CN110489586A - 一种样品检测数据库分级匹配的方法 - Google Patents

一种样品检测数据库分级匹配的方法 Download PDF

Info

Publication number
CN110489586A
CN110489586A CN201910010846.6A CN201910010846A CN110489586A CN 110489586 A CN110489586 A CN 110489586A CN 201910010846 A CN201910010846 A CN 201910010846A CN 110489586 A CN110489586 A CN 110489586A
Authority
CN
China
Prior art keywords
substance
metering
spectrum
library
data library
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910010846.6A
Other languages
English (en)
Inventor
李彬
王青
郝文江
贾适义
王劲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING ZHONGTIANFENG SAFETY PROTECTION TECHNOLOGY Co Ltd
First Research Institute of Ministry of Public Security
Original Assignee
BEIJING ZHONGTIANFENG SAFETY PROTECTION TECHNOLOGY Co Ltd
First Research Institute of Ministry of Public Security
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING ZHONGTIANFENG SAFETY PROTECTION TECHNOLOGY Co Ltd, First Research Institute of Ministry of Public Security filed Critical BEIJING ZHONGTIANFENG SAFETY PROTECTION TECHNOLOGY Co Ltd
Priority to CN201910010846.6A priority Critical patent/CN110489586A/zh
Publication of CN110489586A publication Critical patent/CN110489586A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electrochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Multimedia (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种样品检测数据库分级匹配的方法,包括(1)获取光谱;(2)预处理;(3)在常检测物质数据库中匹配,如果匹配成功,则输出比对结果并将该物质计次加1,结束本次操作;反之进步骤(4);(4)在谱库中进行匹配,如果匹配成功,进步骤(5);反之进步骤(7);(5)输出结果并将该物质的计次加1,进步骤(6);(6)若常检测物质数据库为空,束本次操作;反之计算当前常检测物质数据库中所有物质的计次均值,并计算该计次均值与计次阈值的差值,若该差值不小于另一个设定阈值差,则计次阈值加1并更新常检测物质数据库,完成后结束本次操作;(7)匹配失败,将未识别结果呈现给用户,结束本次操作。

Description

一种样品检测数据库分级匹配的方法
技术领域
本发明属于物质检测领域,具体涉及一种样品检测数据库分级匹配的方法。
背景技术
目前在物质检测领域,拉曼光谱仪的用途比较广泛,如毒品,易燃易爆危险化学品,药品等等检测仅仅需要几秒或者几十秒即可得到结果。
拉曼光谱仪主要适用于科研院所、高等院校物理和化学实验室、生物及医学领域等光学方面,研究物质成分的判定与确认;还可以应用于刑侦及珠宝行业进行毒品的检测及宝石的鉴定。该仪器以其结构简单、操作简便、测量快速高效准确,以低波数测量能力著称;采用共焦光路设计以获得更高分辨率,可对样品表面进行um级的微区检测,也可用此进行显微影像测量。拉曼光谱仪发射激光,同时收集物质散射的拉曼光谱,将光谱预处理后与数据库中的物质进行对比,确定该物质的名称。
但是,拉曼光谱数据库为一个统一的谱库,得到光谱后就调用算法在这个谱库(拉曼光谱数据库)中进行匹配。还有的是先在谱库中进行单一物质匹配,如果未识别,再在谱库中进行混合物的匹配。但是,在很多应用场景中,用户根本不需要10000多种的谱库。往往常检测的就是十几种物质。而每次都在谱库中匹配,导致运行速度较慢。
发明内容
发明目的:本发明针对上述现有技术存在的问题做出改进,即本发明公开了一种样品检测数据库分级匹配的方法。
技术方案:一种样品检测数据库分级匹配的方法,包括以下步骤:
(1)、获取待检测物质检的光谱,然后进入步骤(2);
(2)、对待检测物质检的光谱进行预处理,然后进入步骤(3);
(3)、将预处理后的待检测物质的光谱在常检测物质数据库中进行匹配,如果匹配度达到或超过设定阈值,则输出比对结果,并将该物质计次加1,然后结束本次操作;如果匹配度未达到设定阈值,进入步骤(4);
(4)、将预处理后的待检测物质的光谱在谱库中进行匹配,如果匹配成功,跳到步骤(5);如果匹配失败,跳到步骤(7);
(5)输出结果,并将该物质的计次加1,跳到步骤(6);
(6)判断常检测物质数据库是否为空,若为空,则结束本次操作;若不为空,则取当前常检测物质数据库中所有物质的计次均值,并计算该计次均值与预设的计次阈值的差值,若该差值大于等于另一个设定阈值差,则计次阈值加1得到第二计次阈值,然后再将常检测物质数据库中所有物质的计次、谱库中所有物质的计次分别与第二计次阈值进行比较,如果常检测物质数据库中出现小于第二计次阈值的物质,将该物质从常检测物质数据库中移除,如果谱库中出现计次大于等于第二计次阈值的物质,将该物质的光谱和名称加入到常检测物质数据库,然后结束本次操作;
(7)匹配失败,将未识别结果呈现给用户,结束本次操作。
进一步地,步骤(1)中的待检测物质检的光谱为拉曼光谱或者红外光谱或者质谱。
进一步地,步骤(2)中预处理包括以下步骤:
(21)背景扣除;
(22)滤波去噪;
(23)扣基底;
(24)归一化。
进一步地,步骤(3)的设定阈值为99%。
进一步地,步骤(3)或(5)中的物质如果是单一物质,则该单一物质计次加1;步骤(3)或(5)中的物质是混合物,则该混合物中的每个成分的计次分别加1。
进一步地,步骤(4)中的谱库为红外光谱库或拉曼光谱数据库或质谱库。
有益效果:本发明公开的一种样品检测数据库分级匹配的方法对于一些特定场景可以明显的提升匹配速度和准确度,用户体验得到较大提升。
附图说明
图1为本发明公开的一种样品检测数据库分级匹配的方法的流程图。
具体实施方式:
下面对本发明的具体实施方式详细说明。
具体实施例1
一种样品检测数据库分级匹配的方法,包括以下步骤:
(1)、获取待检测物质检的光谱,然后进入步骤(2);
(2)、对待检测物质检的光谱进行预处理,然后进入步骤(3);
(3)、将预处理后的待检测物质的光谱在常检测物质数据库中进行匹配,如果匹配度达到或超过设定阈值,则输出比对结果,并将该物质计次加1,然后结束本次操作;如果匹配度未达到设定阈值,进入步骤(4);
(4)、将预处理后的待检测物质的光谱在谱库中进行匹配,如果匹配成功,跳到步骤(5);如果匹配失败,跳到步骤(7);
(5)输出结果,并将该物质的计次加1,跳到步骤(6);
(6)判断常检测物质数据库是否为空,若为空,则结束本次操作;若不为空,则取当前常检测物质数据库中所有物质的计次均值,并计算该计次均值与预设的计次阈值的差值,若该差值大于等于另一个设定阈值差,则计次阈值加1得到第二计次阈值,然后再将常检测物质数据库中所有物质的计次、谱库中所有物质的计次分别与第二计次阈值进行比较,如果常检测物质数据库中出现小于第二计次阈值的物质,将该物质从常检测物质数据库中移除,如果谱库中出现计次大于等于第二计次阈值的物质,将该物质的光谱和名称加入到常检测物质数据库,然后结束本次操作;
(7)匹配失败,将未识别结果呈现给用户,结束本次操作。
进一步地,步骤(1)中的待检测物质检的光谱为拉曼光谱。
进一步地,步骤(2)中预处理包括以下步骤:
(21)背景扣除;
(22)滤波去噪;
(23)扣基底;
(24)归一化。
进一步地,步骤(3)的设定阈值为99%。
进一步地,步骤(3)或(5)中的物质如果是单一物质,则该单一物质计次加1;步骤(3)或(5)中的物质是混合物,则该混合物中的每个成分的计次分别加1。
进一步地,步骤(4)中的谱库为拉曼光谱数据库。
例如当前“常检测物质数据库”中存在甲醇和乙醇,计次分别是7和6。某次检测中,假设物质为甲醇,则直接在“常检测物质数据库”中的两种物质中匹配出甲醇,甲醇计次+1,流程结束。
如当前“常检测物质数据库”中存在甲醇和乙醇,计次分别是7和6。某次检测中,假设物质为甲醇+丙醇,因“常检测物质数据库”只有甲醇和乙醇,显然匹配度一定低于设定阈值。因此去谱库中匹配,得到结果甲醇+丙醇。将甲醇和丙醇计次都+1。此时常检测物质数据库中计次均值为7,丙醇假设当前为第一次出现,则丙醇1未达到计次阈值5,因此丙醇不会被加入到“常检测物质数据库”。而如果此时丙醇计次恰好为5,则丙醇也被加入到“常检测物质数据库”。
具体实施例2
与具体实施例1大致相同,区别仅仅在于:
步骤(1)中的待检测物质检的光谱为红外光谱。
步骤(4)中的谱库为红外光谱库。
具体实施例3
与具体实施例1大致相同,区别仅仅在于:
步骤(1)中的待检测物质检的光谱为质谱。
步骤(4)中的谱库为质谱库。
上面对本发明的实施方式做了详细说明。但是本发明并不限于上述实施方式,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (6)

1.一种样品检测数据库分级匹配的方法,其特征在于,包括以下步骤:
(1)、获取待检测物质检的光谱,然后进入步骤(2);
(2)、对待检测物质检的光谱进行预处理,然后进入步骤(3);
(3)、将预处理后的待检测物质的光谱在常检测物质数据库中进行匹配,如果匹配度达到或超过设定阈值,则输出比对结果,并将该物质计次加1,然后结束本次操作;如果匹配度未达到设定阈值,进入步骤(4);
(4)、将预处理后的待检测物质的光谱在谱库中进行匹配,如果匹配成功,跳到步骤(5);如果匹配失败,跳到步骤(7);
(5)输出结果,并将该物质的计次加1,跳到步骤(6);
(6)判断常检测物质数据库是否为空,若为空,则结束本次操作;若不为空,则取当前常检测物质数据库中所有物质的计次均值,并计算该计次均值与预设的计次阈值的差值,若该差值大于等于另一个设定阈值差,则计次阈值加1得到第二计次阈值,然后再将常检测物质数据库中所有物质的计次、谱库中所有物质的计次分别与第二计次阈值进行比较,如果常检测物质数据库中出现小于第二计次阈值的物质,将该物质从常检测物质数据库中移除,如果谱库中出现计次大于等于第二计次阈值的物质,将该物质的光谱和名称加入到常检测物质数据库,然后结束本次操作;
(7)匹配失败,将未识别结果呈现给用户,结束本次操作。
2.根据权利要求1所述的一种样品检测数据库分级匹配的方法,其特征在于,步骤(1)中的待检测物质检的光谱为拉曼光谱或者红外光谱或者质谱。
3.根据权利要求1所述的一种样品检测数据库分级匹配的方法,其特征在于,步骤(2)中预处理包括以下步骤:
(21)背景扣除;
(22)滤波去噪;
(23)扣基底;
(24)归一化。
4.根据权利要求1所述的一种样品检测数据库分级匹配的方法,其特征在于,步骤(3)的设定阈值为99%。
5.根据权利要求1所述的一种样品检测数据库分级匹配的方法,其特征在于,步骤(3)或(5)中的物质如果是单一物质,则该单一物质计次加1;步骤(3)或(5)中的物质是混合物,则该混合物中的每个成分的计次分别加1。
6.根据权利要求1所述的一种样品检测数据库分级匹配的方法,其特征在于,步骤(4)中的谱库为红外光谱库或拉曼光谱数据库或质谱库。
CN201910010846.6A 2019-01-07 2019-01-07 一种样品检测数据库分级匹配的方法 Pending CN110489586A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910010846.6A CN110489586A (zh) 2019-01-07 2019-01-07 一种样品检测数据库分级匹配的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910010846.6A CN110489586A (zh) 2019-01-07 2019-01-07 一种样品检测数据库分级匹配的方法

Publications (1)

Publication Number Publication Date
CN110489586A true CN110489586A (zh) 2019-11-22

Family

ID=68545685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910010846.6A Pending CN110489586A (zh) 2019-01-07 2019-01-07 一种样品检测数据库分级匹配的方法

Country Status (1)

Country Link
CN (1) CN110489586A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110224104A1 (en) * 2007-04-13 2011-09-15 Science & Engineering Services, Inc. Method and system for indentification of microorganisms
CN104568778A (zh) * 2015-01-15 2015-04-29 浙江理工大学 一种基于高光谱成像的纺织品成分鉴别方法
US20160299137A1 (en) * 2006-02-15 2016-10-13 FlO CORPORATION Method for detecting pathogens using microbeads conjugated to biorecognition molecules
CN107451504A (zh) * 2017-06-22 2017-12-08 捷开通讯(深圳)有限公司 一种查找物品的方法、移动终端及装置
CN108254351A (zh) * 2016-12-29 2018-07-06 同方威视技术股份有限公司 用于物品查验的拉曼光谱检测方法
CN108369603A (zh) * 2017-11-24 2018-08-03 深圳达闼科技控股有限公司 物质检测处理方法、装置和检测设备
CN109142279A (zh) * 2018-06-29 2019-01-04 努比亚技术有限公司 一种光谱检测方法、移动终端及计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160299137A1 (en) * 2006-02-15 2016-10-13 FlO CORPORATION Method for detecting pathogens using microbeads conjugated to biorecognition molecules
US20110224104A1 (en) * 2007-04-13 2011-09-15 Science & Engineering Services, Inc. Method and system for indentification of microorganisms
CN104568778A (zh) * 2015-01-15 2015-04-29 浙江理工大学 一种基于高光谱成像的纺织品成分鉴别方法
CN108254351A (zh) * 2016-12-29 2018-07-06 同方威视技术股份有限公司 用于物品查验的拉曼光谱检测方法
CN107451504A (zh) * 2017-06-22 2017-12-08 捷开通讯(深圳)有限公司 一种查找物品的方法、移动终端及装置
CN108369603A (zh) * 2017-11-24 2018-08-03 深圳达闼科技控股有限公司 物质检测处理方法、装置和检测设备
CN109142279A (zh) * 2018-06-29 2019-01-04 努比亚技术有限公司 一种光谱检测方法、移动终端及计算机可读存储介质

Similar Documents

Publication Publication Date Title
Suzuki et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering
Caceres et al. Application of laser-induced breakdown spectroscopy (LIBS) and neural networks to olive oils analysis
Pelletier Quantitative analysis using Raman spectrometry
Deidda et al. New perspective for the in-field analysis of cannabis samples using handheld near-infrared spectroscopy: A case study focusing on the determination of Δ9-tetrahydrocannabinol
Faragó et al. Absorption spectrum and absolute absorption cross sections of CH3O2 radicals and CH3I molecules in the wavelength range 7473–7497 cm–1
Kim et al. Determination of glucose in whole blood samples by mid-infrared spectroscopy
Das et al. Analytical approaches for bloodstain aging by vibrational spectroscopy: Current trends and future perspectives
Chapman et al. Spectroscopic approaches for rapid beer and wine analysis
Ran et al. Mitigating fringing in discrete frequency infrared imaging using time-delayed integration
Bassan et al. Automated high-throughput assessment of prostate biopsy tissue using infrared spectroscopic chemical imaging
Qi et al. Highly accurate diagnosis of lung adenocarcinoma and squamous cell carcinoma tissues by deep learning
Krafft et al. Distribution of amygdalin in apricot (Prunus armeniaca) seeds studied by Raman microscopic imaging
Yan et al. Handheld near-infrared spectrometers: Reality and empty promises
Bai et al. Integrating LIBS LIF Raman into a single multi-spectroscopic mobile device for in situ cultural heritage analysis
Ma et al. Raman spectroscopy for Pharmaceutical quantitative analysis by Low-Rank Estimation
Khoshroo et al. Quantitative analysis of essential oils of Thymus daenensis using laser-induced fluorescence and Raman spectroscopy
CN110489586A (zh) 一种样品检测数据库分级匹配的方法
Anggraeni et al. Recognition of spectral identifier from green coffee beans of arabica and robusta varieties using laser-induced breakdown spectroscopy
CN103884673B (zh) 一种毒品吸食情况红外光谱在线监测系统与方法
Kistenev et al. Possibilities of cytospectrophotometry of oncological prostate cancer tissue analysis in the TGz spectral range
Fischbach et al. Standoff detection and classification procedure for bioorganic compounds by hyperspectral laser-induced fluorescence
Schulze et al. Fully Automated Decomposition of Raman Spectra into Individual Pearson's Type VII Distributions Applied to Biological and Biomedical Samples
Holman et al. Role of Race/Ethnicity, Sex, and Age in Surface-Enhanced Raman Spectroscopy-and Infrared Spectroscopy-Based Analysis of Artificial Colorants on Hair
Bogomolov et al. Fiber probe for simultaneous mid-infrared and fluorescence spectroscopic analysis
Colón-Mercado et al. Detection of high explosives samples deposited on reflective and matte substrates using mid-infrared laser spectroscopy at the grazing angle of incidence assisted by multivariate analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information

Address after: 100072 Yujing 27-26, Pearl River, Fengtai District, Beijing

Applicant after: BEIJING ZHONG-TIANFENG SECURITY PROTECTION TECHNOLOGIES CO.,LTD.

Applicant after: THE FIRST Research Institute OF MINISTRY OF PUBLIC SECURITY

Address before: 100072 Yujing 27-26, Pearl River, Fengtai District, Beijing

Applicant before: The First Research Institute of Ministry of Public Security

Applicant before: BEIJING ZHONG-TIANFENG SECURITY PROTECTION TECHNOLOGIES CO.,LTD.

CB02 Change of applicant information
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191122

RJ01 Rejection of invention patent application after publication