | |
CN114360067A (zh) | 一种基于深度学习的动态手势识别方法 | |
CN104143091A (zh) | 基于改进mLBP的单样本人脸识别方法 | |
CN111126155B (zh) | 一种基于语义约束生成对抗网络的行人再识别方法 | |
CN104408731A (zh) | 基于区域图和统计相似性编码的sar图像分割方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20191122 Assignee: Yanmi Technology (Yancheng) Co.,Ltd. Assignor: NUPT INSTITUTE OF BIG DATA RESEARCH AT YANCHENG Contract record no.: X2023980047098 Denomination of invention: A facial attribute recognition method based on depth estimation of three camera cameras Granted publication date: 20230314 License type: Common License Record date: 20231115 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20191122 Assignee: Jiangsu Yanan Information Technology Co.,Ltd. Assignor: NUPT INSTITUTE OF BIG DATA RESEARCH AT YANCHENG Contract record no.: X2023980049133 Denomination of invention: A facial attribute recognition method based on depth estimation of three camera cameras Granted publication date: 20230314 License type: Common License Record date: 20231203 Application publication date: 20191122 Assignee: Yancheng Nongfu Technology Co.,Ltd. Assignor: NUPT INSTITUTE OF BIG DATA RESEARCH AT YANCHENG Contract record no.: X2023980049126 Denomination of invention: A facial attribute recognition method based on depth estimation of three camera cameras Granted publication date: 20230314 License type: Common License Record date: 20231203 |
|
EE01 | Entry into force of recordation of patent licensing contract |