CN110484933B - 一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法 - Google Patents

一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法 Download PDF

Info

Publication number
CN110484933B
CN110484933B CN201910742894.4A CN201910742894A CN110484933B CN 110484933 B CN110484933 B CN 110484933B CN 201910742894 A CN201910742894 A CN 201910742894A CN 110484933 B CN110484933 B CN 110484933B
Authority
CN
China
Prior art keywords
carbon cloth
nitrogen
electrode
doped carbon
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910742894.4A
Other languages
English (en)
Other versions
CN110484933A (zh
Inventor
徐劲松
李�瑞
陶然
潘启发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Materials of CAEP
Original Assignee
Institute of Materials of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Materials of CAEP filed Critical Institute of Materials of CAEP
Priority to CN201910742894.4A priority Critical patent/CN110484933B/zh
Publication of CN110484933A publication Critical patent/CN110484933A/zh
Application granted granted Critical
Publication of CN110484933B publication Critical patent/CN110484933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法,解决现有技术中存在的磷化物颗粒易团聚,复合电极表面形貌不易控制,制备过程涉及有毒有害物质的问题。本发明包括:(1)采用离子注入方法制备氮杂碳布;(2)以具备纳米阵列结构的氮掺杂碳布、铂片、银/氯化银电极分别作为工作电极、对电极、参比电极,电化学制备自支撑镍铁磷化物/氮杂碳布复合电极。本发明以绿色环保的方式获得了自支撑镍铁磷化物/氮杂碳布复合电极,并构筑了适合用于有气体参与的电催化反应的基底表面结构,实现了在较低电压下的全解水,因此,其适于推广应用。

Description

一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法
技术领域
本发明属于纳米复合材料技术领域,具体涉及一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法。
背景技术
电解水获取氢能是替代化石能源的有效途径,而制备合适的析氢反应及析氧反应催化剂,降低水分解反应的活化能是电解水工艺实际应用的关键问题。目前铂系金属基催化剂和氧化铱、氧化钌催化剂分别具有良好的析氢反应和析氧反应催化活性,然而其低储量、高价格的特点制约了其大规模实际应用。另一方面,析氢反应与析氧反应使用不同的催化剂增加了制备过程的复杂性,开发既可催化析氢反应,又可催化析氧反应的多功能催化剂具有重要实用价值。
近年来,过渡金属磷化物特别是镍铁磷化物被发现具有类似氢化酶的催化机理,具备良好的析氢反应催化活性;而在高电位条件下,金属磷化物表面会氧化壳层,又使该结构具备析氧反应活性,因而可作为双功能催化剂使用。而将磷化物负载在自支撑的导电基底上可排除化学粘结剂的影响,增强催化活性。然而,镍铁磷化物易团聚,降低电化学活性面积,影响催化体系活性。另外,为制备具有特殊表面形貌(如纳米阵列)的金属磷化物,通常需要制备相应形貌前驱体再进行高温磷化,操作步骤复杂,且涉及到磷蒸气等有毒有害物质,不利于实际生产中使用。
发明内容
本发明的目的在于提供一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法,主要解决现有技术中存在的磷化物颗粒易团聚、复合电极表面形貌不易控制、制备过程涉及有毒有害物质的问题。
为实现上述目的,本发明采用的技术方案如下:
一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法,包括以下步骤:
(S1)将碳布置于束线离子注入设备中在氮气气氛中,使用考夫曼气体离子源进行离子注入使其表面形成分布均匀的纳米阵列结构,即得到氮杂碳布;
(S2)将得到的氮掺炭步基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在硫酸镍、硫酸铁、次磷酸钠、柠檬酸组成的混合溶液中进行循环伏安实验,电位范围为-1.3V--0.3V,循环10-60次,洗涤除去残留盐类,即得到镍铁磷化物/氮杂碳布复合电极。.
进一步地,所述步骤(S1)中施加电压为30-60kV,照射时间为5-60min。
进一步地,所述步骤(S2)混合溶液中硫酸镍、硫酸铁、次磷酸钠、柠檬酸浓度分别为10-200mmol/L、1-50mmol/L、50-1000mmol/L、10-200mmol/L。
与现有技术相比,本发明具有以下有益效果:
本发明通过高能离子轰击的方法,在实现氮掺杂的同时无需磷蒸气等有毒有害物质的引入也可使其表面形貌一步成为纳米阵列结构,既实现了碳布基底的氮掺杂并对在石墨结构中引入缺陷,又实现了表面形貌的控制,制备过程简单、安全、无毒害。
本发明以绿色环保的方式获得了自支撑镍铁磷化物/氮杂碳布复合电极,并构筑了适合用于有气体参与的电催化反应的基底表面结构,实现了在较低电压下的全解水,因此,其适于推广应用。
由于大量的氮杂原子,增强了碳布基底与镍铁磷化物的作用力,可有效防止其聚集,获得小尺寸镍铁磷化物,从而解决了现有技术中存在的磷化物颗粒易团聚的问题。
表面的纳米阵列结构有效的增大了复合电极的比表面积,使催化位点充分暴露,且可促进电解液和氢气/氧气产物的输运,从而提高了催化活性。
附图说明
图1为本发明的流程示意图。
图2为本发明-实施例中(a,b)氮杂碳布和(c-f)自支撑镍铁磷化物/氮杂碳布复合电极扫描电镜照片。
图3为本发明-实施例中自支撑镍铁磷化物/氮杂碳布复合电极透射电镜照片。
图4为本发明-实施例中(a)XPS光电子能谱结果及(b)P2p,(c)Ni 2p,(d)Fe 2p的高清谱。
图5为本发明-实施例中自支撑镍铁磷化物/氮杂碳布复合电极的(a,b)析氧反应催化性能及稳定性测试结果,(c,d)析氢反应催化性能及稳定性测试结果,(e,f)全水解催化性能及稳定性测试结果。
具体实施方式
下面结合附图说明和实施例对本发明作进一步说明,本发明的方式包括但不仅限于以下实施例。
实施例
本发明提供了一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法,具有制备方式简单、操作便捷、无污染的优点。本发明的主要设计思想是使用离子注入方法一步实现碳布基底的氮掺杂,并在表面构筑碳纳米片阵列,再以电化学方法制备镍铁磷化物。其主要流程如图1所示,包括:一、制备氮杂碳布;二、制备自支撑镍铁磷化物/氮杂碳布复合电极。
下面依次对这二个主要过程进行介绍。
一、制备氮杂碳布
本发明中,对氮杂碳布的制备,主要是通过离子注入的方式实现,具体为:将碳布置于束线离子注入设备中在氮气气氛中,使用考夫曼气体离子源进行离子注入使其表面形成分布均匀的纳米阵列结构,即得到氮杂碳布。采用该方法制备氮杂碳布可同时实现在每根碳纤维表面构筑纳米阵列并改善其亲水性,无需有毒有害氮源。
二、制备自支撑镍铁磷化物/氮杂碳布复合电极
本发明中,将镍铁磷化物负载在氮杂碳布上所采用的方式具体为:将得到的氮掺碳布基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在硫酸镍、硫酸铁、次磷酸钠、柠檬酸组成的混合溶液中进行循环伏安实验,洗涤除去残留盐类,即得到镍铁磷化物/氮杂碳布复合电极。.
本发明反应操作简单,无污染,并且可实现大批量生产,下面针对本发明的技术方案列举几个实际实施例进行说明。
实施例1
将碳布置于束线离子注入设备中,在氮气气氛中,在50kV条件下进行照射50min,即得到氮掺碳布。将得到的氮掺碳布基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在40mM硫酸镍、5mM硫酸铁、200mM次磷酸钠、50mM柠檬酸组成的混合溶液中进行循环伏安实验,电压范围-1.3V--0.3V,扫描速度5mV/s,循环20次,洗涤除去残留盐类,即得到镍铁磷化物/氮杂碳布复合电极。.
由图2中(a,b)可见,本发明所制备的氮杂碳布中每一根碳纤维表面均形成了纳米阵列形貌。由图2中(c,d)可见,电化学制备的镍铁磷化物均匀的分散在纳米阵列上。透射电镜结果表明,镍铁磷化物颗粒分散均匀,尺寸约为50nm(图3a,b)。进一步X光电子能谱测试确认了碳、氧、氮、磷、镍、铁元素的存在(图4)。该复合电极催化析氧反应时,电流密度达到50mA cm-2时过电位为0.272V,且在24h测试中保持96.2%的电流密度(图5a,b);催化析氢反应时,电流密度达到50mA cm-2时过电位为0.173V,且在24h测试中保持95.0%的电流密度(图5c,d);以二电极体系催化水的全分解时,电流密度达到50mA cm-2时所需电压为1.72V,且在24h测试中保持93.4%的电流密度(图5c,d)。
实施例2
将碳布置于束线离子注入设备中,在氮气气氛中,在50kV条件下进行照射50min,即得到氮掺碳布。将得到的氮掺碳布基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在80mM硫酸镍、10mM硫酸铁、400mM次磷酸钠、100mM柠檬酸组成的混合溶液中进行循环伏安实验,电压范围-1.3V--0.3V,扫描速度5mV/s,循环60次,洗涤除去残留盐类,即得到镍铁磷化物/氮杂碳布复合电极。.
如图2e所示,镍铁磷化物铺满氮杂碳布,但可发现该复合电极仍具有基底的纳米阵列形貌。
实施例3
将碳布置于束线离子注入设备中,在氮气气氛中,在40kV条件下进行照射100min,即得到氮掺碳布。将得到的氮掺碳布基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在20mM硫酸镍、5mM硫酸铁、150mM次磷酸钠、30mM柠檬酸组成的混合溶液中进行循环伏安实验,电压范围-1.3V--0.3V,扫描速度10mV/s,循环10次,洗涤除去残留盐类,即得到镍铁磷化物/氮杂碳布复合电极。
如图2f所示,该复合电极中镍铁磷化物颗粒较少,但仍均匀分散在氮杂碳布表面。
实施例4
将碳布置于束线离子注入设备中,在氮气气氛中,在60kV条件下进行照射30min,即得到氮掺碳布。将得到的氮掺碳布基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在50mM硫酸镍、10mM硫酸铁、200mM次磷酸钠、70mM柠檬酸组成的混合溶液中进行循环伏安实验,电压范围-1.3V--0.3V,扫描速度10mV/s,循环20次,洗涤除去残留盐类,即得到镍铁磷化物/氮杂碳布复合电极。
上述实施例仅为本发明的优选实施方案之一,不应当用于限制本发明的保护范围,但凡在本发明的主题设计思想和精神上做出毫无意义的改动或润色,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内。

Claims (1)

1.一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法,其特征在于,包括以下步骤:
(1)将碳布置于束线离子注入设备中在氮气气氛中,使用考夫曼气体离子源进行离子注入使其表面形成分布均匀的纳米阵列结构,即得到氮杂碳布;在离子注入过程中,施加电压为50 kV,电流为3-4 mA,照射时间为50 min;
(2)将得到的氮掺炭步基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在40 mM硫酸镍、5 mM硫酸铁、200 mM次磷酸钠、50 mM柠檬酸组成的混合溶液中进行循环伏安实验,电位范围为−1.3V-−0.3V,扫描速度为5mV/s,循环20次,洗涤除去残留盐类,即得到自支撑镍铁磷化物/氮杂碳布复合电极。
CN201910742894.4A 2019-08-13 2019-08-13 一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法 Active CN110484933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910742894.4A CN110484933B (zh) 2019-08-13 2019-08-13 一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910742894.4A CN110484933B (zh) 2019-08-13 2019-08-13 一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法

Publications (2)

Publication Number Publication Date
CN110484933A CN110484933A (zh) 2019-11-22
CN110484933B true CN110484933B (zh) 2021-04-20

Family

ID=68550680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910742894.4A Active CN110484933B (zh) 2019-08-13 2019-08-13 一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法

Country Status (1)

Country Link
CN (1) CN110484933B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270264B (zh) * 2020-02-11 2021-04-20 中国工程物理研究院材料研究所 一种单原子铂-氮杂石墨箔自支撑析氢电极的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107819111A (zh) * 2016-09-14 2018-03-20 深圳大学 一种掺杂量可控的氮掺杂型碳材料的制备方法及应用
CN108083242A (zh) * 2017-12-15 2018-05-29 国家纳米科学中心 三元磷化镍铁纳米片、其制备方法及电解水的用途
CN109261177A (zh) * 2018-09-30 2019-01-25 温州大学 纳米尺度磷化镍/碳布复合材料及其制备方法和在电催化剂中的应用
CN109433240A (zh) * 2018-10-26 2019-03-08 济南大学 一种氮掺杂碳纳米阵列负载磷化铁/磷化钴的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3056015B1 (fr) * 2016-09-15 2018-10-12 Ecole Polytechnique Procede de dopage par l'azote de materiaux solides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107819111A (zh) * 2016-09-14 2018-03-20 深圳大学 一种掺杂量可控的氮掺杂型碳材料的制备方法及应用
CN108083242A (zh) * 2017-12-15 2018-05-29 国家纳米科学中心 三元磷化镍铁纳米片、其制备方法及电解水的用途
CN109261177A (zh) * 2018-09-30 2019-01-25 温州大学 纳米尺度磷化镍/碳布复合材料及其制备方法和在电催化剂中的应用
CN109433240A (zh) * 2018-10-26 2019-03-08 济南大学 一种氮掺杂碳纳米阵列负载磷化铁/磷化钴的制备方法

Also Published As

Publication number Publication date
CN110484933A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
Wang et al. Axial ligand effect on the stability of Fe–N–C electrocatalysts for acidic oxygen reduction reaction
Liu et al. A Janus cobalt nanoparticles and molybdenum carbide decorated N-doped carbon for high-performance overall water splitting
Sun et al. Round-the-clock bifunctional honeycomb-like nitrogen-doped carbon-decorated Co2P/Mo2C-heterojunction electrocatalyst for direct water splitting with 18.1% STH efficiency
Zhu et al. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes
Zhang et al. Pyrolyzed CoN4-chelate as an electrocatalyst for oxygen reduction reaction in acid media
Wan et al. Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction
Zhang et al. Recent progress on carbonaceous material engineering for electrochemical hydrogen peroxide generation
Sun et al. One-pot synthesis of N and P Co-doped carbon layer stabilized cobalt-doped MoP 3D porous structure for enhanced overall water splitting
CN107170994A (zh) 一种Fe‑N掺杂多孔碳氧还原催化剂
CN110528022B (zh) 一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极的制备方法
Zhang et al. Fe–N-doped carbon nanoparticles from coal tar soot and its novel application as a high performance air-cathode catalyst for microbial fuel cells
Hu et al. Nano-Fe3C@ 2D-NC@ CC as anode for improving extracellular electron transfer and electricity generation of microbial fuel cells
Woon et al. MnO2/CNT as ORR electrocatalyst in air-cathode microbial fuel cells
Pei et al. In-situ coupling FeN nanocrystals with Fe/Fe3C nanoparticles to N-doped carbon nanosheets for efficient oxygen electrocatalysis
Jin et al. Ligand-induced electronic structure and morphology regulation in Ni3S2 heterostructures for efficient bifunctional electrocatalysis
CN110484933B (zh) 一种自支撑镍铁磷化物/氮杂碳布复合电极的制备方法
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
CN112811529B (zh) 一种石墨烯基非均相电催化阴极及其制备方法和应用
Qiao et al. Electrochemical production of H2O2 with 100% current efficiency and strong stability by adjusting the interfacial side reactions of air-breathing cathodes
Liu et al. One-step growth of Ni3Fe-Fe3C heterostructures well encapsulated in NCNTs as superior self-supported bifunctional electrocatalysts for overall water splitting
Song et al. Biochar-supported Fe3C nanoparticles with enhanced interfacial contact as high-performance binder-free anode material for microbial fuel cells
Cui et al. In-situ fabrication of MOF@ CoP hybrid bifunctional electrocatalytic nanofilm on carbon fibrous membrane for efficient overall water splitting
Chen et al. Carbon-based electrocatalysts for water splitting at high-current-densities: A review
Zhu et al. Carboxylic carbon nanotube: Catalyst support material and oxygen reduction reaction of microbial fuel cells
Zhang et al. Design of wood-based self-supporting metal catalyst based on NiCo2O4 bridge for efficient oxygen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant