CN110488086A - The power measurement method and system of burst pulse - Google Patents
The power measurement method and system of burst pulse Download PDFInfo
- Publication number
- CN110488086A CN110488086A CN201910890901.5A CN201910890901A CN110488086A CN 110488086 A CN110488086 A CN 110488086A CN 201910890901 A CN201910890901 A CN 201910890901A CN 110488086 A CN110488086 A CN 110488086A
- Authority
- CN
- China
- Prior art keywords
- signal
- voltage
- power
- microcontroller
- power signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000691 measurement method Methods 0.000 title claims abstract description 13
- 238000005070 sampling Methods 0.000 claims abstract description 100
- 238000005259 measurement Methods 0.000 claims abstract description 77
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000003990 capacitor Substances 0.000 claims description 27
- 238000012360 testing method Methods 0.000 claims description 15
- 238000001514 detection method Methods 0.000 claims description 13
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000013461 design Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
- G01R21/133—Arrangements for measuring electric power or power factor by using digital technique
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
本申请实施例提供一种窄脉冲的功率测量方法及系统,该窄脉冲的功率测量方法应用于窄脉冲的功率测量系统,该系统包括:采集单元、峰值保持电路、微控制器,采集单元与峰值保持电路连接,峰值保持电路与微控制器连接。该方法包括:采集单元采集窄脉冲的第一功率信号,第一功率信号为射频功率信号;采集单元将第一功率信号转换为窄脉冲的第一电压信号;峰值保持电路根据第一电压信号输出第二电压信号,第二电压信号的脉宽大于第一电压信号的脉宽;微控制器对第二电压信号进行采样,得到电压采样数据;微控制器根据电压采样数据计算得到与第一功率信号对应的功率测量结果。
Embodiments of the present application provide a narrow pulse power measurement method and system, the narrow pulse power measurement method is applied to a narrow pulse power measurement system, the system includes: an acquisition unit, a peak hold circuit, a microcontroller, the acquisition unit and The peak hold circuit is connected, and the peak hold circuit is connected with the microcontroller. The method includes: the acquisition unit acquires a first power signal of a narrow pulse, and the first power signal is a radio frequency power signal; the acquisition unit converts the first power signal into a first voltage signal of a narrow pulse; the peak hold circuit outputs the signal according to the first voltage signal The second voltage signal, the pulse width of the second voltage signal is greater than the pulse width of the first voltage signal; the microcontroller samples the second voltage signal to obtain voltage sampling data; the microcontroller calculates and obtains the first power according to the voltage sampling data The corresponding power measurement result of the signal.
Description
技术领域technical field
本申请涉及信号检测领域,具体而言,涉及一种窄脉冲的功率测量方法及系统。The present application relates to the field of signal detection, in particular, to a narrow pulse power measurement method and system.
背景技术Background technique
随着高功率微波技术在高能粒子加速器、等离子加热、高功率雷达等领域的应用,人们对高功率微波的测量技术提出了越来越高的要求。With the application of high-power microwave technology in high-energy particle accelerators, plasma heating, high-power radar and other fields, people have put forward higher and higher requirements for high-power microwave measurement technology.
然而,高功率微波通常具有峰值功率高、脉宽窄的特点,对于处理器有较高要求。例如,对于以纳秒量级的窄脉冲信号,由于脉宽过窄,通常需要选用专用的高速率模数转换芯片进行采样,通过高精度的专用处理器或FPGA(Field Programmable Gata Array,现场可编程门阵列)才能对窄脉冲信号进行处理。However, high-power microwaves usually have the characteristics of high peak power and narrow pulse width, which have high requirements for processors. For example, for a narrow pulse signal on the order of nanoseconds, because the pulse width is too narrow, it is usually necessary to select a dedicated high-speed analog-to-digital conversion chip for sampling. Through a high-precision dedicated processor or FPGA (Field Programmable Gata Array, the Programmable gate array) can process narrow pulse signals.
发明内容Contents of the invention
本申请实施例的目的在于提供一种窄脉冲的功率测量方法及系统,用以改善现有技术中难以采用通用处理器对窄脉冲信号进行检测的问题。The purpose of the embodiments of the present application is to provide a narrow pulse power measurement method and system to improve the problem in the prior art that it is difficult to use a general processor to detect narrow pulse signals.
第一方面,本申请实施例提供一种窄脉冲的功率测量方法,应用于窄脉冲的功率测量系统,所述系统包括:采集单元、峰值保持电路、微控制器,所述采集单元与所述峰值保持电路连接,所述峰值保持电路与所述微控制器连接;In the first aspect, an embodiment of the present application provides a narrow pulse power measurement method, which is applied to a narrow pulse power measurement system. The system includes: an acquisition unit, a peak hold circuit, and a microcontroller. The acquisition unit and the The peak hold circuit is connected, and the peak hold circuit is connected with the microcontroller;
所述方法包括:The methods include:
所述采集单元采集第一功率信号,所述第一功率信号为窄脉冲的射频功率信号;The collection unit collects a first power signal, and the first power signal is a narrow pulse radio frequency power signal;
所述采集单元将所述第一功率信号转换为窄脉冲的第一电压信号;The acquisition unit converts the first power signal into a narrow pulse first voltage signal;
所述峰值保持电路根据所述第一电压信号输出第二电压信号,所述第二电压信号的脉宽大于所述第一电压信号的脉宽;The peak hold circuit outputs a second voltage signal according to the first voltage signal, and the pulse width of the second voltage signal is greater than the pulse width of the first voltage signal;
所述微控制器对所述第二电压信号进行采样,得到电压采样数据;The microcontroller samples the second voltage signal to obtain voltage sampling data;
所述微控制器根据所述电压采样数据计算得到与所述第一功率信号对应的功率测量结果。The microcontroller calculates and obtains a power measurement result corresponding to the first power signal according to the voltage sampling data.
通过上述方法,能够通过采集单元、峰值保持电路将窄脉冲的第一功率信号转化为脉宽较大的第二电压信号。微控制器能够对脉宽较大的第二电压信号进行采样,并基于采样结果计算得到功率测量结果,该功率测量结果与第一功率信号是对应的,以此能够实现对窄脉冲功率小信号的间接测量。上述方法可应用于通用的微控制器、通用的微处理器,降低了传统方案对于处理器的高性能要求。对于采用上述方法的通用的微控制器、通用的微处理器,即使器件本身的工作采样频率无法满足窄脉冲信号的频率,也能够实现对于窄脉冲小信号的功率测量。Through the above method, the first power signal with a narrow pulse can be converted into a second voltage signal with a larger pulse width through the acquisition unit and the peak hold circuit. The microcontroller can sample the second voltage signal with a larger pulse width, and calculate the power measurement result based on the sampling result. The power measurement result corresponds to the first power signal, so that the narrow pulse power small signal can be realized indirect measurement. The above method can be applied to general-purpose microcontrollers and general-purpose microprocessors, and reduces the high-performance requirements of traditional solutions for processors. For general-purpose microcontrollers and general-purpose microprocessors using the above method, even if the working sampling frequency of the device itself cannot meet the frequency of the narrow pulse signal, the power measurement for the narrow pulse and small signal can also be realized.
结合第一方面,在一种可能的设计中,所述微控制器对所述第二电压信号进行采样,得到电压采样数据,包括:With reference to the first aspect, in a possible design, the microcontroller samples the second voltage signal to obtain voltage sampling data, including:
所述微控制器的内置转换器对所述第二电压信号进行采样,得到电压采样数组作为所述电压采样数据。The built-in converter of the microcontroller samples the second voltage signal to obtain a voltage sampling array as the voltage sampling data.
通过上述实现方式,微控制器自身可以实现对于第二电压信号的采样,无需借助外置的高精度的模数转换器进行数据转换,降低了系统结构复杂度。Through the above implementation manner, the microcontroller itself can realize the sampling of the second voltage signal without using an external high-precision analog-to-digital converter for data conversion, which reduces the complexity of the system structure.
结合第一方面,在一种可能的设计中,所述电压采样数据包括所述第二电压信号的多个采样点对应的多个电压值,所述微控制器根据所述电压采样数据计算得到与所述第一功率信号对应的功率测量结果,包括:With reference to the first aspect, in a possible design, the voltage sampling data includes multiple voltage values corresponding to multiple sampling points of the second voltage signal, and the microcontroller calculates according to the voltage sampling data to obtain A power measurement result corresponding to the first power signal, including:
所述微控制器根据所述电压采样数据中的所述多个电压值,筛选出所述多个采样点中的有效采样点,计算得到所述有效采样点对应的有效平均电压值;The microcontroller screens out valid sampling points among the multiple sampling points according to the multiple voltage values in the voltage sampling data, and calculates an effective average voltage value corresponding to the valid sampling points;
所述微控制器根据所述有效平均电压值以及预先设定的拟合对应关系,计算得到所述有效平均电压值对应的功率值,作为所述第一功率信号对应的功率测量结果。The microcontroller calculates and obtains a power value corresponding to the effective average voltage value according to the effective average voltage value and a preset fitting correspondence relationship as a power measurement result corresponding to the first power signal.
通过上述实现方式,可以根据第二电压信号筛选出有效采样点,并基于有效采样点的电压计算出有效平均电压值,然后根据设定的拟合对应关系确定出与有效平均电压值对应的功率值,作为第一功率信号对应的功率测量结果。以此可根据脉宽较大的第二电压信号确定出窄脉冲的第一功率信号所对应的功率,降低了对于微控制器的高性能要求,具有较好的市场应用前景。Through the above implementation, the effective sampling point can be screened out according to the second voltage signal, and the effective average voltage value can be calculated based on the voltage of the effective sampling point, and then the power corresponding to the effective average voltage value can be determined according to the set fitting correspondence relationship value, as the power measurement result corresponding to the first power signal. In this way, the power corresponding to the first power signal with a narrow pulse can be determined according to the second voltage signal with a larger pulse width, which reduces the high performance requirements for the microcontroller and has a better market application prospect.
结合第一方面,在一种可能的设计中,所述第一功率信号有至少两路,至少两路所述第一功率信号中包括被测设备的输出功率信号、反射功率信号;With reference to the first aspect, in a possible design, there are at least two paths of the first power signal, and the at least two paths of the first power signal include an output power signal and a reflected power signal of the device under test;
所述微控制器根据所述电压采样数据计算得到与所述第一功率信号对应的功率测量结果,包括:The microcontroller calculates and obtains a power measurement result corresponding to the first power signal according to the voltage sampling data, including:
所述微控制器根据所述输出功率信号对应的电压采样数据计算得到输出功率值;The microcontroller calculates the output power value according to the voltage sampling data corresponding to the output power signal;
所述微控制器根据所述反射功率信号对应的电压采样数据计算得到反射功率值;The microcontroller calculates the reflected power value according to the voltage sampling data corresponding to the reflected power signal;
所述微控制器根据所述输出功率值以及所述反射功率值,计算得到驻波比,所述驻波比作为与所述输出功率信号和所述反射功率信号对应的功率测量结果。The microcontroller calculates a standing wave ratio according to the output power value and the reflected power value, and the standing wave ratio is used as a power measurement result corresponding to the output power signal and the reflected power signal.
通过上述实现方式,微控制器可以对至少两路未知的窄脉冲信号进行功率测量。当至少两路信号中存在被测设备的输出功率信号和反射功率信号时,微控制器可分别计算出输出功率信号对应的输出功率值、反射功率信号对应的反射功率值,并基于输出功率值、反射功率值计算出驻波比。通过对驻波比的计算,有助于用户根据计算出的驻波比对输出了输出功率信号或输出了反射功率信号的被测设备进行反馈调节。Through the above implementation, the microcontroller can perform power measurement on at least two channels of unknown narrow pulse signals. When the output power signal and reflected power signal of the device under test exist in at least two signals, the microcontroller can calculate the output power value corresponding to the output power signal and the reflected power value corresponding to the reflected power signal, and based on the output power value , Calculate the standing wave ratio from the reflected power value. Through the calculation of the standing wave ratio, it is helpful for the user to make feedback adjustments to the device under test that has output the output power signal or output the reflected power signal according to the calculated standing wave ratio.
结合第一方面,在一种可能的设计中,所述采集单元包括检波器,所述采集单元将所述第一功率信号转换为窄脉冲的第一电压信号,包括:With reference to the first aspect, in a possible design, the acquisition unit includes a wave detector, and the acquisition unit converts the first power signal into a narrow pulse first voltage signal, including:
所述检波器对所述第一功率信号进行检波,得到窄脉冲的所述第一电压信号。The wave detector detects the first power signal to obtain the first voltage signal of a narrow pulse.
在上述实现过程中,通过检波器可以将窄脉冲的第一功率信号转化为窄脉冲的第一电压信号,实现了功率信号到电压信号的转换。In the above implementation process, the first narrow-pulse power signal can be converted into the first narrow-pulse voltage signal by the wave detector, thereby realizing the conversion from the power signal to the voltage signal.
结合第一方面,在一种可能的设计中,所述采集单元包括检波器、运算放大器,所述采集单元将所述第一功率信号转换为窄脉冲的第一电压信号,包括:With reference to the first aspect, in a possible design, the acquisition unit includes a detector and an operational amplifier, and the acquisition unit converts the first power signal into a narrow pulse first voltage signal, including:
所述检波器对所述第一功率信号进行检波,得到窄脉冲的第一检波信号;The detector detects the first power signal to obtain a first detection signal of a narrow pulse;
所述运算放大器对所述第一检波信号进行运算放大,得到窄脉冲的所述第一电压信号。The operational amplifier performs operational amplification on the first detection signal to obtain the first voltage signal of a narrow pulse.
在上述实现过程中,通过检波器可以实现功率信号到电压信号的转换,运算放大器可以将电压小信号进行运算放大,以便于后续电路能够识别到范围更宽、信号更强的电压信号,微控制器可更容易地进行信号采集。In the above implementation process, the conversion of the power signal to the voltage signal can be realized through the wave detector, and the operational amplifier can perform operational amplification on the small voltage signal, so that the subsequent circuit can recognize the voltage signal with a wider range and stronger signal. to make signal acquisition easier.
结合第一方面,在一种可能的设计中,所述峰值保持电路包括跨导放大器、二极管、保持电容、电压缓冲器,所述峰值保持电路根据所述第一电压信号输出第二电压信号,包括:With reference to the first aspect, in a possible design, the peak hold circuit includes a transconductance amplifier, a diode, a hold capacitor, and a voltage buffer, and the peak hold circuit outputs a second voltage signal according to the first voltage signal, include:
所述跨导放大器根据所述第一电压信号输出充电信号,所述充电信号用于控制所述二极管导通以对所述保持电容进行充电,或用于控制所述二极管截止以使所述保持电容输出的电压维持不变;The transconductance amplifier outputs a charging signal according to the first voltage signal, and the charging signal is used to control the diode to be turned on to charge the holding capacitor, or to control the diode to be turned off to make the holding capacitor The voltage output by the capacitor remains unchanged;
所述电压缓冲器根据所述保持电容输出的信号输出第二电压信号。The voltage buffer outputs a second voltage signal according to the signal output by the holding capacitor.
在上述实现过程中,跨导放大器能够根据第一电压信号的变化控制二极管导通或截止,保持电容输出的信号会根据二极管的变化而变化,电压缓冲器可以将保持电容输出的信号耦合为第二电压信号,上述峰值保持电路可实现脉宽的延展。In the above implementation process, the transconductance amplifier can control the diode to be turned on or off according to the change of the first voltage signal, the signal output by the holding capacitor will change according to the change of the diode, and the voltage buffer can couple the signal output by the holding capacitor into the second For two-voltage signals, the above-mentioned peak hold circuit can realize the extension of the pulse width.
第二方面,本申请实施例提供一种窄脉冲的功率测量系统,所述系统包括:采集单元、峰值保持电路、微控制器;In the second aspect, the embodiment of the present application provides a narrow pulse power measurement system, the system includes: an acquisition unit, a peak hold circuit, and a microcontroller;
所述采集单元与所述峰值保持电路连接,所述峰值保持电路与所述微控制器连接;The acquisition unit is connected to the peak hold circuit, and the peak hold circuit is connected to the microcontroller;
所述采集单元,用于采集第一功率信号,所述第一功率信号为窄脉冲的射频功率信号;The acquisition unit is configured to acquire a first power signal, and the first power signal is a radio frequency power signal of a narrow pulse;
所述采集单元,还用于将所述第一功率信号转换为窄脉冲的第一电压信号;The acquisition unit is further configured to convert the first power signal into a narrow pulse first voltage signal;
所述峰值保持电路,用于根据所述第一电压信号输出第二电压信号,所述第二电压信号的脉宽大于所述第一电压信号的脉宽;The peak hold circuit is configured to output a second voltage signal according to the first voltage signal, and the pulse width of the second voltage signal is greater than the pulse width of the first voltage signal;
所述微控制器,用于对所述第二电压信号进行采样,得到电压采样数据;The microcontroller is configured to sample the second voltage signal to obtain voltage sampling data;
所述微控制器,还用于根据所述电压采样数据计算得到与所述第一功率信号对应的功率测量结果。The microcontroller is further configured to calculate and obtain a power measurement result corresponding to the first power signal according to the voltage sampling data.
通过上述窄脉冲的功率测量系统可以执行前述第一方面提供的方法,即使微控制器本身的工作采样频率无法满足窄脉冲信号的频率,也能够完成对于窄脉冲功率小信号的测量。The above-mentioned narrow pulse power measurement system can implement the method provided in the aforementioned first aspect, even if the working sampling frequency of the microcontroller itself cannot meet the frequency of the narrow pulse signal, it can also complete the measurement of the narrow pulse power small signal.
结合第二方面,在一种可能的设计中,所述采集单元包括检波器;With reference to the second aspect, in a possible design, the acquisition unit includes a detector;
所述检波器用于对所述第一功率信号进行检波,得到所述第一电压信号。The detector is used to detect the first power signal to obtain the first voltage signal.
以此能够通过检波器将窄脉冲的第一功率信号转化为窄脉冲的第一电压信号,实现了功率信号到电压信号的转换。In this way, the narrow-pulse first power signal can be converted into the narrow-pulse first voltage signal by the wave detector, thereby realizing the conversion from the power signal to the voltage signal.
结合第二方面,在一种可能的设计中,所述系统包括至少两路采集线路;With reference to the second aspect, in a possible design, the system includes at least two acquisition lines;
所述至少两路采集线路中的任一线路包括:所述采集单元以及与所述采集单元连接的峰值保持电路;Any one of the at least two acquisition lines includes: the acquisition unit and a peak hold circuit connected to the acquisition unit;
所述至少两路采集线路,用于向所述微控制器传输至少两路第二电压信号;The at least two acquisition lines are used to transmit at least two second voltage signals to the microcontroller;
所述微控制器,用于根据所述至少两路第二电压信号计算得到至少两组功率值。The microcontroller is configured to calculate and obtain at least two sets of power values according to the at least two channels of second voltage signals.
通过上述实现方式,能够对多路未知的窄脉冲信号进行功率测量,提升了对未知的窄脉冲功率小信号的测量效率。Through the above implementation manner, power measurement can be performed on multiple channels of unknown narrow pulse signals, and the efficiency of measuring small signals with unknown narrow pulse powers is improved.
为使本申请的上述目的、特征和优点能更明显易懂,下文特举实施例,并配合所附附图,作详细说明如下。In order to make the above objects, features and advantages of the present application more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the accompanying drawings that need to be used in the embodiments of the present application will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present application, so It should not be regarded as a limitation on the scope, and those skilled in the art can also obtain other related drawings according to these drawings without creative work.
图1为本申请实施例提供的一种窄脉冲的功率测量系统的示意图。FIG. 1 is a schematic diagram of a narrow pulse power measurement system provided by an embodiment of the present application.
图2为本申请实施例提供的一种信号转换过程的示意图。FIG. 2 is a schematic diagram of a signal conversion process provided by an embodiment of the present application.
图3为本申请实施例提供的一个实例中的窄脉冲的功率测量系统的示意图。Fig. 3 is a schematic diagram of a narrow pulse power measurement system in an example provided by the embodiment of the present application.
图4为本申请实施例提供的一种窄脉冲的功率测量方法的流程图。FIG. 4 is a flow chart of a narrow pulse power measurement method provided by an embodiment of the present application.
图5为本申请实施例提供的一个实例中的电压采样示意图。FIG. 5 is a schematic diagram of voltage sampling in an example provided by the embodiment of the present application.
图标:10-功率测量系统;100-采集单元;A-检波器;B1-运算放大器;200-峰值保持电路;B2-跨导放大器;B3-电压缓冲器;I-恒流源;D-二极管;C-保持电容;300-微控制器。Icons: 10-power measurement system; 100-acquisition unit; A-detector; B1-operational amplifier; 200-peak hold circuit; B2-transconductance amplifier; B3-voltage buffer; I-constant current source; D-diode ; C-hold capacitor; 300-microcontroller.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。The technical solutions in the embodiments of the present application will be described below with reference to the drawings in the embodiments of the present application.
请参阅图1,图1为本申请实施例提供的一种窄脉冲的功率测量系统10的示意图。为便于描述,在后续部分介绍中将该窄脉冲的功率测量系统10简称为功率测量系统10。Please refer to FIG. 1 . FIG. 1 is a schematic diagram of a narrow pulse power measurement system 10 provided by an embodiment of the present application. For ease of description, the narrow pulse power measurement system 10 is simply referred to as the power measurement system 10 in the introduction of the subsequent part.
其中,该窄脉冲的功率测量系统10可以对未知的功率信号进行测量,该未知的功率信号可能是由与被测设备耦合连接的耦合器输出的窄脉冲信号。Wherein, the narrow pulse power measurement system 10 can measure an unknown power signal, and the unknown power signal may be a narrow pulse signal output by a coupler coupled with the device under test.
窄脉冲信号可以表示脉宽(Pulse-Width,脉冲宽度,简称脉宽)为纳秒量级甚至低于纳秒量级的信号。The narrow pulse signal may represent a signal with a pulse-width (Pulse-Width, pulse width, pulse width for short) of the order of nanoseconds or even lower than the order of nanoseconds.
被测设备可能是宽带放大器、功率源以及其他能够输出窄脉冲功率信号的设备。Devices under test may be wideband amplifiers, power sources, and other devices capable of outputting narrow pulse power signals.
以被测设备是功率源为例,功率源可以与两个耦合器耦合连接,该两个耦合器中的其中一个耦合器所输出的信号可能是正向信号,另一个耦合器所输出的信号可能是反向信号。正向信号表示输出功率信号,正向信号通常为有用信号;反向信号表示反射功率信号,表示被其他连接线或者其他设备反射回来的信号,通常会被负载所吸收。Taking the device under test as a power source as an example, the power source can be coupled with two couplers, the signal output by one of the two couplers may be a forward signal, and the signal output by the other coupler may be is a reverse signal. The forward signal indicates the output power signal, and the forward signal is usually a useful signal; the reverse signal indicates the reflected power signal, which means the signal reflected by other connecting lines or other equipment, and is usually absorbed by the load.
正向信号、反向信号具有方向性。正向信号、反向信号的具体采集位置不同,但不论是窄脉冲的正向信号还是窄脉冲的反向信号,都可以作为本申请任一实施例中的第一功率信号。Forward signals and reverse signals are directional. The specific collection positions of the forward signal and the reverse signal are different, but no matter whether it is a narrow pulse forward signal or a narrow pulse reverse signal, it can be used as the first power signal in any embodiment of the present application.
如图1所示,本申请实施例提供的窄脉冲的功率测量系统10可包括采集单元100、峰值保持电路200、微控制器300。As shown in FIG. 1 , the narrow pulse power measurement system 10 provided by the embodiment of the present application may include an acquisition unit 100 , a peak hold circuit 200 , and a microcontroller 300 .
采集单元100与峰值保持电路200连接,峰值保持电路200与微控制器300连接。The acquisition unit 100 is connected to a peak hold circuit 200 , and the peak hold circuit 200 is connected to a microcontroller 300 .
采集单元100,用于采集窄脉冲的第一功率信号,并将第一功率信号转化为窄脉冲的第一电压信号,该第一功率信号为射频功率信号。The collection unit 100 is configured to collect a first power signal of a narrow pulse, and convert the first power signal into a first voltage signal of a narrow pulse, where the first power signal is a radio frequency power signal.
峰值保持电路200,用于根据第一电压信号输出第二电压信号,第二电压信号的脉宽大于第一电压信号的脉宽。The peak hold circuit 200 is configured to output a second voltage signal according to the first voltage signal, and the pulse width of the second voltage signal is greater than the pulse width of the first voltage signal.
微控制器300,用于对第二电压信号进行采样以得到电压采样数据。The microcontroller 300 is configured to sample the second voltage signal to obtain voltage sampling data.
微控制器300,还用于根据电压采样数据计算得到与第一功率信号对应的功率测量结果。The microcontroller 300 is further configured to calculate a power measurement result corresponding to the first power signal according to the voltage sampling data.
其中,图2或图3中的“IN”指示的端子可用于接入第一功率信号,第一功率信号为未知的射频耦合功率小信号。Wherein, the terminal indicated by "IN" in FIG. 2 or FIG. 3 can be used to access the first power signal, and the first power signal is an unknown radio frequency coupling power small signal.
在一个实例中,第一功率信号的脉宽可以是纳秒量级。In an example, the pulse width of the first power signal may be on the order of nanoseconds.
当第一功率信号被采集单元100进行信号转换后,第一功率信号转化为第一电压信号,第一电压信号与第一功率信号的脉宽量级相同。After the first power signal is converted by the acquisition unit 100, the first power signal is converted into a first voltage signal, and the magnitude of the pulse width of the first voltage signal is the same as that of the first power signal.
如图2所示,当第一电压信号被峰值保持电路200进行信号转换后,窄脉冲的第一电压信号转化为脉宽较大的第二电压信号。As shown in FIG. 2 , after the first voltage signal is converted by the peak hold circuit 200 , the first voltage signal with a narrow pulse is converted into a second voltage signal with a larger pulse width.
在一个实例中,第二电压信号的脉宽可以是微秒量级。In an example, the pulse width of the second voltage signal may be on the order of microseconds.
作为一种实现方式,在得到脉宽较大的第二电压信号后,微控制器300能够采集到第二电压信号,以得到电压采样数据,然后基于电压采样数据计算出一个功率值,该功率值作为与第一功率信号对应的功率测量结果。As an implementation, after obtaining the second voltage signal with a larger pulse width, the microcontroller 300 can collect the second voltage signal to obtain voltage sampling data, and then calculate a power value based on the voltage sampling data, the power value as the power measurement corresponding to the first power signal.
其中,对于每一次测量过程中输入的每路第一功率信号,微控制器300可以计算得到一个功率值,作为该路第一功率信号的功率测量结果。当对该第一功率信号进行更新后,微控制器300可以计算出一个新的功率值,作为更新后的第一功率信号对应的功率测量结果。Wherein, for each first power signal input during each measurement process, the microcontroller 300 may calculate a power value as a power measurement result of the first power signal. After updating the first power signal, the microcontroller 300 may calculate a new power value as a power measurement result corresponding to the updated first power signal.
对于上述窄脉冲的功率测量系统10,即使微控制器300的采样频率较低,微控制器300本身的工作采样频率无法满足第一功率信号的频率,通过采样单元对第一功率信号所作的信号转化以及峰值保持电路200所作的脉宽延展,能够将未知的窄脉冲功率小信号转化为脉宽较大的电压信号。然后微控制器300可基于脉宽较大的电压信号进行采样,并根据电压采样数据计算出与第一功率信号对应的功率测量结果。以此使得通用的微控制器300或通用的处理器也能够完成对于窄脉冲功率小信号的测量,无需再借助高速率、高精度的专用处理器或FPGA(Field Programmable Gata Array,现场可编程门阵列)进行功率测量。其中,通用的处理器或通用的微控制器300,是指工作采样频率难以满足第一功率信号的频率,从而无法直接对第一功率信号进行测量的处理器或控制器。For the power measurement system 10 of the above-mentioned narrow pulse, even if the sampling frequency of the microcontroller 300 is low, the working sampling frequency of the microcontroller 300 itself cannot meet the frequency of the first power signal, and the signal made by the sampling unit to the first power signal The conversion and the pulse width extension performed by the peak hold circuit 200 can convert the unknown small signal with narrow pulse power into a voltage signal with a larger pulse width. Then the microcontroller 300 may perform sampling based on the voltage signal with a larger pulse width, and calculate a power measurement result corresponding to the first power signal according to the voltage sampling data. In this way, a general-purpose microcontroller 300 or a general-purpose processor can also complete the measurement of a narrow pulse power small signal, without the need for a high-speed, high-precision special-purpose processor or FPGA (Field Programmable Gata Array, Field Programmable Gate Array) array) for power measurements. Wherein, the general-purpose processor or the general-purpose microcontroller 300 refers to a processor or a controller whose working sampling frequency is difficult to meet the frequency of the first power signal, so that the first power signal cannot be directly measured.
通常情况下,若是要利用高性能的专用处理器芯片或FPGA等处理器搭建测量系统,会面临较为复杂的外围电路设计,而若是采用本申请实施例提供的窄脉冲的功率测量系统10进行功率测量,可以简化测量系统的结构。Usually, if you want to use a high-performance dedicated processor chip or FPGA and other processors to build a measurement system, you will face relatively complicated peripheral circuit design, but if you use the narrow pulse power measurement system 10 provided by the embodiment of the present application measurement, the structure of the measurement system can be simplified.
可选地,如图3所示,采集单元100可以包括检波器A、运算放大器B1。Optionally, as shown in FIG. 3 , the acquisition unit 100 may include a detector A and an operational amplifier B1.
检波器A与运算放大器B1连接,运算放大器B1与峰值保持电路200连接。The detector A is connected to the operational amplifier B1 , and the operational amplifier B1 is connected to the peak hold circuit 200 .
检波器A,用于对第一功率信号进行检波,得到窄脉冲的第一检波信号。第一检波信号为电压信号。The detector A is configured to detect the first power signal to obtain a first detection signal of a narrow pulse. The first detection signal is a voltage signal.
运算放大器B1,用于对第一检波信号进行运算放大以得到第一电压信号,并将第一电压信号传输至峰值保持电路200。The operational amplifier B1 is used for operationally amplifying the first detection signal to obtain a first voltage signal, and transmitting the first voltage signal to the peak hold circuit 200 .
在一个实例中,运算放大器B1可以是差分放大器,用于对第一检波信号进行差分放大以得到第一电压信号。In an example, the operational amplifier B1 may be a differential amplifier, configured to differentially amplify the first detection signal to obtain the first voltage signal.
若第一功率信号为正向信号,检波器A可以用于正向检波,若第一功率信号为反向信号,检波器A可用于反向检波。If the first power signal is a forward signal, the detector A can be used for forward detection, and if the first power signal is a reverse signal, the detector A can be used for reverse detection.
作为一种实施方式,检波器A可以是包络/峰值检波器A,用于对窄脉冲的信号进行包络检波。As an implementation manner, the detector A may be an envelope/peak detector A, which is used to perform envelope detection on a narrow pulse signal.
在一个实例中,检波器A可以采用型号为ADL5511的包络/峰值检波器A。运算放大器B1可以采用型号为LMH6612MA的放大器,以实现运算放大功能。In one example, detector A can be an envelope/peak detector A model ADL5511. The operational amplifier B1 can use an amplifier with a model number of LMH6612MA to realize the operational amplification function.
以此能够通过检波器A实现功率信号到电压信号的转化,通过运算放大器B1可以对电压小信号进行运算放大,以便于后续电路能够识别到范围更宽、信号更强的电压信号,微控制器可更容易地进行信号采集。In this way, the conversion of the power signal to the voltage signal can be realized through the detector A, and the small voltage signal can be operationally amplified through the operational amplifier B1, so that the subsequent circuit can recognize the voltage signal with a wider range and stronger signal. Signal acquisition can be performed more easily.
在其他实施例中,运算放大器B1可以有多级,以实现多级放大的作用。In other embodiments, the operational amplifier B1 may have multiple stages, so as to realize the function of multi-stage amplification.
可选地,若检波器A所输出的信号足以让后续电路进行识别,则可以省略运算放大器B1。Optionally, if the signal output by the detector A is sufficient for subsequent circuits to identify, the operational amplifier B1 can be omitted.
在省略运算放大器B1的情况下,检波器A可用于对第一功率信号进行检波,得到第一电压信号。以此通过检波器A可以将窄脉冲的第一功率信号转化为窄脉冲的第一电压信号,实现了功率信号到电压信号的转换。In the case where the operational amplifier B1 is omitted, the detector A can be used to detect the first power signal to obtain the first voltage signal. In this way, the detector A can convert the narrow-pulse first power signal into the narrow-pulse first voltage signal, thereby realizing the conversion from the power signal to the voltage signal.
可选地,峰值保持电路200可以包括跨导放大器B2、二极管D、保持电容C、电压缓冲器B3。Optionally, the peak hold circuit 200 may include a transconductance amplifier B2, a diode D, a holding capacitor C, and a voltage buffer B3.
跨导放大器B2的一个输入端与采集单元100的输出端连接,跨导放大器B2的输出端与二极管D的阳极连接,二极管D的阴极与保持电容C连接。该保持电容C还与电压缓冲器B3的输入端连接,电压缓冲器B3的输出端与微控制器300连接,电压缓冲器B3可将输出的信号反馈到跨导放大器B2的另一个输入端。One input terminal of the transconductance amplifier B2 is connected to the output terminal of the acquisition unit 100 , the output terminal of the transconductance amplifier B2 is connected to the anode of the diode D, and the cathode of the diode D is connected to the holding capacitor C. The holding capacitor C is also connected to the input terminal of the voltage buffer B3, and the output terminal of the voltage buffer B3 is connected to the microcontroller 300, and the output signal of the voltage buffer B3 can be fed back to the other input terminal of the transconductance amplifier B2.
其中,跨导放大器B2可对第一电压信号、第二电压信号之间的电压差进行转换处理,跨导放大器B2的输出信号是电流信号。图3中与跨导放大器B2连接的恒流源I用于为跨导放大器B2提供一个静态回路。Wherein, the transconductance amplifier B2 can convert the voltage difference between the first voltage signal and the second voltage signal, and the output signal of the transconductance amplifier B2 is a current signal. The constant current source I connected to the transconductance amplifier B2 in FIG. 3 is used to provide a static loop for the transconductance amplifier B2.
若第二电压信号小于第一电压信号,则跨导放大器B2输出的电流信号通过二极管D对保持电容C进行充电。若第二电压信号大于或等于第一电压信号,则二极管D截止,保持电容C上的电压保持不变。电压缓冲器B3能够采集到保持电容C上的信号变化。If the second voltage signal is smaller than the first voltage signal, the current signal output by the transconductance amplifier B2 charges the storage capacitor C through the diode D. If the second voltage signal is greater than or equal to the first voltage signal, the diode D is turned off, and the voltage on the holding capacitor C remains unchanged. The voltage buffer B3 can collect the signal change on the holding capacitor C.
通过上述峰值保持电路200可将窄脉冲的第一电压信号的脉宽进行延展并保持一段时间,得到脉宽较大的第二电压信号,以便于采用通用的低速率模数转换器进行采样处理。Through the peak hold circuit 200, the pulse width of the narrow pulse first voltage signal can be extended and held for a period of time to obtain a second voltage signal with a larger pulse width, so as to facilitate sampling processing by using a general-purpose low-rate analog-to-digital converter .
该低速率的模数转换器可能是微控制器300的内置转换器,也可能是外置转换器。The low-speed analog-to-digital converter may be a built-in converter of microcontroller 300 or an external converter.
可选地,为了使窄脉冲峰值保持的响应速度更快,在选择器件搭建峰值保持电路200时可以尽可能减小跨导放大器B2、二极管D、电压缓冲器B3的延时,也可采用带宽较大的跨导放大器B2和电压缓冲器B3。在一个实例中,可采用带宽为百兆量级的运算放大器搭建峰值保持电路200。Optionally, in order to make the response speed of the narrow pulse peak hold faster, when selecting devices to build the peak hold circuit 200, the delay of the transconductance amplifier B2, diode D, and voltage buffer B3 can be reduced as much as possible, and the bandwidth Larger transconductance amplifier B2 and voltage buffer B3. In an example, the peak hold circuit 200 can be constructed by using an operational amplifier with a bandwidth of hundreds of megabytes.
在一个实例中,峰值保持电路200可采用型号为OPA615的集成芯片实现,OPA615的芯片内包含一个运算跨导放大器B2、电压缓冲器B3以及一个并发开关电路,当其开关使能时,跨导放大器B2的输出电流大,可迅速给保持电容C充电,当开关关断时,关断电阻大,可以使得保持电容C上的电荷尽可能保持不变。该例中的峰值保持电路200能够实现纳秒级脉宽的信号峰值保持,以便后续的微控制器300的采样接口能够采集到有效信号,使得功率测量系统10可以对多种未知的窄脉冲功率信号进行测量,且保障了测量可靠性。In one example, the peak hold circuit 200 can be implemented using an integrated chip modeled as OPA615. The OPA615 chip includes an operational transconductance amplifier B2, a voltage buffer B3 and a concurrent switch circuit. When the switch is enabled, the transconductance The output current of the amplifier B2 is large, which can quickly charge the holding capacitor C. When the switch is turned off, the turn-off resistance is large, so that the charge on the holding capacitor C can be kept as unchanged as possible. The peak hold circuit 200 in this example can realize the signal peak hold of nanosecond pulse width, so that the sampling interface of the subsequent microcontroller 300 can collect effective signals, so that the power measurement system 10 can measure various unknown narrow pulse power The signal is measured, and the measurement reliability is guaranteed.
其中,二极管D对于功率测量系统10的参数影响较大,由于二极管D在导通、截止之间会有时间差,存在反向漏电流,而反向漏电流越大,电路的下垂速率越大。考虑到这一因素,可采用正向导通电压小、开关时间快、恢复时间段且结电容小的二极管D搭建峰值保持电路200,例如可以采用但不限于肖特基二极管D。Among them, the diode D has a great influence on the parameters of the power measurement system 10, because there is a time difference between the diode D being turned on and off, there is a reverse leakage current, and the greater the reverse leakage current, the greater the droop rate of the circuit. Considering this factor, the peak hold circuit 200 can be constructed by using a diode D with small forward voltage, fast switching time, recovery period and small junction capacitance, such as but not limited to a Schottky diode D.
可选地,功率测量系统10可以包括至少两路采集线路,该至少两路采集线路可用于采集不同被测设备的窄脉冲信号,也可用于采集同一被测设备的多种窄脉冲信号。Optionally, the power measurement system 10 may include at least two collection lines, which can be used to collect narrow pulse signals of different devices under test, or can be used to collect multiple narrow pulse signals of the same device under test.
其中,该至少两路采集线路中的任一采集线路可能用于对一被测设备的输出功率信号进行功率测量,也可能用于对该被测设备的反射功率信号进行测量,还可能用于对另一被测设备的入射功率信号进行测量,窄脉冲的入射功率信号可作为上述的第一功率信号。Wherein, any one of the at least two collection lines may be used for power measurement of the output power signal of a device under test, or may be used for measuring the reflected power signal of the device under test, or may be used for The incident power signal of another device under test is measured, and the narrow pulse incident power signal can be used as the above-mentioned first power signal.
该至少两路采集线路中的任一线路可包括:采集单元100以及与采集单元100连接的峰值保持电路200,任一采集线路中的峰值保持电路200的输出端与微控制器300连接。Any one of the at least two acquisition lines may include: an acquisition unit 100 and a peak hold circuit 200 connected to the acquisition unit 100 , and an output terminal of the peak hold circuit 200 in any acquisition line is connected to a microcontroller 300 .
作为一种实现方式,该至少两路采集线路用于向微控制器300传输至少两路第二电压信号。微控制器300用于根据至少两路第二电压信号计算得到至少两组功率值。As an implementation manner, the at least two acquisition lines are used to transmit at least two second voltage signals to the microcontroller 300 . The microcontroller 300 is used to calculate and obtain at least two sets of power values according to at least two channels of second voltage signals.
其中,一组功率值对应一路采集线路。每组功率值中的功率值个数与实际输入第一功率信号的更新次数有关,每组功率值中的功率值个数可能是一个,也可能是多个。Wherein, a set of power values corresponds to one collection line. The number of power values in each group of power values is related to the number of updates of the actually input first power signal, and the number of power values in each group of power values may be one or multiple.
通过设置有至少两路采集线路的窄脉冲的功率测量系统10,能够对多路未知的窄脉冲信号分别进行功率测量,提升了对未知的窄脉冲功率小信号的测量效率。By setting the narrow pulse power measurement system 10 with at least two acquisition lines, it is possible to perform power measurement on multiple unknown narrow pulse signals, which improves the measurement efficiency of unknown narrow pulse power small signals.
可选地,若该至少两路采集线路中采集的第一功率信号包括一路输出功率信号和与该输出功率信号对应的一路反射功率信号,则该至少两路采集线路中有至少两个采集单元100分别采集两个第一功率信号,该两个第一功率信号中的一个信号为输出功率信号,另一个信号为反射功率信号。Optionally, if the first power signal collected in the at least two collection lines includes one output power signal and one reflection power signal corresponding to the output power signal, then there are at least two collection units in the at least two collection lines The 100 respectively collects two first power signals, one of the two first power signals is an output power signal, and the other signal is a reflected power signal.
分别用于采集输出功率信号、反射功率信号的两个采集单元100与两个峰值保持电路200连接,该两个峰值保持电路200分别用于输出与输出功率信号对应的正向第二电压信号、与反射功率信号对应的反向第二电压信号。微控制器300的两个输入端可分别对正向第二电压信号、反向第二电压信号进行电压采样,并根据采样结果分别计算出与输出功率信号对应的输出功率值、与反射功率信号对应的反射功率值。输出功率值可作为与输出功率信号对应的功率测量结果,反射功率值可作为与反射功率信号对应的功率测量结果。The two acquisition units 100 respectively used to collect the output power signal and the reflected power signal are connected to two peak hold circuits 200, and the two peak hold circuits 200 are respectively used to output the forward second voltage signal corresponding to the output power signal, An inverted second voltage signal corresponding to the reflected power signal. The two input terminals of the microcontroller 300 can respectively perform voltage sampling on the forward second voltage signal and the reverse second voltage signal, and calculate the output power value corresponding to the output power signal and the reflected power signal according to the sampling results. Corresponding reflected power value. The output power value can be used as a power measurement result corresponding to the output power signal, and the reflected power value can be used as a power measurement result corresponding to the reflected power signal.
在计算出输出功率值、反射功率值的情况下,微控制器300可用于根据输出功率值、反射功率值计算驻波比,驻波比作为与输出功率信号、反射功率信号对应的功率测量结果。通过对驻波比的计算配置,有助于用户根据计算出的驻波比对输出了输出功率信号或输出了反射功率信号的被测设备进行反馈调节,上述方案具有良好的市场应用前景。In the case of calculating the output power value and the reflected power value, the microcontroller 300 can be used to calculate the standing wave ratio according to the output power value and the reflected power value, and the standing wave ratio is used as the power measurement result corresponding to the output power signal and the reflected power signal . Through the calculation and configuration of the standing wave ratio, it is helpful for the user to perform feedback adjustment on the device under test that outputs the output power signal or the reflected power signal according to the calculated standing wave ratio. The above scheme has a good market application prospect.
基于同一发明构思,本申请实施例还提供一种可应用于前述窄脉冲的功率测量系统10的窄脉冲的功率测量方法。该窄脉冲的功率测量方法可由前述功率测量系统10所执行。Based on the same inventive concept, the embodiment of the present application also provides a narrow pulse power measurement method applicable to the aforementioned narrow pulse power measurement system 10 . The narrow pulse power measurement method can be implemented by the aforementioned power measurement system 10 .
请参阅图4,图4为本申请实施例提供的一种窄脉冲的功率测量方法的流程图。Please refer to FIG. 4 . FIG. 4 is a flowchart of a narrow pulse power measurement method provided by an embodiment of the present application.
如图4所示,该窄脉冲的功率测量方法可包括步骤S21-S25。As shown in FIG. 4, the narrow pulse power measurement method may include steps S21-S25.
S21:采集单元100采集第一功率信号,第一功率信号为窄脉冲的射频功率信号。S21: The collection unit 100 collects a first power signal, where the first power signal is a radio frequency power signal of a narrow pulse.
S22:采集单元100将第一功率信号转换为窄脉冲的第一电压信号。S22: The acquisition unit 100 converts the first power signal into a first voltage signal of a narrow pulse.
S23:峰值保持电路200根据第一电压信号输出第二电压信号,第二电压信号的脉宽大于第一电压信号的脉宽。S23: The peak hold circuit 200 outputs a second voltage signal according to the first voltage signal, and the pulse width of the second voltage signal is greater than the pulse width of the first voltage signal.
S24:微控制器300对第二电压信号进行采样,得到电压采样数据。S24: The microcontroller 300 samples the second voltage signal to obtain voltage sampling data.
S25:微控制器300根据电压采样数据计算得到与第一功率信号对应的功率测量结果。S25: The microcontroller 300 calculates and obtains a power measurement result corresponding to the first power signal according to the voltage sampling data.
通过上述方法可通过采集单元100、峰值保持电路200将窄脉冲的第一功率信号转换为脉宽较大的第二电压信号。微控制器300可对脉宽较大的第二电压信号进行采样,并基于采样结果计算得到功率测量结果,以此可实现对窄脉冲功率小信号的间接测量。其中,该功率测量结果与第一功率信号是对应的。Through the above method, the first power signal with a narrow pulse can be converted into a second voltage signal with a larger pulse width by the acquisition unit 100 and the peak hold circuit 200 . The microcontroller 300 can sample the second voltage signal with a larger pulse width, and calculate the power measurement result based on the sampling result, so as to realize the indirect measurement of the narrow pulse power small signal. Wherein, the power measurement result corresponds to the first power signal.
上述方法可应用于通用的微控制器300、通用的微处理器,降低了传统方案对于处理器的高性能要求。即使微控制器300的工作采样频率较低,也能够实现对于窄脉冲小信号的功率测量。其中,通用的微控制器300、通用的微处理器,是指器件本身的工作采样频率无法满足窄脉冲信号的频率的控制器、处理器。The above method can be applied to general-purpose microcontrollers 300 and general-purpose microprocessors, which reduces the high-performance requirements of traditional solutions for processors. Even though the working sampling frequency of the microcontroller 300 is low, the power measurement of the narrow pulse and small signal can be realized. Wherein, the general-purpose microcontroller 300 and the general-purpose microprocessor refer to controllers and processors whose working sampling frequency of the device itself cannot meet the frequency of the narrow pulse signal.
作为一种实施方式,本申请实施例中的微控制器300可以是微秒量级的处理器。As an implementation manner, the microcontroller 300 in the embodiment of the present application may be a microsecond-level processor.
可选地,对于上述S24,具体可以包括:微控制器300的内置转换器对第二电压信号进行采样,得到电压采样数组作为电压采样数据。Optionally, for the above S24, it may specifically include: the built-in converter of the microcontroller 300 samples the second voltage signal to obtain a voltage sample array as the voltage sample data.
由于第二电压信号的脉宽是经过延展的,即使微控制器300的内置模数转换器的采样频率低,也能够满足对第二电压信号的采样需求,降低了对外置的高速率模数转换器的依赖。微控制器300自身可实现对第二电压信号的采样,无需借助外置的高精度的模数转换器进行数据转换,可简化系统结构。Since the pulse width of the second voltage signal is extended, even if the sampling frequency of the built-in analog-to-digital converter of microcontroller 300 is low, it can meet the sampling requirements of the second voltage signal, reducing the need for external high-speed analog-to-digital converters. Converter dependencies. The microcontroller 300 itself can realize the sampling of the second voltage signal, and does not need an external high-precision analog-to-digital converter for data conversion, which can simplify the system structure.
可选地,电压采样数据可包括第二电压信号的多个采样点对应的多个电压值,上述S25可以包括:S251-S252。Optionally, the voltage sampling data may include multiple voltage values corresponding to multiple sampling points of the second voltage signal, and the above S25 may include: S251-S252.
S251:微控制器300根据电压采样数据中的多个电压值,筛选出所述多个采样点中的有效采样点,计算得到有效采样点对应的有效平均电压值。S251: The microcontroller 300 screens out valid sampling points among the multiple sampling points according to multiple voltage values in the voltage sampling data, and calculates an effective average voltage value corresponding to the valid sampling points.
S252:微控制器300根据有效平均电压值以及预先设定的拟合对应关系,计算得到有效平均电压值对应的功率值,作为第一功率信号对应的功率测量结果。S252: The microcontroller 300 calculates and obtains a power value corresponding to the effective average voltage value according to the effective average voltage value and a preset fitting correspondence relationship, as a power measurement result corresponding to the first power signal.
作为一种实施方式,微控制器300的模数转换端口可以采集到第二电压信号,在进行模数转换后,可以得到包含多个电压值的电压采样数据,该多个电压值中的每个电压值对应一个采样点。As an implementation, the analog-to-digital conversion port of the microcontroller 300 can collect the second voltage signal, and after the analog-to-digital conversion, voltage sampling data including multiple voltage values can be obtained, and each of the multiple voltage values A voltage value corresponds to a sampling point.
在得到多个采样点对应的多个电压值后,可以从多个电压值中筛选出有效电压值,有效电压值对应的采样点即为有效采样点。After obtaining multiple voltage values corresponding to multiple sampling points, an effective voltage value can be selected from the multiple voltage values, and the sampling point corresponding to the effective voltage value is an effective sampling point.
有效电压值的个数与实际输入的第一功率信号有关,对于每次确定出的多个有效电压值,多个有效电压值可能相同,也可能不同。The number of effective voltage values is related to the actually input first power signal, and for multiple effective voltage values determined each time, the multiple effective voltage values may be the same or different.
其中,有效电压值可以是大于设定阈值的电压值。该设定阈值可以是0、0.1、0.2、0.5、0.8等值的电压阈值。Wherein, the effective voltage value may be a voltage value greater than a set threshold. The set threshold may be a voltage threshold of 0, 0.1, 0.2, 0.5, 0.8 or the like.
在确定出有效电压值或有效采样点后,对一次测量过程中的所有有效电压值求平均,可得到与该第一功率信号对应的有效平均电压值V。根据该有效平均电压值V以及预先设定的拟合对应关系,可确定出该有效平均电压值V对应的功率值,作为第一功率信号的功率测量结果。After the effective voltage value or effective sampling point is determined, all effective voltage values in a measurement process are averaged to obtain an effective average voltage value V corresponding to the first power signal. According to the effective average voltage value V and the preset matching relationship, the power value corresponding to the effective average voltage value V can be determined as the power measurement result of the first power signal.
其中,拟合对应关系可能以拟合曲线的形式展现,也可能以拟合表达式的形式展现,还可能以数据表的形式展现。Wherein, the fitting corresponding relationship may be presented in the form of a fitting curve, may also be presented in the form of a fitting expression, and may also be presented in the form of a data table.
拟合对应关系可以根据实际的采集单元确定,采集单元的拟合对应关系是固定的,当采集单元被校准后就可以确定出该采集单元所对应的拟合对应关系。例如,每种检波器对应有固定的拟合曲线或拟合表达式,可作为一种拟合对应关系。The fitting correspondence relationship can be determined according to the actual acquisition unit, and the fitting correspondence relationship of the acquisition unit is fixed. After the acquisition unit is calibrated, the fitting correspondence relationship corresponding to the acquisition unit can be determined. For example, each detector corresponds to a fixed fitting curve or fitting expression, which can be used as a fitting correspondence.
作为一种实现方式,若拟合对应关系表现为拟合曲线,拟合曲线的横坐标可以是电压,纵坐标可以是功率。通过将计算出的有效平均电压值V代入拟合曲线,可根据拟合曲线确定与该有效平均电压值V对应的那个功率值,作为第一功率信号对应的功率测量结果。As an implementation manner, if the fitting correspondence is expressed as a fitting curve, the abscissa of the fitting curve may be voltage, and the ordinate may be power. By substituting the calculated effective average voltage V into the fitting curve, the power value corresponding to the effective average voltage V can be determined according to the fitting curve as the power measurement result corresponding to the first power signal.
若想实现对多个第一功率信号的功率测量,可以通过多路采集线路分别得到多组采样数据,并计算出多个有效平均电压值,每个有效平均电压值可对应一个第一功率信号,基于预先设定的拟合对应关系可确定出多个第一功率信号对应的多个功率测量结果。If you want to measure the power of multiple first power signals, you can obtain multiple sets of sampling data through multiple acquisition lines, and calculate multiple effective average voltage values. Each effective average voltage value can correspond to a first power signal. A plurality of power measurement results corresponding to the plurality of first power signals may be determined based on a preset fitting correspondence relationship.
在一个实例中,如图5所示,可根据第二电压信号的信号周期T,随机选取n个采样点,得到与n个采样点分别对应的n个电压值。n个采样点可能对应多个信号周期T的采样数据。n为大于零的整数。In an example, as shown in FIG. 5 , n sampling points may be randomly selected according to the signal period T of the second voltage signal to obtain n voltage values respectively corresponding to the n sampling points. The n sampling points may correspond to sampling data of multiple signal periods T. n is an integer greater than zero.
其中,在每个信号周期T内选取的采样点个数可以是相同的。Wherein, the number of sampling points selected in each signal period T may be the same.
以图5为例,在图5中采样得到了n个采样点的n个电压值。在该n个采样点中,第2、3、7、8……n个采样点对应的电压值是有效电压值,第2、3、7、8……n个采样点是有效的采样点,其余采样点记为无效的采样点。对第2、3、7、8……n个采样点这些有效采样点对应的所有有效电压值求平均后,可以得到该n个采样点对应的一个有效平均电压值V。根据该有效平均电压值V以及预设的拟合对应关系可以确定出一个功率值,作为第一功率信号的功率测量结果。Taking FIG. 5 as an example, n voltage values of n sampling points are obtained by sampling in FIG. 5 . Among the n sampling points, the voltage values corresponding to the 2nd, 3rd, 7th, 8th...n sampling points are effective voltage values, and the 2nd, 3rd, 7th, 8th...n sampling points are valid sampling points , and the remaining sampling points are recorded as invalid sampling points. After averaging all the effective voltage values corresponding to the effective sampling points of the 2nd, 3rd, 7th, 8th...n sampling points, an effective average voltage value V corresponding to the n sampling points can be obtained. A power value can be determined according to the effective average voltage value V and the preset fitting correspondence relationship as a power measurement result of the first power signal.
以此可以根据第二电压信号确定出有效采样点,并基于有效采样点的电压计算出有效平均电压值,然后根据设定的拟合对应关系确定出与有效平均电压值对应的功率值,作为与第一功率信号对应的功率测量结果。以此可根据脉宽较大的第二电压信号确定出脉宽较小的第一功率信号所对应的功率,降低了对于微控制器300的高性能要求,具有较好的市场应用前景。In this way, the effective sampling point can be determined according to the second voltage signal, and the effective average voltage value can be calculated based on the voltage of the effective sampling point, and then the power value corresponding to the effective average voltage value can be determined according to the set fitting correspondence relationship, as A power measurement corresponding to the first power signal. In this way, the power corresponding to the first power signal with a smaller pulse width can be determined according to the second voltage signal with a larger pulse width, which reduces the high performance requirements for the microcontroller 300 and has a better market application prospect.
可选地,第一功率信号可以有至少两路,该至少两路第一功率信号中可以包括被测设备的输出功率信号、反射功率信号。输出功率信号、反射功率信号的采集位置不同。上述S25具体可以包括:S253-S255。Optionally, there may be at least two first power signals, and the at least two first power signals may include an output power signal and a reflected power signal of the device under test. The collection positions of the output power signal and the reflected power signal are different. The above S25 may specifically include: S253-S255.
S253:微控制器300根据输出功率信号对应的电压采样数据计算得到输出功率值。S253: The microcontroller 300 calculates the output power value according to the voltage sampling data corresponding to the output power signal.
S254:微控制器300根据反射功率信号对应的电压采样数据计算得到反射功率值。S254: The microcontroller 300 calculates the reflected power value according to the voltage sampling data corresponding to the reflected power signal.
S255:微控制器300根据输出功率值以及反射功率值,计算得到驻波比,驻波比作为与输出功率信号和反射功率信号对应的功率测量结果。S255: The microcontroller 300 calculates a standing wave ratio according to the output power value and the reflected power value, and the standing wave ratio is used as a power measurement result corresponding to the output power signal and the reflected power signal.
关于上述S253、S254的计算顺序可以交换,例如可以同时执行S253、S254,也可以先执行S253,再执行S254,还可以先执行S254、再执行S253。The calculation order of the above S253 and S254 can be exchanged, for example, S253 and S254 can be executed at the same time, S253 can be executed first, and then S254 can be executed, or S254 can be executed first, and then S253 can be executed.
需要说明的是,关于相互对应的输出功率信号、反射功率信号在信号采集时间上需要对应,例如,可以采用两路线路同时采集输出功率信号和反射功率信号进而得到两组电压采样数据,以此保证计算出的输出功率值、反射功率值在时间上是相互对应的。It should be noted that the corresponding output power signal and reflected power signal need to correspond in signal acquisition time. For example, two lines can be used to simultaneously collect output power signal and reflected power signal to obtain two sets of voltage sampling data. Ensure that the calculated output power value and reflected power value correspond to each other in time.
可选地,若至少两个第一功率信号中的每个信号都是正向的窄脉冲信号,微控制器300可计算出至少两个输出功率值。若该至少两个第一功率信号中的每个信号都是反向的窄脉冲信号,微控制器300可计算出至少两个反射功率值。Optionally, if each of the at least two first power signals is a forward narrow pulse signal, the microcontroller 300 can calculate at least two output power values. If each of the at least two first power signals is an inverted narrow pulse signal, the microcontroller 300 can calculate at least two reflected power values.
通过上述实现方法,微控制器300可对至少两路未知的窄脉冲信号进行功率测量。当至少两路信号中存在一组相互对应的输出功率信号和反射功率信号时,微控制器300可分别计算出输出功率信号对应的输出功率值、反射功率信号对应的反射功率值,并基于输出功率值、反射功率值计算出驻波比。通过对驻波比的计算,有助于用户根据计算出的驻波比对输出了输出功率信号的被测设备进行反馈调控。Through the above implementation method, the microcontroller 300 can perform power measurement on at least two channels of unknown narrow pulse signals. When there is a set of output power signals and reflected power signals corresponding to each other in at least two signals, the microcontroller 300 can calculate the output power value corresponding to the output power signal and the reflected power value corresponding to the reflected power signal, and based on the output The standing wave ratio is calculated from the power value and reflected power value. Through the calculation of the standing wave ratio, it is helpful for the user to feedback and control the device under test that outputs the output power signal according to the calculated standing wave ratio.
作为一种实现方式,采集单元100可包括检波器A,上述S22可包括:检波器A对第一功率信号进行检波,得到窄脉冲的第一电压信号。As an implementation manner, the acquisition unit 100 may include a wave detector A, and the above S22 may include: the wave detector A detects the first power signal to obtain a narrow pulse first voltage signal.
以此可通过检波器A将窄脉冲的第一功率信号转化为窄脉冲的第一电压信号,实现功率信号到电压信号的转换。In this way, the detector A can convert the narrow-pulse first power signal into the narrow-pulse first voltage signal, thereby realizing the conversion from the power signal to the voltage signal.
作为另一种实现方式,采集单元100可包括检波器A、运算放大器B1,上述S22可包括:检波器A对第一功率信号进行检波,得到第一检波信号;运算放大器B1对第一检波信号进行运算放大,得到窄脉冲的第一电压信号。As another implementation, the acquisition unit 100 may include a detector A and an operational amplifier B1, and the above S22 may include: the detector A detects the first power signal to obtain the first detection signal; the operational amplifier B1 detects the first power signal Operational amplification is performed to obtain a first voltage signal of a narrow pulse.
以此可通过检波器A实现功率信号到电压信号的转换,通过运算放大器B1将电压小信号进行运算放大,便于后续电路能够识别到范围更宽、信号更强的电压信号。In this way, the conversion of the power signal to the voltage signal can be realized through the detector A, and the small voltage signal can be operationally amplified through the operational amplifier B1, so that the subsequent circuit can identify a voltage signal with a wider range and a stronger signal.
可选地,峰值保持电路200可包括跨导放大器B2、二极管D、保持电容C、电压缓冲器B3,上述S23可包括S231-S232。Optionally, the peak hold circuit 200 may include a transconductance amplifier B2, a diode D, a holding capacitor C, and a voltage buffer B3, and the above S23 may include S231-S232.
S231:跨导放大器B2根据第一电压信号输出充电信号,充电信号用于控制二极管D导通以对保持电容C进行充电,或用于控制二极管D截止以使保持电容C输出的电压维持不变。S231: The transconductance amplifier B2 outputs a charging signal according to the first voltage signal, and the charging signal is used to control the diode D to be turned on to charge the holding capacitor C, or to control the diode D to be turned off so that the voltage output by the holding capacitor C remains unchanged .
S232:电压缓冲器B3根据保持电容C输出的信号输出第二电压信号。S232: The voltage buffer B3 outputs the second voltage signal according to the signal output by the holding capacitor C.
以此可采用跨导放大器B2根据第一电压信号的变化控制二极管D导通或截止,且保持电容C输出的信号会根据二极管D的变化而变化,通过电压缓冲器B3可将保持电容C输出的信号耦合为第二电压信号,上述峰值保持电路可实现脉宽的延展。In this way, the transconductance amplifier B2 can be used to control the diode D to turn on or off according to the change of the first voltage signal, and the signal output by the holding capacitor C will change according to the change of the diode D, and the holding capacitor C can be output through the voltage buffer B3 The signal coupled to the second voltage signal, the above-mentioned peak hold circuit can realize the extension of the pulse width.
关于本申请实施例提供的窄脉冲的功率测量方法的更多细节,可以参考前述功率测量系统10中的相关描述,在此不再赘述。For more details about the narrow pulse power measurement method provided by the embodiment of the present application, reference may be made to the relevant description in the aforementioned power measurement system 10 , which will not be repeated here.
在本申请所提供的实施例中,应该理解到,所揭露方法,可以通过其它的方式实现。以上所描述的实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the embodiments provided in this application, it should be understood that the disclosed methods may be implemented in other ways. The above-described embodiments are only illustrative. For example, the division of units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined or integrated into Another system, or some features may be ignored, or not implemented. In another point, the mutual coupling or direct coupling or communication connection may be through some communication interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。In addition, the units described as separate components may or may not be physically separated, and some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。In this document, relational terms such as first and second etc. are used only to distinguish one entity or operation from another without necessarily requiring or implying any such relationship between these entities or operations. Actual relationship or sequence.
以上仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only examples of the present application, and are not intended to limit the scope of protection of the present application. For those skilled in the art, various modifications and changes may be made to the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910890901.5A CN110488086A (en) | 2019-09-20 | 2019-09-20 | The power measurement method and system of burst pulse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910890901.5A CN110488086A (en) | 2019-09-20 | 2019-09-20 | The power measurement method and system of burst pulse |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110488086A true CN110488086A (en) | 2019-11-22 |
Family
ID=68558906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910890901.5A Pending CN110488086A (en) | 2019-09-20 | 2019-09-20 | The power measurement method and system of burst pulse |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110488086A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111103451A (en) * | 2019-12-19 | 2020-05-05 | 岭澳核电有限公司 | Method and device for processing signals for measuring scratches of steam turbine rotor of nuclear power station |
CN111175569A (en) * | 2020-02-20 | 2020-05-19 | 中国科学院上海应用物理研究所 | A method for extracting peak amplitude of extremely narrow beam signal based on broadband serialization |
CN111880000A (en) * | 2020-08-12 | 2020-11-03 | 常州瑞思杰尔电子科技有限公司 | Radio frequency power supply pulse power detection circuit |
CN112798901A (en) * | 2020-12-29 | 2021-05-14 | 成都沃特塞恩电子技术有限公司 | A device calibration system and method |
CN115166377A (en) * | 2022-07-28 | 2022-10-11 | 联合汽车电子有限公司 | Signal detection circuit |
CN115494481A (en) * | 2022-09-28 | 2022-12-20 | 洛阳顶扬光电技术有限公司 | Accurate sampling circuit suitable for narrow pulse laser peak power |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101526564A (en) * | 2009-03-30 | 2009-09-09 | 武汉凡谷电子技术股份有限公司 | Detection device for power and standing wave ratio |
CN103236830A (en) * | 2013-04-14 | 2013-08-07 | 中国科学院近代物理研究所 | Narrow pulse peak holding device |
CN204330878U (en) * | 2014-12-30 | 2015-05-13 | 北京北广科技股份有限公司 | Based on the peak power detection device of pulse-modulated signal |
CN106569020A (en) * | 2016-10-20 | 2017-04-19 | 成都前锋电子仪器有限责任公司 | Power sensor for radio frequency power reflectometer |
CN107565918A (en) * | 2017-08-31 | 2018-01-09 | 成都四威功率电子科技有限公司 | A kind of compatible pulse and standing wave, dutycycle protection circuit and its control method excessively of continuous wave mode |
EP3319202A2 (en) * | 2016-02-05 | 2018-05-09 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Adapter and charging control method |
CN109709404A (en) * | 2018-12-24 | 2019-05-03 | 贵州航天计量测试技术研究所 | A kind of Ultra-short pulse high power microwave radiation signal-testing apparatus |
-
2019
- 2019-09-20 CN CN201910890901.5A patent/CN110488086A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101526564A (en) * | 2009-03-30 | 2009-09-09 | 武汉凡谷电子技术股份有限公司 | Detection device for power and standing wave ratio |
CN103236830A (en) * | 2013-04-14 | 2013-08-07 | 中国科学院近代物理研究所 | Narrow pulse peak holding device |
CN204330878U (en) * | 2014-12-30 | 2015-05-13 | 北京北广科技股份有限公司 | Based on the peak power detection device of pulse-modulated signal |
EP3319202A2 (en) * | 2016-02-05 | 2018-05-09 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Adapter and charging control method |
CN106569020A (en) * | 2016-10-20 | 2017-04-19 | 成都前锋电子仪器有限责任公司 | Power sensor for radio frequency power reflectometer |
CN107565918A (en) * | 2017-08-31 | 2018-01-09 | 成都四威功率电子科技有限公司 | A kind of compatible pulse and standing wave, dutycycle protection circuit and its control method excessively of continuous wave mode |
CN109709404A (en) * | 2018-12-24 | 2019-05-03 | 贵州航天计量测试技术研究所 | A kind of Ultra-short pulse high power microwave radiation signal-testing apparatus |
Non-Patent Citations (3)
Title |
---|
熊焱 等: "窄脉冲激光信号峰值保持电路设计", 《激光与红外》 * |
索洛维也夫: "《有线电信测量技术基础 上》", 31 January 1960 * |
肖明清 等: "《自动测试概论 第1版》", 31 August 2012 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111103451A (en) * | 2019-12-19 | 2020-05-05 | 岭澳核电有限公司 | Method and device for processing signals for measuring scratches of steam turbine rotor of nuclear power station |
CN111175569A (en) * | 2020-02-20 | 2020-05-19 | 中国科学院上海应用物理研究所 | A method for extracting peak amplitude of extremely narrow beam signal based on broadband serialization |
CN111880000A (en) * | 2020-08-12 | 2020-11-03 | 常州瑞思杰尔电子科技有限公司 | Radio frequency power supply pulse power detection circuit |
CN111880000B (en) * | 2020-08-12 | 2023-06-23 | 常州瑞思杰尔电子科技有限公司 | Radio frequency power supply pulse power detection circuit |
CN112798901A (en) * | 2020-12-29 | 2021-05-14 | 成都沃特塞恩电子技术有限公司 | A device calibration system and method |
CN112798901B (en) * | 2020-12-29 | 2023-01-10 | 成都沃特塞恩电子技术有限公司 | Equipment calibration system and method |
CN115166377A (en) * | 2022-07-28 | 2022-10-11 | 联合汽车电子有限公司 | Signal detection circuit |
CN115494481A (en) * | 2022-09-28 | 2022-12-20 | 洛阳顶扬光电技术有限公司 | Accurate sampling circuit suitable for narrow pulse laser peak power |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110488086A (en) | The power measurement method and system of burst pulse | |
CN101557601B (en) | Method for detecting standing wave, standing wave detection device and base station | |
CN104734656A (en) | Radio frequency signal source with amplitude modulation and automatic level control functions | |
CN204304936U (en) | A kind of rf power amplifier circuit being applied to ultrashort wave radio set | |
CN107271055B (en) | Infrared single photon detection system of parallel avalanche photodiode array structure | |
CN104296606B (en) | A kind of laser fuze receives system | |
CN107565918B (en) | Over-standing wave and duty ratio protection circuit compatible with pulse and continuous wave modes and control method thereof | |
CN106017669B (en) | A kind of multi-functional reading circuit system of KID detector arrays | |
CN107255808A (en) | A kind of narrow pulse peak energy monitor of laser radar outgoing | |
CN105784123A (en) | Readout circuit used for normal temperature terahertz detector | |
CN104270148A (en) | Broadband digital fixed-amplitude multi-system radio frequency signal source module | |
CN205067735U (en) | Laser detection processing circuit | |
CN116679128A (en) | Impedance detection circuit and method of a radio frequency power supply | |
CN104730300A (en) | Measuring device with ALC | |
CN107843350A (en) | Frequency-adjustable high-speed near-infrared single photon detector based on sampling | |
CN209356665U (en) | A kind of multifunctional electric energy meter on-spot tester | |
CN109900981B (en) | Low-power consumption RSSI detection circuitry based on automatic gain control | |
CN104217075A (en) | Frequency mixer parameter determination method based on Schottky diode precision circuit model | |
CN114839612A (en) | X-waveband instantaneous frequency measurement receiver and receiving method thereof | |
Xu et al. | A broad W-band detector utilizing zero-bias direct detection circuitry | |
CN204180022U (en) | A kind of radio frequency solid power amplifier protective circuit | |
CN117665381A (en) | Testing circuits, electronic devices and methods | |
CN106353589A (en) | Coupling detector | |
CN103095232A (en) | Dual slope logarithmic amplifier circuit structure | |
CN203745542U (en) | A Fast and Nondestructive Impedance Spectroscopy Measurement System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191122 |