CN110472184A - 一种基于Landsat遥感数据的多云雨雾地区水稻识别方法 - Google Patents

一种基于Landsat遥感数据的多云雨雾地区水稻识别方法 Download PDF

Info

Publication number
CN110472184A
CN110472184A CN201910778078.9A CN201910778078A CN110472184A CN 110472184 A CN110472184 A CN 110472184A CN 201910778078 A CN201910778078 A CN 201910778078A CN 110472184 A CN110472184 A CN 110472184A
Authority
CN
China
Prior art keywords
rice
data
landsat
lswi
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910778078.9A
Other languages
English (en)
Other versions
CN110472184B (zh
Inventor
何彬彬
冯实磊
张宏国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910778078.9A priority Critical patent/CN110472184B/zh
Publication of CN110472184A publication Critical patent/CN110472184A/zh
Application granted granted Critical
Publication of CN110472184B publication Critical patent/CN110472184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明属于农业遥感技术领域,具体涉及一种基于Landsat遥感数据的多云雨雾地区水稻识别方法。本发明,将水稻与其他明显地物区分,获取遥感影像中潜在水稻种植区;然后基于地面实测数据,提取水稻样本像元数据移栽期阶段的光谱指数之间的关系,结合水稻种植区划数据和水稻潜在移栽期数据,建立植被指数阈值模型进行水稻的识别,并分段逐步提取遥感影像中水稻种植面积,将不同水稻类别的种植面积合并,快速、准确地获取最终的水稻种植区分布图。相比现有利用遥感技术提取水稻种植面积的方法,本发明主要适用区域为多云雨雾的华南西南地区。本发明能够真实反映实际种植情况,提高了种植面积提取的精度。

Description

一种基于Landsat遥感数据的多云雨雾地区水稻识别方法
技术领域
本发明属于农业遥感技术领域,具体涉及一种基于Landsat遥感数据的多云雨雾地区水稻识别方法。
背景技术
水稻作为世界三大粮食作物之一,是人类最主要的粮食来源,在我国乃至世界的粮食生产结构中占有十分重要的地位。全球超过一半的人口以大米为主食,尤其对亚洲、非洲和拉美地区的发展中国家,粮食的安全生产显得尤为重要。水稻的生产状况与整个世界的粮食安全、社会稳定息息相关。掌握水稻种植面积、长势和产量信息,能够为监测中国水稻生产状况、指导农业生产与宏观调控水稻种植区划、水稻产量的预报和评估、粮食价格的预测和政府部门对粮食生产政策的制定等方面提供依据。
长期以来,我国水稻种植面积依靠人工方法,通过实地抽样调查和逐级汇总方式来获取数据,这种方法不仅需要耗费大量的人力、物力,且受到各种主客观因素的影响,精度受到很大限制。随着遥感技术的快读发展,为农作物种植面积快速、准确地实现动态监测提供了新的技术手段。遥感信息具有覆盖范围大、探测周期短、现势性强、成本低等特点,有利于短时间内连续获取大范围的地面信息,实现农作物的种植面积提取。农作物种植面积的遥感提取离不开农作物的识别。而农作物的识别主要是利用绿色植物独特的波谱反射特征,从而将农作物与其他地物区分开。
利用遥感技术进行水稻种植面积的估算,国内外已有大量的研究。以往的研究主要是通过单一时相的影响分类法对水田进行精细化监测或者通过时序归一化植被指数(NDVI)的差异监测水稻种植信息。近年来,随着新一代中、高空间分辨率卫星数据的出现,其多时相和多通道的优势,在监测水稻种植面积越来越受到重视。自2008年12月起美国政府决定将Landsat全球数据全部共享,向所有用户免费提供。Landsat是世界上收集时间最长的中等分辨率土地遥感数据,四十多年来为农业、地质、林业、区域规划、教育、测绘和全球变化研究提供了重要资源。Landsat卫星数据的免费发布以及Landsat-8和Sentinel-2的推出为以更高空间分辨率的碎片化景观绘制水稻图谱提供了前所未有的机会。本发明的研究区为多云雨雾的华南西南地区,此地区的光学遥感数据可用的数量极少(如图3所示),故本发明利用Zhe Zhu的CCDC算法和时间序列模型来模拟、预测任意时间无云、无条带的Landsat反射率数据。Landsat卫星数据识别水稻主要的三种特征指数为NDVI(归一化植被指数)、(LSWI)陆表水体指数和EVI(增强型植被指数)。NDVI可较好的反映植被绿度变化,能够消除影像内部和外部的噪音。LSWI是与植被水分含量相关的植被指数,利用对水体敏感的短波红外波段,对于处于蓄水期的水稻监测有较好的效果。EVI利用蓝光波段修正大气对红光波段的影响,可提高对高生物量区的敏感度,与NDVI互为补充,现阶段应用卫星数据进行水稻种植面积的监测往往是根据水稻的物候历,确定水稻识别的移栽期、生长期和收获期等关键时期,通过关键时期内的特征来识别水稻。水稻生长过程中有三个重要的时期:一是移栽期;二是生长期;三是收获后。在不同生育期,随着水稻生长状况发生变化,相应地光谱特征也随之变化。目前这三种植被指数广泛应用于水稻遥感监测和估产研究中,Landsat影像的最佳时相选取基于水稻不同时期的光谱特征。在移栽期,稻田常常存有2~15cm的水,此时地表是水稻和水体的混合,可通过影像中水体和水稻的混合光谱特征,利用对水体和植被较为敏感的波段或光谱指数来监测NDVI(EVI)和LSWI变化,识别蓄水和移栽期的水稻,并提取水稻种植面积。利用遥感影像高精度地提取作物种植面积,但是,当前研究仍然存在一些缺陷:(1)由于“同物异谱”和“异物同谱”现象以及混合像元影响了结果的准确性;(2)由于地区差异,不同种植类型水稻的耕作制度不同,不分段地一次性提取种植面积往往无法完全反映实际种植情况,导致种植面积提取结果与实际种植情况有出入。遥感影像分析方法的选取将直接影响水稻种植面积的提取精度,如何利用遥感影像实现高精度提取水稻的种植面积成为农业遥感领域亟待解决的技术问题。
发明内容
针对现有水稻种植面积提取精度较低,无法反映实际种植情况的问题,本发明提供一种基于长时间序列Landsat遥感数据的多云雨雾地区水稻识别方法,利用Zhe Zhu的CCDC算法和时间序列模型来模拟、预测任意时间无云、无条带的Landsat反射率数据,通过水稻的耕作制度和农时历作为辅助,分段逐步提取遥感影像中水稻种植面积,达到了提高提取精度的目的。
本发明的技术方案具体如下:
一种基于长时间序列Landsat遥感数据的多云雨雾地区水稻识别方法,其特征在于,包括如下步骤:
步骤1:首先从美国地质调查局(USGS)提供的ESPA网站(https://espa.cr.usgs.gov/)下载实验所需的Landsat 5/7/8二级产品数据(Landsat Level 2),其中包括地表反射率数据(Surface Reflectance)、亮度温度数据(BrightnessTemperature)和像元质量评估数据(Pixel QA),所有数据都是从2000年至今的云覆盖量小于80%。
步骤2:然后根据云检测算法(Fmask 3.3,NASA所采用的云和云阴影检测算法)进行云和云阴影检测。然后利用CCDC算法将需要的多个波段的地表反射率数据与云和云阴影检测结果Fmask波段组合在一起,生成ENVI标准格式。进一步将在Linux Ubuntu 16.04操作系统上利用并行方式运行CCDC_ChangeARD13_01(一个可执行文件),这一步CCDC算法的关键步骤——连续变化检测。最后利用Zhe Zhu的时间序列模型获取研究区域内任意时刻的无云、无条带的Landsat反射率数据集,此数据集的每一景数据共计8个波段,分别是蓝光波段、绿光波段、红光波段、近红外波段、短波红外1、短波红外2、热红外和Fmask(Blue,Green,Red,NIR,SWIR1,SWIR2,TIR,Fmask)。此步骤所用的时间序列模型是由Zhe Zhu和Woodcock在2015年提出的,该模型的基本思想是:基于所有可用的Landsat反射率数据,利用每个像元的至少15个有效观测数据拟合一个曲线方程,将该曲线方程作为时间序列模型进行得到任意时刻的Landsat反射率数据(如图6所示)。时间序列模型所采用的曲线方程如下:
上述公式(1)中,x表示Julian日期(儒略日),i表示Landsat影像的第i个波段,T为变化周期(T=365),a0,i是第i个波段的均值系数,a1,i,b1,i是年内变化系数,c1,i为年际变化系数,为第i个波段在x时刻的模型预测值,表示第k个时间节点。
步骤3:根据步骤2得到的任意时刻的无云、无条带的Landsat反射率数据集,计算其光谱指数——NDVI(归一化植被指数,式2)、EVI(增强型植被指数、式3)、LSWI(陆表水体指数,式4),利用多种光谱指数的不同组合来识别永久水体(式5)、常绿植被(式6)等其它地物类型将水稻与其他明显地物区分,确定研究区域内潜在的水稻种植区域。具体表达式如下所示:
NDVI<0.1&&NDVI<LSWI(10/46) (5)
NDVI>0.7(20/46)||LSWI>0.15(40/46) (6)
上述公式2、3、4中NIR、Red、Blue分别代表近红外波段、红光波段、蓝光波段、短波红外1。其中式5中的(10/46)表示一年46景数据中每个像元符合大于等于10即为永久水体;式6中与式5表示意思相同,一年46景数据中每个像元满足NDVI>0.7符合大于等于20或者一年46景数据中每个像元满足LSWI>0.15符合大于等于40即为常绿植被。
步骤4:利用Geo Explore 3000仪器、地物光谱仪(PSR-3500)、LAI-2200植物冠层分析仪获取地面确定的大区域的水稻实测数据,其中实测数据主要包括提取水稻种植区域的经纬度信息、水稻不同生长阶段的光谱曲线以及LAI数据。然后根据实测的水稻种植区域的经纬度信息提取对应像元移栽期阶段的步骤3中的光谱指数数据(NDVI、EVI、LSWI),然后利用数理统计分析的方法分析移栽期前后水稻的不同光谱指数之间的关系(如图8所示),结合水稻种植区划数据和水稻的潜在移栽期数据获取的水稻相关信息,确定植被指数阈值模型的参数T,建立植被指数阈值模型。植被指数阈值模型表达式如公式7所示:
LSWI+T≥EVI或LSWI+T≥NDVI (7)
步骤5:根据步骤4中建立的植被指数阈值模型(式7)对步骤3中确定的研究区域内潜在的水稻种植区域进行逐像元的进行判别,如果某像元在农业部市场与经济司所公布水稻潜在移栽期(如图5所示)前后7~15天中有一次或多次满足植被指数阈值模型,即判定为水稻;否则判定为非水稻。根据上述判定结果,获取最终的水稻种植区域分布图。
步骤6:结合国家统计局统计年鉴中水稻种植面积数据(http://data.stats.gov.cn/easyquery.htm?cn=C01),对提取的水稻种植面积结果进行对比分析,或者利用谷歌地球提供的高分辨率影像数据(Very High Resolution Images)选择随机样本点进行对比分析,精度评价。如果精度较低,重复步骤4和步骤5,对参数T的阈值进行相应的调整,确定最为合适的植被指数阈值模型。
本发明所述遥感影像产品具体为美国地质调查局(USGS)提供的ESPA数据,即Landsat Level 2(Landsat 5/7/8二级产品)的产品数据(https://espa.cr.usgs.gov/)。
进一步地,所述步骤2中任意时刻的无云、无条带的Landsat反射率数据集是利用的Zhe Zhu和Woodcock在2014年提出的连续变化检测和分类算法(Continuous ChangeDetection and Classification,CCDC)以及后期提出的时间序列模型,基于美国地质调查局提供的可用的云覆盖量低于20%的Landsat影像数据获取的。
进一步地,所述步骤3中将水稻与其他明显地物区分是通过包括LSWI、NDVI、EVI在内的植被指数之间的差值关系,确定永久水体、常绿植被等其它地物类型,从而获取水稻潜在种植区域。
进一步地,所述步骤4中水稻种植区划数据是根据国家统计局自2001年开始出版的《中国统计年鉴》中不同种植类型的水稻面积整理分析而确定。
进一步地,所述步骤4中水稻的潜在移栽期数据是根据农业部市场与经济司所公布的各地区的水稻农时信息整理分析而确定。
进一步地,所述步骤4中植被阈值模型是依据地面实测水稻种植地区的移栽期间的LSWI和EVI(NDVI)的散点图(如图8所示),建立LSWI和EVI(NDVI)之间的相关关系,进而实现水稻识别。
进一步地,所述步骤6中还包括:结合统计年鉴数据和高分辨率影像数据,对提取的不同类别的水稻种植面积进行精度评价,如果精度达不到要求,可重复步骤4和步骤5,对植被指数阈值模型中阈值参数T进行调整。
本发明考虑到水稻与其它地物类型的区分,剔除干扰像元的影响,并且选取水稻的移栽期作为水稻识别的关键生长期,移栽期土壤的含水量非常高。因此可根据稻田含水量高的特点,从遥感图像上与其他农作物区别,实现水稻的识别。LSWI是与植被水分含量相关的植被指数,EVI对高生物量区非常敏感,因此利用通过地面实测水稻移栽期的样本数据来建立LSWI和EVI(NDVI)之间的相关关系来建立植被阈值模型。同时,考虑到不同种植类型水稻的耕作制度不同,进一步地结合水稻的耕作制度和农时信息,采用植被阈值模型进行分段提取水稻种植面积,最终将不同种植类型的水稻种植面积合并,即可准确反映水稻种植情况,得到相对较为准确的水稻种植面积。
下面阐述本发明的构思:为考虑到区分水稻与其它地物类型,本研究选取水稻的移栽期作为识别的关键生长期,识别移栽期的水稻,最终达到水稻识别与种植面积提取的目的。
与现有技术相比,本发明提供的一种基于长时间序列Landsat遥感数据的多云雨雾地区水稻识别方法,达到如下有益效果:
第一,本发明利用光学遥感数据快速实现大面积水稻制图,深度挖掘了光学遥感数据在农业方面的应用前景,也为科学的指导农事提供了可靠的依据。
第二,与现有的基于光学遥感的水稻制图的区域相比,本发明主要适用区域为多云雨雾的华南西南地区。
第三,与传统依靠野外测量调查水稻种植面积的方法相比,本发明节省了大量的人力物力财力,能够真实反映实际种植情况,提高了种植面积提取的精度。
附图说明
图1是本发明实施例基于长时间序列Landsat遥感数据的多云雨雾地区水稻识别方法的流程示意图。
图2是本发明实施例中的研究区域图。
图3是本发明实施例中研究区内可用的Landsat时间序列清晰像元占比分布图(行/列:126/041)。
图4是本发明实施例中研究区域内水稻种植区划信息图。
图5是本发明实施例中研究区域内水稻的潜在移栽期图。
图6是本发明实施例中研究区域内Landsat的第四波段反射率数据的真实值与时间序列模型得到的预测曲线图。
图7(a)是本发明实施例中研究区域内有云、有条带的Landsat数据,图7(b)是本发明实施例中研究区域内通过时间序列模型得到的无云、无条带的Landsat数据。
图8是本发明实施例中地面实测稻田灌水移栽期LSWI和EVI(NDVI)的关系图。
图9是本发明实施例中基于长时间序列Landsat遥感数据的多云雨雾地区水稻识别方法提取得到的2010年至2018年的水稻种植分布图。
具体实施方式
通过选择水稻生长阶段的关键时期——移栽期作为水稻识别的突破口,在移栽期,稻田常常存有2~15cm的水,因此地表是水稻和水体的混合,可通过遥感影像中水体和水稻的混合光谱特征,利用对水体和植被较为敏感的波段或植被指数来监测NDVI、EVI和LSWI变化,识别移栽期的水稻,并提取种植面积。NDVI、EVI、LSWI是较为常见的植被指数,可通过遥感卫星反射率产品(Landsat Level 2)的波段计算获取。
下面结合说明书附图和具体实施例对本发明进行详细说明:
实施例:
一种基于长时间序列Landsat遥感数据的多云雨雾地区水稻识别方法,包括如下步骤:
步骤1:数据获取:
依据美国地质调查局(USGS)提供的遥感卫星反射率产品,获取Landsat 5/7/8二级反射率产品;依据国家统计局发布的《中国统计年鉴》和农业部市场与经济司所公布的各地区的农作物物候信息,获取水稻种植区划数据和水稻潜在移栽期数据;依据地面实测数据,获取水稻灌水移栽期LSWI和EVI(NDVI)数据。
步骤2:数据处理:
对步骤1获取的Landsat 5/7/8二级反射率产品利用CCDC算法依次进行云和云阴影检测、连续变化检测,然后利用时间序列模型结合变化检测结果得到任意时刻无云、无条带的Landsat反射率数据(具体流程如图1所示);对获取的《中国统计年鉴》中水稻种植面积进行整理、分析,得到水稻种植区划数据,结果如图4所示;对获取农业部市场与经济司所公布的各地区的农时历整理分析得到水稻的潜在移栽期数据,结果如图5所示;对获取的无云、无条带的Landsat反射率数据计算所需的归一化植被指数NDVI、增强型植被指数EVI、陆表水体指数LSWI。对地面实测水稻淹水移栽期的LSWI和EVI(NDVI)统计分析得到水稻识别模型,如图8所示。
此步骤所用的时间序列模型是有Zhe Zhu和Woodcock在2015年提出的,该模型的基本思想是:基于所有可用的Landsat影像,利用每个像元的多个有效观测数据拟合一个曲线方程,将该曲线方程作为时间序列模型进行得到任意时刻的Landsat反射率数据(如图6所示)。时间序列模型所采用的曲线方程如下:
上述公式(1)中,x表示Julian日期(儒略日),i表示Landsat影像的第i个波段,T为变化周期(T=365),a0,i是第i个波段的均值系数,a1,i,b1,i是年内变化系数,c1,i为年际变化系数,为第i个波段在x时刻的模型预测值,表示第k个时间节点。
步骤3:潜在水稻区域的确定:
该步骤的原理具体是通过对包括NDSI、LSWI、NDVI等植被指数之间的差值关系确定永久水体、常绿植被、雪等其它地物类型,获取水稻可能或潜在的区域;
本发明基于光学遥感数据的多时相特征,以年作为时间尺度,将对2018年Landsat反射率数据计算获取LSWI、NDVI、EVI等指数数据,来识别永久水体(式2)、常绿植被(式3)等其它地物类型。具体表达式如下所示:
NDVI<0.1&&NDVI<LSWI(10/46) (5)
NDVI>0.7(20/46)||LSWI>0.15(40/46) (6)
式2中(10/46)表示一年46景数据中每个像元符合大于等于10即为永久水体;式2中与式3表示意思相同,一年46景数据中每个像元满足NDVI>0.7符合大于等于20或者一年46景数据中每个像元满足LSWI>0.15符合大于等于40即为常绿植被。
步骤4:水稻种植面积的提取:
(1)水稻识别:
在移栽期,稻田的反射光谱通常都是水、土壤、秧苗及稻田的背景沟渠、道路、杂草、防护林和其他作物等的混合光谱,此时,稻田高土壤含水量和低植被覆盖度可以利用LSWI和EVI检测出来。具体的检测原理如下:如果在灌水移栽期时EVI值较高,则说明该像素代表的地物为其他植被,如树木、灌木、草地或者其他作物等,因此就可认为是非水稻区;如果LSWI很低,则说明土壤含水量较低的区域,同样可认为是非水稻区;反之,如果LSWI较高并且EVI较低,那么该像元很有可能就是移栽期的水稻田;
本实施例中包括对获取的地面实测水稻样本数据的EVI(NDVI)和LSWI这两种植被指数进行统计分析,建立植被指数EVI(NDVI)和LSWI之间的相关关系;为了检测稻田的光谱特性,在研究区域范围内选择35个地面实测点,以2018年的遥感影像数据作为分析依据,根据从以上实测点获取的数据,计算各个实测点覆盖下稻田灌水移栽期的平均EVI(NDVI)和LSWI,稻田灌水移栽期EVI(NDVI)和LSWI表现出的特征如图8所示;通过以上实测点获取的资料分析结果可得到水稻的提取算法:
LSWI+T≥EVI或LSWI+T≥NDVI (7)
(2)水稻种植空间分布获取:
以2019年在该研究区地面实测水稻点以及多次随机选取的谷歌地球高分辨率的样本点为参考,进行精度评价。下面是精度对比分析表:
样本点总数 水稻点个数 正确率
水稻地面实测点 40 38 95%
谷歌地球水稻样本点(1) 100 83 83%
谷歌地球水稻样本点(2) 100 86 86%
谷歌地球水稻样本点(3) 100 85 85%
谷歌地球水稻样本点(4) 100 84 84%
谷歌地球水稻样本点(5) 100 87 87%
上表表明,本方法在多云雨雾地区,30米空间分辨率的水稻制图精度大约85%,这说明了本方法的可行性。
本实施例采用上述提出的水稻识别模型进一步对Landsat数据进行2010至2018年最终的水稻种植分布图,结果如图9所示。
步骤5:调整算法:
在推广的使用本发明的过程中,由于应用区域水稻生长状态的不同,反映植被指数阈值模型参数上也略有不同,需要对参数T的阈值进行上下的调整。

Claims (5)

1.一种基于Landsat遥感数据的多云雨雾地区水稻识别方法,其特征在于,包括以下步骤:
步骤1、获取Landsat卫星遥感数据,具体为Landsat 5/7/8二级产品数据,至少包括地表反射率数据;
步骤2、采用云检测算法进行云和云阴影检测,利用CCDC算法将需要的多个波段的地表反射率数据与云和云阴影检测结果组合在一起,生成ENVI标准格式,再利用时间序列模型获取研究区域内任意时刻的无云、无条带的Landsat反射率数据集;
步骤3、根据步骤2得到的任意时刻的无云、无条带的Landsat反射率数据集,计算其光谱指数,包括归一化植被指数DVI、增强型植被指数EVI、陆表水体指数LSWI,利用多种光谱指数的不同组合来识别永久水体、常绿植被,将水稻与其他明显地物区分,确定目标区域内潜在的水稻种植区域;
步骤4、获取地面确定的大区域的水稻实测数据,实测数据包括提取水稻种植区域的经纬度信息、水稻不同生长阶段的光谱曲线以及LAI数据,根据实测的水稻种植区域的经纬度信息提取对应像元移栽期阶段的步骤3中的光谱指数数据NDVI、EVI、LSWI,利用数理统计分析的方法分析移栽期前后水稻的不同光谱指数之间的关系,结合水稻种植区划数据和水稻的潜在移栽期数据获取的水稻相关信息,确定植被指数阈值模型的参数T,建立植被指数阈值模型;
步骤5、根据步骤4中建立的植被指数阈值模型对步骤3中确定的研究区域内潜在的水稻种植区域进行逐像元的进行判别,如果某像元在农业部市场与经济司所公布水稻潜在移栽期前后7~15天中有一次或多次满足植被指数阈值模型,即判定为水稻;否则判定为非水稻;根据上述判定结果,获取最终的水稻种植区域分布图。
2.根据权利要求1所述的一种基于Landsat遥感数据的多云雨雾地区水稻识别方法,其特征在于,步骤2中所述反射率数据集的每一景数据共计8个波段,分别是蓝光波段、绿光波段、红光波段、近红外波段、短波红外1、短波红外2、热红外和Fmask,Fmask为云阴影检测结果Fmask波段;
则利用时间序列模型获取研究区域内任意时刻的无云、无条带的Landsat反射率数据集的具体方法为:
基于所有可用的Landsat反射率数据,利用每个像元的至少15个有效观测数据拟合一个曲线方程,将该曲线方程作为时间序列模型进行得到任意时刻的Landsat反射率数据,时间序列模型所采用的曲线方程如下:
上述公式(1)中,x表示Julian日期(儒略日),i表示Landsat影像的第i个波段,T为变化周期(T=365),a0,i是第i个波段的均值系数,a1,i,b1,i是年内变化系数,c1,i为年际变化系数,为第i个波段在x时刻的模型预测值,表示第k个时间节点。
3.根据权利要求2所述的一种基于Landsat遥感数据的多云雨雾地区水稻识别方法,其特征在于,步骤3中计算光谱指数的具体表达式为:
NIR、Red、Blue分别代表近红外波段、红光波段、蓝光波段、短波红外1;
识别永久水体、常绿植被的方法为:
NDVI<0.1&&NDVI<LSWI(10/46)
(10/46)表示一年46景数据中每个像元符合大于等于10即为永久水体;
NDVI>0.7(20/46)||LSWI>0.15(40/46)
同理,上式中表示一年46景数据中每个像元满足NDVI>0.7符合大于等于20或者一年46景数据中每个像元满足LSWI>0.15符合大于等于40即为常绿植被。
4.根据权利要求3所述的一种基于Landsat遥感数据的多云雨雾地区水稻识别方法,其特征在于,步骤4中建立的植被指数阈值模型表达式为:
LSWI+T≥EVI或LSWI+T≥NDVI。
5.根据权利要求4所述的一种基于Landsat遥感数据的多云雨雾地区水稻识别方法,其特征在于,还包括:
步骤6、结合国家统计局统计年鉴中水稻种植面积数据,对提取的水稻种植面积结果进行对比分析,或者利用谷歌地球提供的高分辨率影像数据选择随机样本点进行对比分析,精度评价,如果精度较低,重复步骤4和步骤5,对参数T的阈值进行调整,确定出最优的植被指数阈值模型。
CN201910778078.9A 2019-08-22 2019-08-22 一种基于Landsat遥感数据的多云雨雾地区水稻识别方法 Active CN110472184B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910778078.9A CN110472184B (zh) 2019-08-22 2019-08-22 一种基于Landsat遥感数据的多云雨雾地区水稻识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910778078.9A CN110472184B (zh) 2019-08-22 2019-08-22 一种基于Landsat遥感数据的多云雨雾地区水稻识别方法

Publications (2)

Publication Number Publication Date
CN110472184A true CN110472184A (zh) 2019-11-19
CN110472184B CN110472184B (zh) 2022-11-04

Family

ID=68513373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910778078.9A Active CN110472184B (zh) 2019-08-22 2019-08-22 一种基于Landsat遥感数据的多云雨雾地区水稻识别方法

Country Status (1)

Country Link
CN (1) CN110472184B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175231A (zh) * 2019-12-31 2020-05-19 国家卫星气象中心(国家空间天气监测预警中心) 冠层植被指数的反演方法、装置及服务器
CN111832480A (zh) * 2020-07-14 2020-10-27 北京师范大学 一种基于光谱特征的油菜种植区遥感识别方法
CN112102180A (zh) * 2020-08-21 2020-12-18 电子科技大学 一种基于Landsat光学遥感图像的云识别方法
CN112800973A (zh) * 2021-01-29 2021-05-14 宁波大学 一种基于植被物候特征决策的互花米草提取方法
CN112818749A (zh) * 2020-12-31 2021-05-18 中国电子科技集团公司第二十七研究所 一年两熟地区大宗粮油作物复种模式遥感监测方法
CN112819846A (zh) * 2021-01-27 2021-05-18 成都四象纵横遥感科技有限公司 一种面向多云雨地区的基于多载荷遥感图像的水稻估产方法
CN113033670A (zh) * 2021-03-29 2021-06-25 华南农业大学 一种基于Sentinel-2A/B数据的水稻种植面积提取方法
CN113128453A (zh) * 2021-04-30 2021-07-16 内蒙古工业大学 采用遥感时间序列数据的地膜识别方法、系统以及介质
CN113128388A (zh) * 2021-04-14 2021-07-16 湖南大学 一种基于时空谱特征的光学遥感图像变化检测方法
CN113160237A (zh) * 2021-03-02 2021-07-23 中国科学院地理科学与资源研究所 一种土地覆被制图方法
CN113158767A (zh) * 2021-03-02 2021-07-23 山东科技大学 一种基于光谱特性的钉螺孳生地识别方法
CN113221806A (zh) * 2021-05-25 2021-08-06 河南大学 基于云平台融合多源卫星影像和茶树物候期的茶园自动识别方法
CN114332628A (zh) * 2022-01-05 2022-04-12 中国科学院地理科学与资源研究所 一种基于典型物候及膜网特征的生姜快速遥感提取方法
CN114419463A (zh) * 2022-01-26 2022-04-29 河南大学 一种基于云平台的全球太阳能光伏板遥感自动识别方法
CN114724024A (zh) * 2022-02-14 2022-07-08 河南大学 基于云计算平台和生命周期的双季作物种植界线自动化提取方法
CN114782838A (zh) * 2022-06-17 2022-07-22 中化现代农业有限公司 水稻识别方法、装置、电子设备和存储介质
CN114782837A (zh) * 2022-06-17 2022-07-22 中化现代农业有限公司 种植物估产方法、装置、电子设备和存储介质
CN115631419A (zh) * 2022-12-08 2023-01-20 航天宏图信息技术股份有限公司 一种基于变化检测的水稻种植面积和空间分布提取方法和装置
CN115761486A (zh) * 2022-11-15 2023-03-07 重庆市地理信息和遥感应用中心 一种基于多期稻田影像特征的水稻种植区判定方法和系统
CN115775354A (zh) * 2023-02-10 2023-03-10 天地信息网络研究院(安徽)有限公司 一种基于融合遥感指数的灌浆期水稻绝收提取方法
WO2023109652A1 (zh) * 2021-12-14 2023-06-22 深圳先进技术研究院 水稻种植提取及复种指数监测方法、系统、终端及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858971A (zh) * 2010-06-02 2010-10-13 浙江大学 一种基于modis数据的水稻单产遥感估算方法
CN104700110A (zh) * 2015-04-03 2015-06-10 电子科技大学 一种基于全极化sar图像的植被覆盖信息提取方法
CN106096630A (zh) * 2016-06-03 2016-11-09 福州大学 一种集成像元与对象的水稻自动变化检测方法
CN106599844A (zh) * 2016-12-14 2017-04-26 中国科学院南京地理与湖泊研究所 一种基于modis传感器的水稻种植区自动提取方法
US20180189564A1 (en) * 2016-12-30 2018-07-05 International Business Machines Corporation Method and system for crop type identification using satellite observation and weather data
US20180373932A1 (en) * 2016-12-30 2018-12-27 International Business Machines Corporation Method and system for crop recognition and boundary delineation
CN109948596A (zh) * 2019-04-26 2019-06-28 电子科技大学 一种基于植被指数模型进行水稻识别和种植面积提取的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858971A (zh) * 2010-06-02 2010-10-13 浙江大学 一种基于modis数据的水稻单产遥感估算方法
CN104700110A (zh) * 2015-04-03 2015-06-10 电子科技大学 一种基于全极化sar图像的植被覆盖信息提取方法
CN106096630A (zh) * 2016-06-03 2016-11-09 福州大学 一种集成像元与对象的水稻自动变化检测方法
CN106599844A (zh) * 2016-12-14 2017-04-26 中国科学院南京地理与湖泊研究所 一种基于modis传感器的水稻种植区自动提取方法
US20180189564A1 (en) * 2016-12-30 2018-07-05 International Business Machines Corporation Method and system for crop type identification using satellite observation and weather data
US20180373932A1 (en) * 2016-12-30 2018-12-27 International Business Machines Corporation Method and system for crop recognition and boundary delineation
CN109948596A (zh) * 2019-04-26 2019-06-28 电子科技大学 一种基于植被指数模型进行水稻识别和种植面积提取的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LI XINCHUAN: "Crop classification recognition based on time-series images from HJ satellite", 《TRANSACTIONS OF THE CHINESE SOCIETY OF AGRICULTURAL ENGINEERING》 *
ZHANG, GL: "Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data", 《SPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING》 *
何彬彬: "多云雾山丘地区遥感定量化理论及应用进展", 《电子科技大学学报》 *
刘吉凯: "基于多时相Landsat8 OLI影像的作物种植结构提取", 《遥感技术与应用》 *
邬明权: "利用多源时序遥感数据提取大范围水稻种植面积", 《农业工程学报》 *
郑璐悦: "基于Landsat 8 OLI遥感影像的沈阳市水稻种植面积提取方法", 《浙江农业学报》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175231A (zh) * 2019-12-31 2020-05-19 国家卫星气象中心(国家空间天气监测预警中心) 冠层植被指数的反演方法、装置及服务器
CN111832480A (zh) * 2020-07-14 2020-10-27 北京师范大学 一种基于光谱特征的油菜种植区遥感识别方法
CN111832480B (zh) * 2020-07-14 2021-04-23 北京师范大学 一种基于光谱特征的油菜种植区遥感识别方法
CN112102180A (zh) * 2020-08-21 2020-12-18 电子科技大学 一种基于Landsat光学遥感图像的云识别方法
CN112818749B (zh) * 2020-12-31 2022-09-13 中国电子科技集团公司第二十七研究所 一年两熟地区大宗粮油作物复种模式遥感监测方法
CN112818749A (zh) * 2020-12-31 2021-05-18 中国电子科技集团公司第二十七研究所 一年两熟地区大宗粮油作物复种模式遥感监测方法
CN112819846A (zh) * 2021-01-27 2021-05-18 成都四象纵横遥感科技有限公司 一种面向多云雨地区的基于多载荷遥感图像的水稻估产方法
CN112800973A (zh) * 2021-01-29 2021-05-14 宁波大学 一种基于植被物候特征决策的互花米草提取方法
CN113160237A (zh) * 2021-03-02 2021-07-23 中国科学院地理科学与资源研究所 一种土地覆被制图方法
CN113158767A (zh) * 2021-03-02 2021-07-23 山东科技大学 一种基于光谱特性的钉螺孳生地识别方法
CN113158767B (zh) * 2021-03-02 2022-09-30 山东科技大学 一种基于光谱特性的钉螺孳生地识别方法
CN113033670A (zh) * 2021-03-29 2021-06-25 华南农业大学 一种基于Sentinel-2A/B数据的水稻种植面积提取方法
CN113033670B (zh) * 2021-03-29 2023-06-23 华南农业大学 一种基于Sentinel-2A/B数据的水稻种植面积提取方法
CN113128388B (zh) * 2021-04-14 2022-09-02 湖南大学 一种基于时空谱特征的光学遥感图像变化检测方法
CN113128388A (zh) * 2021-04-14 2021-07-16 湖南大学 一种基于时空谱特征的光学遥感图像变化检测方法
CN113128453A (zh) * 2021-04-30 2021-07-16 内蒙古工业大学 采用遥感时间序列数据的地膜识别方法、系统以及介质
CN113221806B (zh) * 2021-05-25 2022-02-01 河南大学 基于云平台融合多源卫星影像和茶树物候期的茶园自动识别方法
CN113221806A (zh) * 2021-05-25 2021-08-06 河南大学 基于云平台融合多源卫星影像和茶树物候期的茶园自动识别方法
WO2023109652A1 (zh) * 2021-12-14 2023-06-22 深圳先进技术研究院 水稻种植提取及复种指数监测方法、系统、终端及存储介质
CN114332628A (zh) * 2022-01-05 2022-04-12 中国科学院地理科学与资源研究所 一种基于典型物候及膜网特征的生姜快速遥感提取方法
CN114419463B (zh) * 2022-01-26 2022-09-30 河南大学 一种基于云平台的全球太阳能光伏板遥感自动识别方法
CN114419463A (zh) * 2022-01-26 2022-04-29 河南大学 一种基于云平台的全球太阳能光伏板遥感自动识别方法
CN114724024A (zh) * 2022-02-14 2022-07-08 河南大学 基于云计算平台和生命周期的双季作物种植界线自动化提取方法
CN114782837A (zh) * 2022-06-17 2022-07-22 中化现代农业有限公司 种植物估产方法、装置、电子设备和存储介质
CN114782838A (zh) * 2022-06-17 2022-07-22 中化现代农业有限公司 水稻识别方法、装置、电子设备和存储介质
CN115761486A (zh) * 2022-11-15 2023-03-07 重庆市地理信息和遥感应用中心 一种基于多期稻田影像特征的水稻种植区判定方法和系统
CN115631419A (zh) * 2022-12-08 2023-01-20 航天宏图信息技术股份有限公司 一种基于变化检测的水稻种植面积和空间分布提取方法和装置
CN115631419B (zh) * 2022-12-08 2023-05-09 航天宏图信息技术股份有限公司 一种基于变化检测的水稻种植面积和空间分布提取方法和装置
CN115775354A (zh) * 2023-02-10 2023-03-10 天地信息网络研究院(安徽)有限公司 一种基于融合遥感指数的灌浆期水稻绝收提取方法
CN115775354B (zh) * 2023-02-10 2023-04-25 天地信息网络研究院(安徽)有限公司 一种基于融合遥感指数的灌浆期水稻绝收提取方法

Also Published As

Publication number Publication date
CN110472184B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN110472184A (zh) 一种基于Landsat遥感数据的多云雨雾地区水稻识别方法
Holzman et al. Early assessment of crop yield from remotely sensed water stress and solar radiation data
Xia et al. Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one-and two-source modeling schemes
Vaudour et al. An overview of the recent approaches to terroir functional modelling, footprinting and zoning
Shao et al. Rice monitoring and production estimation using multitemporal RADARSAT
Qin et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery
CN106372592B (zh) 一种基于冬小麦面积指数的冬小麦种植面积计算方法
Li et al. Changes in rice cropping systems in the Poyang Lake Region, China during 2004–2010
CN109948596A (zh) 一种基于植被指数模型进行水稻识别和种植面积提取的方法
CN105740759B (zh) 基于多时相数据中特征提取的中稻信息决策树分类方法
CN109345555A (zh) 基于多时相多源遥感数据进行水稻识别的方法
CN109614891A (zh) 基于物候学和遥感的农作物识别方法
CN101858971A (zh) 一种基于modis数据的水稻单产遥感估算方法
CN105678281A (zh) 基于光谱和纹理特征的地膜覆盖农田遥感监测方法
CN105893977B (zh) 一种基于自适应特征选择的水稻制图方法
Kotsuki et al. SACRA–a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI
Jiang et al. Mapping interannual variability of maize cover in a large irrigation district using a vegetation index–phenological index classifier
Liu et al. Mapping paddy rice in Jiangsu Province, China, based on phenological parameters and a decision tree model
CN111275567B (zh) 基于无人机影像的senp棉花产量估算方法及估算模型构建方法
Choudhary et al. Rice growth vegetation index 2 for improving estimation of rice plant phenology in costal ecosystems
Kang et al. Construction of multidimensional features to identify tea plantations using multisource remote sensing data: A case study of Hangzhou city, China
Dineshkumar et al. Phenological monitoring of paddy crop using time series modis data
Peng et al. Remote sensing monitoring of tobacco field based on phenological characteristics and time series image—A case study of Chengjiang County, Yunnan Province, China
Gomez et al. Sentinel-2 images to assess soil surface characteristics over a rainfed Mediterranean cropping system
Hangbin et al. MODIS data based NDVI Seasonal dynamics in agro-ecosystems of south bank Hangzhouwan bay

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant