CN110473927A - 一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法 - Google Patents

一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法 Download PDF

Info

Publication number
CN110473927A
CN110473927A CN201910433678.1A CN201910433678A CN110473927A CN 110473927 A CN110473927 A CN 110473927A CN 201910433678 A CN201910433678 A CN 201910433678A CN 110473927 A CN110473927 A CN 110473927A
Authority
CN
China
Prior art keywords
cuscn
film
heterojunction photovoltaic
cuprous
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910433678.1A
Other languages
English (en)
Other versions
CN110473927B (zh
Inventor
李灵惠
陈达
秦来顺
黄岳祥
梁俊辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201910433678.1A priority Critical patent/CN110473927B/zh
Publication of CN110473927A publication Critical patent/CN110473927A/zh
Application granted granted Critical
Publication of CN110473927B publication Critical patent/CN110473927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于半导体光电技术领域,具体涉及一种氧化亚铜/硫氰酸亚铜(Cu2O/CuSCN)异质结光电薄膜及其制备方法。本发明提供了一种Cu2O/CuSCN异质结光电薄膜及其制备方法,其特征在于:通过对电化学沉积制备的CuSCN光电薄膜进行一定时间下的碱液浸泡处理,促使CuSCN原位反应生成Cu2O,实现了原位构建Cu2O/CuSCN异质结光电薄膜,在较大程度上解决了CuSCN光电薄膜光生载流子迁移率较低和复合率较高等问题,大大提高了CuSCN光电薄膜的光电化学性能。本发明提供的Cu2O/CuSCN异质结光电薄膜及其制备方法,具有改性手段简单、异质结结构易于调控、改性效果明显和成本低廉等优点。

Description

一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法
技术领域
本发明属于半导体光电技术领域,具体涉及一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法。
背景技术
近些年来,p型半导体薄膜作为空穴传输层或光阴极材料在光电化学领域(比如:光电催化分解水、光催化、太阳能电池、光伏器件、传感器等)受到极大的关注和广泛的应用。对于光电器件的实用化而言,理想的p型半导体薄膜要求具备:优异的空穴载流子迁移率、合适的能带结构、良好的结构稳定性、宽的电化学反应窗口、易于合成、成本低廉等特征。目前,p型半导体材料主要包括:有机小分子(比如:spiro-OMeTAD)、有机高分子(PEDOT:PSS)和无机化合物三种类型。尽管有机分子作为p型半导体薄膜因其良好的带隙匹配性、出色的成膜性和相对更高的光电转化效率等优点而备受关注,但是它们存在的不足(比如:空穴载流子迁移率(~10-4 cm2V-1s-1)较低、合成繁杂、成本高、长期稳定性差)严重制约了其未来的发展和应用。因此,近年来无机化合物p型半导体材料(如:碘化亚铜(CuI)、硫氰酸亚铜(CuSCN)、氧化亚铜(Cu2O)、氧化镍(NiO))因其空穴迁移率高、合成简单、生产成本低等优点开始引起众多科研工作者的研究兴趣。
在上述无机p型半导体材料中,硫氰酸亚铜(CuSCN)是一种宽带隙(3.6 eV)p型半导体,具有化学性质稳定、薄膜透光性高以及空穴载流子迁移率(0.01~0.1 cm2V-1s-1)相对于有机小分子spiro-OMeTAD高等特征,近年来已经被证实可以用作染料敏化太阳能电池、钙钛矿太阳能电池和量子点敏化太阳能电池的空穴传输材料。然而,CuSCN无机空穴传输材料制备的太阳能电池的光电转化效率目前尚不及Spiro-OMeTAD太阳能电池,这很可能与CuSCN无机空穴传输材料内部具有较高的载流子复合率而导致其开路电压较低有关。因此,需要通过对CuSCN薄膜进行改性来促进其载流子迁移和降低其内部载流子复合率,达到改善其光电转化效率的目的。目前报道的CuSCN改性手段主要包括:非化学计量比调控、掺杂、构建异质结结构等方法。其中,构建异质结结构是一种有效的改性手段,能够促进光生电子和光生空穴的有效分离,从而降低光生载流子的复合。此外,氧化亚铜(Cu2O)也是一种常见的半导体材料,带隙宽度仅为2.17 eV,在光催化、传感器等领域有着广泛的应用。由于Cu2O具有不同于CuSCN的能带结构,将Cu2O与CuSCN二者结合制备获得Cu2O/CuSCN异质结,有望改善CuSCN的光电化学性能。
因此,本发明提出了一种改善CuSCN光电薄膜的方法,就是将电化学沉积制备的CuSCN光电薄膜进行简单的碱液处理过程,即可实现原位生成Cu2O/CuSCN异质结薄膜,构建获得Cu2O/CuSCN异质结光电薄膜,达到改善CuSCN薄膜光电化学性能的目的。
发明内容
本发明的目的是通过对电化学沉积制备的CuSCN薄膜进行简单的碱液处理,即可实现原位生成Cu2O/CuSCN异质结薄膜,构建获得一种Cu2O/CuSCN异质结光电薄膜。本发明通过对电化学沉积制备的CuSCN光电薄膜进行一定时间下的碱液浸泡处理,促使CuSCN原位反应生成Cu2O,实现了原位构建Cu2O/CuSCN异质结光电薄膜,在较大程度上解决了CuSCN光电薄膜光生载流子复合率较高的问题,大大提高了硫氰酸亚铜光电薄膜的光电化学性能。
本发明提供了一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法,其特征在于是通过以下技术方案实现的:
(1)首先通过电化学沉积法制备获得CuSCN光电薄膜,具体过程为:将五水硫酸铜(CuSO4∙5H2O)、乙二胺四乙酸(EDTA)与硫氰酸钾(KSCN)按一定的摩尔比例(1 : 1 : 0.25~1)依次溶解到去离子水中,搅拌均匀后制备获得CuSO4浓度为12 mM的前驱体溶液;将配制的前驱体溶液转移至配有铂丝对电极、甘汞参比电极和清洗干净的FTO或ITO导电玻璃的三电极体系的电化学反应槽中,利用电化学工作站在导电玻璃表面进行电化学沉积,控制沉积电位为-0.1 ~ -0.4 V,沉积电量为20 ~ 80 mC/cm2,电化学沉积结束后,将导电玻璃取出用去离子水冲洗2~3遍,在60 oC真空烘箱烘干后,即可获得p型CuSCN光电薄膜。(2)在上述获得的CuSCN光电薄膜的前提下,进一步通过碱液浸泡处理的方式对CuSCN光电薄膜进行改性,制备获得Cu2O/CuSCN异质结光电薄膜,具体过程为:将上述制备的CuSCN光电薄膜在NaOH强碱溶液(浓度为0.05 ~ 0.2 mol/L)中浸泡一段时间(10 s~ 180 s),取出后用去离子水冲洗2遍,即可获得原位生长的Cu2O/CuSCN异质结光电薄膜。
本发明具有的优点和积极效果是:
本发明通过碱液处理方式对CuSCN光电薄膜进行改性,制备获得原位生长的Cu2O/CuSCN异质结光电薄膜,具有改性手段简单、异质结结构易于调控、改性效果明显和成本低廉等优点。相比于其他构建异质结的改性手段,碱液浸泡处理过程能够在CuSCN薄膜表面上原位生长Cu2O,原位构建获得Cu2O/CuSCN异质结,而且能够通过改变碱液浸泡时间来调控Cu2O和CuSCN二者的比例;相对于未改性CuSCN光电薄膜而言,制备获得的Cu2O/CuSCN异质结光电薄膜由于Cu2O和CuSCN二者界面上形成的异质结结构能够有效地促进光生电荷的分离并降低光生载流子的复合,从而能够大大地提高CuSCN薄膜的光电化学性能。
附图说明
图1是实施例1所制备的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜的XRD谱图;
图2是实施例1所制备的(A)CuSCN光电薄膜和(B)Cu2O/CuSCN异质结光电薄膜的扫描电镜(SEM)图;
图3是实施例1所制备的(A, B)CuSCN光电薄膜和(C, D)Cu2O/CuSCN异质结光电薄膜的透射电镜(TEM)和高分辨率TEM图(插图为快速傅里叶变换(FFT)图);
图4是实施例1所制备的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜的莫特-肖特基(Mott-Schottky)图谱;
图5是实施例1所制备的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜在紫外LED灯(λ= 365 nm,光强为300 W/m2)光照条件下的斩波光电流响应谱图;
图6是实施例1所制备的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜在紫外LED灯(λ= 365 nm,光强为300 W/m2)光照条件下的电化学阻抗(EIS)谱图。
具体实施方式
下面通过具体的实施例对本发明作进一步的详细描述,以下实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1:
(1)将2.4 mmol的五水硫酸铜、2.4 mmol的乙二胺四乙酸(EDTA)与0.6 mmol的硫氰酸钾(KSCN)先后溶解到200 mL去离子水中,搅拌均匀后制备获得前驱体溶液;将上述制备的前驱体溶液转移至配有铂丝对电极(铂丝)、甘汞参比电极和清洗干净的FTO导电玻璃的三电极体系电化学反应槽中,在沉积电位为-0.4 V、沉积电荷量为80 mC/cm2条件下进行电化学沉积;将电化学沉积结束后的FTO导电玻璃用去离子水冲洗2遍,60 oC真空烘箱干燥后制备获得CuSCN光电薄膜。
(2)将上述制备的CuSCN薄膜在0.05 mol/L的NaOH溶液中浸泡90 s,取出后用去离子水冲洗2遍,即可获得原位生长的Cu2O/CuSCN异质结光电薄膜。
实施例2:
(1)CuSCN光电薄膜的制备过程同实施例1。
(2)在获得上述CuSCN光电薄膜的前提下,将CuSCN薄膜在0.05 mol/L的NaOH溶液中浸泡30 s,取出后用去离子水冲洗2遍,即可获得原位生长的Cu2O/CuSCN异质结光电薄膜。
实施例3:
(1)CuSCN光电薄膜的制备过程同实施例1。
(2)在获得上述CuSCN光电薄膜的前提下,将CuSCN薄膜在0.05 mol/L的NaOH溶液中浸泡180 s,取出后用去离子水冲洗2遍,即可获得原位生长的Cu2O/CuSCN异质结光电薄膜。
实施例4:
(1)将2.4 mmol的五水硫酸铜、2.4 mmol的乙二胺四乙酸(EDTA)与1.2 mmol的硫氰酸钾(KSCN)先后溶解到200 mL去离子水中,搅拌均匀后制备获得前驱体溶液;将上述制备的前驱体溶液转移至配有铂丝对电极(铂丝)、甘汞参比电极和清洗干净的FTO导电玻璃的三电极体系电化学反应槽中,在沉积电位为-0.4 V、沉积电荷量为60 mC/cm2条件下进行电化学沉积;将电化学沉积结束后的FTO导电玻璃用去离子水冲洗2遍,60 oC真空烘箱干燥后制备获得CuSCN光电薄膜。
(2)将上述制备的CuSCN薄膜在0.05 mol/L的NaOH溶液中浸泡90 s,取出后用去离子水冲洗2遍,即可获得原位生长的Cu2O/CuSCN异质结光电薄膜。
实施例5:
(1)CuSCN光电薄膜的制备过程同实施例4。
(2)将上述制备的CuSCN薄膜在0.1 mol/L的NaOH溶液中浸泡60 s,取出后用去离子水冲洗2遍,即可获得原位生长的Cu2O/CuSCN异质结光电薄膜。
实施例6:
(1)将2.4 mmol的五水硫酸铜、2.4 mmol的乙二胺四乙酸(EDTA)与2.4 mmol的硫氰酸钾(KSCN)先后溶解到200 mL去离子水中,搅拌均匀后制备获得前驱体溶液;将上述制备的前驱体溶液转移至配有铂丝对电极(铂丝)、甘汞参比电极和清洗干净的FTO导电玻璃的三电极体系电化学反应槽中,在沉积电位为-0.4 V、沉积电荷量为40 mC/cm2条件下进行电化学沉积;将电化学沉积结束后的FTO导电玻璃用去离子水冲洗2遍,60 oC真空烘箱干燥后制备获得CuSCN光电薄膜;
(2)将上述制备的CuSCN薄膜在0.1 mol/L的NaOH溶液中浸泡90 s,取出后用去离子水冲洗2遍,即可获得原位生长的Cu2O/CuSCN异质结光电薄膜。
实施例7:
(1)CuSCN光电薄膜的制备过程同实施例6。
(2)将上述制备的CuSCN薄膜在0.2 mol/L的NaOH溶液中浸泡30 s,取出后用去离子水冲洗2遍,即可获得原位生长的Cu2O/CuSCN异质结光电薄膜。
实施例8:
(1)CuSCN光电薄膜的制备过程同实施例6。
(2)将上述制备的CuSCN薄膜在0.05 mol/L的NaOH溶液中浸泡180 s,取出后用去离子水冲洗2遍,即可获得原位生长的Cu2O/CuSCN异质结光电薄膜。
图1为实施例1所制备的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜的XRD谱图。从图中可以看出,电化学沉积法制备的CuSCN光电薄膜在2θ = 16.16°时出现的特征衍射峰对应为β-CuSCN晶相结构(JCPDS card No.29-0581)的(003)晶面,其余衍射峰均为FTO导电玻璃基底的衍射峰;而Cu2O/CuSCN异质结光电薄膜的XRD图谱中观察到了CuSCN的(003)晶面,同时发现在2θ = 36.42°处出现了Cu2O(111)晶面的特征衍射峰(JCPDS card No. 05-0667),但由于样品未经过热处理,因此Cu2O衍射峰强度比较小,表明Cu2O结晶性不强。XRD测试结果表明,经过简单的碱液浸泡处理方式,能够在CuSCN光电薄膜表面引入Cu2O晶相结构。
图2为实施例1所制备的(A)CuSCN光电薄膜和(B)Cu2O/CuSCN异质结光电薄膜的扫描电镜(SEM)图。从图2A中可以看到纯CuSCN薄膜是均匀的紧密排列纳米棒阵列(直径约为110 nm),插图可以看出CuSCN薄膜厚度约为230 nm;图2B可以看到Cu2O/CuSCN薄膜呈现出完全不同的表面形貌结构特征,在CuSCN纳米棒表面均匀生长出一层网状交错的Cu2O纳米针状结构,插图也清晰地观察到了薄膜表面存在的CuSCN纳米棒与针状Cu2O双层结构;SEM测试结果进一步证实了简单的碱液处理能够明显地改变CuSCN光电薄膜表面形貌,形成Cu2O/CuSCN异质结结构。
图3为实施例1所制备的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜的TEM图像。图3A可以看到均匀光滑的CuSCN纳米棒,平均直径约为100 nm,形貌特征与扫描电镜图大致相同,对图中方框1位置处放大后,可以观察到明显的晶格条纹,晶面间距为0.27 nm对应于CuSCN的(006)晶面(图3B),而从FFT插图中可以清晰反映出该光电薄膜具有明显的晶相结构。而Cu2O/CuSCN薄膜(图3C)可以明显看出薄膜具有Cu2O纳米针和CuSCN纳米棒两层不同的结构,其中Cu2O纳米针是从CuSCN纳米棒中生长出来,二者结合紧密,已经形成异质结结构,而在二者交界处框选2放大的HRTEM图(图3D)中可以清晰地观察到两种明显不同的晶格条纹(晶面间距分别为0.27 nm和0.24 nm),分别归属于CuSCN的(006)晶面和Cu2O的(111)晶面,这与XRD测试的结果一致,而且在FFT插图中也能看到两种不同的晶相衍射环。透射电镜测试结果进一步直观地证实了通过强碱处理可以在CuSCN纳米棒薄膜表面原位生长出Cu2O纳米针,形成Cu2O/CuSCN异质结薄膜结构。
图4为实施例1所制备的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜的莫特-肖特基(Mott-Schottky)谱图。由图中可以看出,CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜的莫特-肖特基曲线的斜率均为负值,证明合成的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜均为p型半导体特性,也说明碱液处理形成的Cu2O/CuSCN异质结结构不会改变CuSCN光电薄膜的p型半导体性质。
图5为实施例1所制备的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜的斩波光电流测试结果。由图可以观察到光照下CuSCN和Cu2O/CuSCN薄膜均具有明显的光电响应特性,而且Cu2O/CuSCN薄膜产生的光电流要明显大于CuSCN薄膜,平均光电流大小约为后者的16倍,表明Cu2O/CuSCN异质结能够很大程度上提高CuSCN薄膜的光生载流子迁移速率和光电化学性能。值得注意的是,Cu2O/CuSCN异质结薄膜在光照开关瞬间均出现了明显的突增或突减光电流,而纯CuSCN薄膜则没有这种现象,这种现象被认为是在光照开关瞬间产生了大量光生载流子,但由于界面能的限制,产生的光生电子和空穴积累在界面处无法被快速转移而出现的。
图6为实施例1所制备的CuSCN光电薄膜和Cu2O/CuSCN异质结光电薄膜的电化学阻抗(EIS)谱图。由图中可以看出,Cu2O/CuSCN异质结薄膜的高频区半圆弧小于CuSCN薄膜的半圆弧,而这个半圆弧半径能够反映出光生载流子的电荷传输速率,表明在同样测试条件下,Cu2O/CuSCN异质结光电薄膜相对于CuSCN光电薄膜而言具有更低的界面电荷传输阻值,具有更高的载流子迁移率,最终有效提高了CuSCN的光电化学性能。
上述测试结果表明,通过简单的碱液处理工艺能够在CuSCN光电薄膜表面原位生长获得Cu2O/CuSCN异质结光电薄膜;而且形成的Cu2O/CuSCN异质结结构不会改变CuSCN的p型半导体特性,能够在很大程度上改善CuSCN光电薄膜的光电化学性能,证实了碱液处理工艺是一种改善p型CuSCN光电化学性能的有效手段,并促进其光电化学应用。

Claims (5)

1.一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法,其特征在于:通过碱液浸泡处理CuSCN光电薄膜的方式实现原位构建Cu2O/CuSCN异质结光电薄膜,具体技术方案如下:
(1)将CuSO4∙5H2O、乙二胺四乙酸与KSCN按一定的摩尔比例依次溶解到去离子水中,搅拌溶解后制备获得前驱体溶液;
(2)将步骤(1)配制的前驱体溶液转移至配有铂丝对电极、甘汞参比电极和清洗干净的FTO或ITO导电玻璃的三电极体系的电化学反应槽中,利用电化学工作站在导电玻璃表面进行电化学沉积,控制电化学沉积过程中的沉积电位和沉积电量;
(3)将步骤(2)电化学沉积结束后的导电玻璃取出,用去离子水冲洗3遍,在60 oC真空烘箱烘干后,即可获得CuSCN光电薄膜;
(4)将步骤(3)获得的CuSCN光电薄膜在一定浓度的NaOH强碱溶液中浸泡一段时间,取出后用去离子水冲洗2遍,即可获得原位生长的氧化亚铜/硫氰酸亚铜异质结光电薄膜。
2.根据权利要求1所述的一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法,其特征在于:该薄膜具有Cu2O纳米针和CuSCN纳米棒两层明显不同的纳米结构,其中Cu2O纳米针是从CuSCN纳米棒中生长出来,二者结合紧密,形成异质结结构。
3.根据权利要求1所述的一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法,其特征在于:步骤(1)中CuSO4、乙二胺四乙酸和KSCN加入的摩尔比为1 : 1 : 0.25~1,使得配制的电解液溶液中CuSO4和乙二胺四乙酸的摩尔浓度均为12 mmol/L,KSCN摩尔浓度为3 ~12 mmol/L。
4.根据权利要求1所述的一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法,其特征在于:步骤(2)中电化学沉积电位为-0.1 ~ -0.4 V,沉积电量为20 ~ 80 mC/cm2
5.根据权利要求1所述的一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法,其特征在于:步骤(4)中NaOH强碱溶液浓度为0.05 ~ 0.2 mol/L,浸泡时间为10 s~ 180 s。
CN201910433678.1A 2019-05-23 2019-05-23 一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法 Active CN110473927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910433678.1A CN110473927B (zh) 2019-05-23 2019-05-23 一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910433678.1A CN110473927B (zh) 2019-05-23 2019-05-23 一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110473927A true CN110473927A (zh) 2019-11-19
CN110473927B CN110473927B (zh) 2021-05-07

Family

ID=68506732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910433678.1A Active CN110473927B (zh) 2019-05-23 2019-05-23 一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110473927B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911509A (zh) * 2019-12-10 2020-03-24 中国计量大学 一种硫化铜量子点/硫氰酸亚铜异质结光电薄膜及其制备方法
CN111302383A (zh) * 2020-02-08 2020-06-19 复旦大学 掺杂型氧化亚铜纳米材料及其制备方法和应用
CN114628711A (zh) * 2022-03-31 2022-06-14 青岛科技大学 一种光辅助的镁/海水电池及其制备方法
CN115709090A (zh) * 2022-11-15 2023-02-24 江西理工大学 一种CuSCN/CoS2复合光催化材料、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130008482A1 (en) * 2007-08-29 2013-01-10 Nanosolar, Inc. Edge Mountable Electrical Connection Assembly
CN108264242A (zh) * 2018-03-01 2018-07-10 复旦大学 纳米结构氧化亚铜光电转换薄膜及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130008482A1 (en) * 2007-08-29 2013-01-10 Nanosolar, Inc. Edge Mountable Electrical Connection Assembly
CN108264242A (zh) * 2018-03-01 2018-07-10 复旦大学 纳米结构氧化亚铜光电转换薄膜及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911509A (zh) * 2019-12-10 2020-03-24 中国计量大学 一种硫化铜量子点/硫氰酸亚铜异质结光电薄膜及其制备方法
CN111302383A (zh) * 2020-02-08 2020-06-19 复旦大学 掺杂型氧化亚铜纳米材料及其制备方法和应用
CN114628711A (zh) * 2022-03-31 2022-06-14 青岛科技大学 一种光辅助的镁/海水电池及其制备方法
CN115709090A (zh) * 2022-11-15 2023-02-24 江西理工大学 一种CuSCN/CoS2复合光催化材料、制备方法及应用
CN115709090B (zh) * 2022-11-15 2024-01-26 江西理工大学 一种CuSCN/CoS2复合光催化材料、制备方法及应用

Also Published As

Publication number Publication date
CN110473927B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
Liao et al. Oriented hierarchical single crystalline anatase TiO 2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells
Xu et al. Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells
Qi et al. Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties
Myung et al. Composition-tuned ZnO− CdSSe core− shell nanowire arrays
CN110473927A (zh) 一种氧化亚铜/硫氰酸亚铜异质结光电薄膜及其制备方法
Tian et al. Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells
Guo et al. Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance
Liu et al. PEC electrode of ZnO nanorods sensitized by CdS with different size and its photoelectric properties
Feng et al. Three-dimensional hyperbranched TiO 2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells
Meng et al. Electrodeposition for the synthesis of ZnO nanorods modified by surface attachment with ZnO nanoparticles and their dye-sensitized solar cell applications
Xiang et al. Fabrication of Cu 2 O/TiO2 nanotube arrays with enhanced visible-light photoelectrocatalytic activity
CN112588303B (zh) 一种硒氧化铋纳米片的制备方法及基于其的异质结型光电极
Lu et al. Electrodeposition of hierarchical ZnO nanorod arrays on flexible stainless steel mesh for dye-sensitized solar cell
Lee et al. Facile conversion synthesis of densely-formed branched ZnO-nanowire arrays for quantum-dot-sensitized solar cells
Zhang et al. TiO2 nanorod arrays/ZnO nanosheets heterostructured photoanode for quantum-dot-sensitized solar cells
Pauportè Synthesis of ZnO nanostructures for solar cells—a focus on dye-sensitized and perovskite solar cells
Liu et al. High-efficiency nanorod-nanosheet arrays sandwich photoelectrode for photoelectrochemical water splitting
CN103871750A (zh) 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
Cao et al. CdS/CdSe co-sensitized hierarchical TiO 2 nanofiber/ZnO nanosheet heterojunction photoanode for quantum dot-sensitized solar cells
KR101828943B1 (ko) 금속 산화물 나노섬유, 나노막대 및 코팅층을 광전극으로 포함하는 페로브스카이트 태양전지 및 이의 제조방법
Chen et al. Morphology selective electrodeposition of Cu2O microcrystals on ZnO nanotube arrays as efficient visible-light-driven photo-electrode
Han et al. CdSe-sensitized branched CdS hierarchical nanostructures for efficient photoelectrochemical solar hydrogen generation
CN110808333A (zh) 一种基于铜锌锡硫硒空穴传输层的钙钛矿太阳能电池及其制备方法
Chen et al. Efficient electron transport in ZnO nanowire/nanoparticle dye-sensitized solar cells via continuous flow injection process
Luo et al. 3D hierarchically branched Cu2S/ZnO heterojunction nanowire arrays for enhanced solar water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant