CN110471026B - A Phase-Enhanced Method for Estimating Low-Elevation DOA for Meter-Wave Radar Targets - Google Patents

A Phase-Enhanced Method for Estimating Low-Elevation DOA for Meter-Wave Radar Targets Download PDF

Info

Publication number
CN110471026B
CN110471026B CN201910662647.3A CN201910662647A CN110471026B CN 110471026 B CN110471026 B CN 110471026B CN 201910662647 A CN201910662647 A CN 201910662647A CN 110471026 B CN110471026 B CN 110471026B
Authority
CN
China
Prior art keywords
data set
input data
phase
doa estimation
phase characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910662647.3A
Other languages
Chinese (zh)
Other versions
CN110471026A (en
Inventor
陈伯孝
项厚宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201910662647.3A priority Critical patent/CN110471026B/en
Publication of CN110471026A publication Critical patent/CN110471026A/en
Application granted granted Critical
Publication of CN110471026B publication Critical patent/CN110471026B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/417Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种相位增强的米波雷达目标低仰角DOA估计方法,该方法包括对输入数据集进行归一化处理;将归一化的输入数据集输入至神经网络模型得到网络输出数据集;根据网络输出数据集、标签数据集构建目标函数,对目标函数进行反向传输,且更新神经网络模型的网络参数集;根据网络参数集对测试数据集进行增强得到新的数据协方差矩阵,根据新的数据协方差矩阵得到新的测试数据集;对新的测试数据集进行DOA估计得到目标的仰角。本发明提供的DOA估计方法,其神经网络模型是根据实际场景构建的,有效地解决了物理驱动DOA估计中存在的实际信号模型与理想的远场平面波模型失配问题,从而使得DOA估计精度更高。

Figure 201910662647

The invention discloses a phase-enhanced metric wave radar target low-elevation DOA estimation method. The method includes normalizing an input data set; inputting the normalized input data set into a neural network model to obtain a network output data set ; Construct the objective function according to the network output data set and label data set, transfer the objective function in reverse, and update the network parameter set of the neural network model; according to the network parameter set, the test data set is enhanced to obtain a new data covariance matrix, A new test data set is obtained according to the new data covariance matrix; DOA estimation is performed on the new test data set to obtain the elevation angle of the target. In the DOA estimation method provided by the present invention, the neural network model is constructed according to the actual scene, which effectively solves the problem of mismatch between the actual signal model and the ideal far-field plane wave model existing in the physical-driven DOA estimation, thereby making the DOA estimation accuracy more accurate. high.

Figure 201910662647

Description

一种相位增强的米波雷达目标低仰角DOA估计方法A Phase-Enhanced Method for Estimating Low-Elevation DOA for Meter-Wave Radar Targets

技术领域technical field

本发明属于雷达技术领域,具体涉及一种相位增强的米波雷达目标低仰角DOA估计方法。The invention belongs to the technical field of radar, in particular to a phase-enhanced metric wave radar target low-elevation DOA estimation method.

背景技术Background technique

目前,低仰角目标的DOA估计问题是米波雷达领域亟待解决的重要难题,这是因为米波雷达波束较宽,在探测低仰角目标时,存在波束“打地”现象,地面反射的多径信号与目标反射的直达信号从主瓣方向被雷达所接收,这就导致了直达信号特征不再满足简单的远场平面波模型特征,而是一种带有幅相畸变的远场平面波模型,此幅相畸变就是由多径信号带来的。At present, the DOA estimation problem of low-elevation-angle targets is an important problem to be solved urgently in the field of meter-wave radar. This is because the beam of meter-wave radar is wide, and when detecting low-elevation-angle targets, there is the phenomenon of beam "hitting" and the multipath reflected by the ground. The direct signal reflected by the signal and the target is received by the radar from the main lobe direction, which leads to the direct signal characteristic no longer satisfying the simple far-field plane wave model characteristics, but a far-field plane wave model with amplitude and phase distortion. Amplitude and phase distortion is caused by multipath signals.

针对此问题,近些年来大量的科研工作者探索了一些有效的物理驱动的DOA估计方法。在早期,带有幅相畸变的远场平面波模型被建模成两点相干源模型,即将直达信号和多径信号建模成一对强相干点源信号。在1985年,Shan等人在IEEE Transactions onAntennas and Propagation期刊的第34期3卷806页至811上公开发表了一种基于空间平滑的解相干多重信号分类(Spatial smoothing multiple signal classification,简称SSMUSIC)方法,该方法首先通过子阵平滑的方法达到对相干源进行解相干处理,最后再进行超分辨估计。在1998年,Ziskind等人在噪声分布特征先验已知即噪声分布符合高斯白噪声的条件下在IEEE Transaction on Acoustics Speech,and Signal Processing期刊的第36卷10期1553页至1560页上公开发表了一种基于交替投影的最大似然估计方法,通过交替投影的优化过程,实现了对相干源的DOA估计。近些年来,随着深度学习技术的高速发展,深度学习技术不仅在图像处理等领域得到应用,也逐渐应用到了信号处理领域。1997年,Zooghby等人在IEEE Transactions on Antennas and Propagation期刊第45卷11期第1611到1617页提出了一种应用了径向基神经网络(radial-basis-function network,RBFN)的DOA估计方法,将DOA估计问题简化为协方差矩阵数据和输出的复杂映射关系,通过训练RBFNN,学习数据协方差矩阵数据与DOA信息的关系,进行实现对相干源以及非相干源的DOA估计,相比于物理驱动的方法计算量更小,精度更高。2019年1月,Xiang等人在IETRadar Sonar&Navigation期刊第13卷1期上发表了一种基于无监督学习的DOA估计方法,通过学习接收数据的空域数据特征,进而反演DOA信息,该方法在复杂多径条件下性能比已有的SSMUSIC方法精度更高,且计算量比SSMUSIC方法更小。2019年4月,Wang等人在IEEESignal Processing Letters期刊第26卷4期642页至646页提出了一种基于支持向量回归(Support Vector Regression,SVR)的DOA估计方法,通过利用支持向量机学习接收数据的实部和虚部数据与DOA信息的复杂映射关系,进而实现DOA估计,方法性能与旋转信号子空间的MUSIC相比性能更高。In response to this problem, a large number of researchers have explored some effective physics-driven DOA estimation methods in recent years. In the early days, the far-field plane wave model with amplitude and phase distortion was modeled as a two-point coherent source model, that is, the direct signal and the multipath signal were modeled as a pair of strongly coherent point source signals. In 1985, Shan et al. published a spatial smoothing-based decoherent multiple signal classification (Spatial smoothing multiple signal classification, referred to as SSMUSIC) method in the 34th issue of IEEE Transactions on Antennas and Propagation, pp. 806-811. , the method first achieves the decoherence processing of the coherent source through the sub-array smoothing method, and finally performs the super-resolution estimation. In 1998, Ziskind et al. published in IEEE Transaction on Acoustics Speech, and Signal Processing, Volume 36, Issue 10, pages 1553 to 1560, under the condition that the noise distribution characteristics are known a priori, that is, the noise distribution conforms to Gaussian white noise. A maximum-likelihood estimation method based on alternating projection is proposed. Through the optimization process of alternating projection, the DOA estimation of coherent sources is realized. In recent years, with the rapid development of deep learning technology, deep learning technology has not only been applied in fields such as image processing, but also gradually applied to the field of signal processing. In 1997, Zooghby et al. proposed a DOA estimation method using radial-basis-function network (RBFN) in IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, pages 1611 to 1617. The DOA estimation problem is simplified to a complex mapping relationship between covariance matrix data and output. By training RBFNN, the relationship between data covariance matrix data and DOA information is learned, and DOA estimation for coherent and incoherent sources is performed. The driven method is less computationally intensive and more accurate. In January 2019, Xiang et al. published a DOA estimation method based on unsupervised learning in the IETRadar Sonar & Navigation Journal, Volume 13, Issue 1. By learning the airspace data characteristics of the received data, the DOA information was inverted. The performance under multipath conditions is more accurate than the existing SSMUSIC method, and the calculation amount is smaller than that of the SSMUSIC method. In April 2019, Wang et al. proposed a DOA estimation method based on Support Vector Regression (SVR) in IEEE Signal Processing Letters, Vol. 26, No. 4, pages 642 to 646. The complex mapping relationship between the real part and imaginary part of the data and the DOA information is used to realize the DOA estimation, and the performance of the method is higher than that of the MUSIC of the rotation signal subspace.

上述几种基于物理驱动的超分辨DOA估计方法虽然是目前使用较多的DOA估计方法,但在实际阵列环境下,多径信号分布较为复杂,如多径信号条数可能存在多个,阵列接收到的多径信号可能不满足远场平面波模型等,导致DOA估计精度不高;上述几种基于深度学习的DOA估计方法,可以看成一种端到端的学习方法,也就是直接学习接收数据的某些特征与DOA的复杂映射关系,进而实现DOA估计,由于网络模型简单,且没有针对DOA估计分析数据的有效特征和冗余特征,导致将冗余特征一起作为网络的输入,一方面带来网络训练的复杂度,另一方面DOA估计精度不高。Although the above-mentioned physical-driven super-resolution DOA estimation methods are the most commonly used DOA estimation methods at present, in the actual array environment, the multipath signal distribution is more complicated. The received multipath signal may not satisfy the far-field plane wave model, etc., resulting in low DOA estimation accuracy; the above-mentioned DOA estimation methods based on deep learning can be regarded as an end-to-end learning method, that is, to directly learn a certain part of the received data. The complex mapping relationship between these features and DOA is used to realize DOA estimation. Because the network model is simple, and there are no effective features and redundant features for the DOA estimation analysis data, the redundant features are used as the input of the network. On the one hand, it brings the network The complexity of training, on the other hand, the accuracy of DOA estimation is not high.

发明内容SUMMARY OF THE INVENTION

为了解决现有技术中存在的上述问题,本发明提供了一种相位增强的米波雷达目标低仰角DOA估计方法,该方法包括:In order to solve the above problems existing in the prior art, the present invention provides a phase-enhanced metric wave radar target low-elevation DOA estimation method, the method comprising:

获取输入数据集的相位特征和标签数据集的相位特征;Obtain the phase feature of the input dataset and the phase feature of the label dataset;

对所述输入数据集的相位特征进行归一化处理得到归一化的输入数据集的相位特征;Normalizing the phase feature of the input data set to obtain the normalized phase feature of the input data set;

将所述归一化的输入数据集的相位特征输入至神经网络模型得到网络输出数据集的相位特征;Inputting the phase feature of the normalized input data set into the neural network model to obtain the phase feature of the network output data set;

根据所述网络输出数据集的相位特征、所述标签数据集的相位特征构建目标函数,利用第一预设方法对所述目标函数进行反向传输处理,且利用第二预设方法更新所述神经网络模型的网络参数集;According to the phase feature of the network output data set and the phase feature of the label data set, an objective function is constructed, the objective function is reversely transmitted by the first preset method, and the second preset method is used to update the objective function. The network parameter set of the neural network model;

根据所述网络参数集对测试数据集进行增强处理得到新的数据协方差矩阵,根据所述新的数据协方差矩阵得到新的测试数据集;The test data set is enhanced according to the network parameter set to obtain a new data covariance matrix, and a new test data set is obtained according to the new data covariance matrix;

利用预设DOA估计模型对所述新的测试数据集进行DOA估计得到所述米波雷达目标的仰角。Using a preset DOA estimation model to perform DOA estimation on the new test data set to obtain the elevation angle of the meter-wave radar target.

在本发明的一个实施例中,获取输入数据集的相位特征和标签数据集的相位特征,包括:In an embodiment of the present invention, acquiring the phase feature of the input dataset and the phase feature of the label dataset includes:

构建接收阵列,根据所述接收阵列得到阵列接收信号、阵列导向矢量;constructing a receiving array, and obtaining an array receiving signal and an array steering vector according to the receiving array;

根据所述阵列接收信号、所述阵列导向矢量分别得到输入数据集、标签数据集;Obtain an input data set and a label data set according to the array received signal and the array steering vector, respectively;

分别对所述输入数据集和标签数据集进行划分得到划分后的输入数据集、划分后的标签数据集;respectively dividing the input data set and the label data set to obtain a divided input data set and a divided label data set;

分别提取所述划分后的输入数据集、所述划分后的标签数据集的上三角元素的相位特征得到所述输入数据集的相位特征、所述标签数据集的相位特征。The phase features of the upper triangular elements of the divided input data set and the divided label data set are respectively extracted to obtain the phase features of the input data set and the phase features of the label data set.

在本发明的一个实施例中,分别对所述输入数据集和标签数据集进行划分得到划分后的输入数据集、划分后的标签数据集,包括:In an embodiment of the present invention, the input data set and the label data set are respectively divided to obtain a divided input data set and a divided label data set, including:

获取当前帧输入数据和数据划分数目m,m为正奇数;Obtain the input data of the current frame and the number of data divisions m, where m is a positive odd number;

以所述当前帧输入数据为中心帧,分别连续向前和向后从所述输入数据集中提取(m-1)/2帧输入数据得到前向输入数据、后向输入数据;Taking the current frame input data as the central frame, extracting (m-1)/2 frames of input data from the input data set forward and backward respectively to obtain forward input data and backward input data;

根据所述当前帧输入数据、所述前向输入数据和所述后向输入数据得到所述划分后的输入数据集;Obtain the divided input data set according to the current frame input data, the forward input data and the backward input data;

根据所述当前帧输入数据得到所述划分后的标签数据集。The divided label data set is obtained according to the input data of the current frame.

在本发明的一个实施例中,对所述输入数据集的相位特征进行归一化处理得到归一化的输入数据集的相位特征,包括:In an embodiment of the present invention, normalizing the phase feature of the input data set to obtain the normalized phase feature of the input data set includes:

获取所述输入数据集的相位特征的均值和标准差;obtaining the mean and standard deviation of the phase characteristics of the input data set;

根据所述均值和所述标准差对所述输入数据集的相位特征进行高斯归一化处理得到所述归一化的输入数据集的相位特征。Gaussian normalization is performed on the phase feature of the input data set according to the mean value and the standard deviation to obtain the phase feature of the normalized input data set.

在本发明的一个实施例中,根据所述归一化的输入数据集的相位特征对神经网络模型进行训练得到网络输出数据集的相位特征,包括:In an embodiment of the present invention, the phase feature of the network output dataset is obtained by training the neural network model according to the phase feature of the normalized input dataset, including:

构建四层深度神经网络模型;Build a four-layer deep neural network model;

将所述归一化的输入数据集的相位特征输入至所述四层深度神经网络模型,训练得到所述网络输出数据集的相位特征。The phase feature of the normalized input data set is input into the four-layer deep neural network model, and the phase feature of the network output data set is obtained by training.

在本发明的一个实施例中,构建的所述目标函数为:In an embodiment of the present invention, the constructed objective function is:

Figure BDA0002139058170000031
Figure BDA0002139058170000031

其中,

Figure BDA0002139058170000032
表示网络输出数据集的相位特征,
Figure BDA0002139058170000033
表示标签数据集的相位特征。in,
Figure BDA0002139058170000032
represents the phase feature of the network output dataset,
Figure BDA0002139058170000033
Represents the phase features of the labeled dataset.

在本发明的一个实施例中,所述第一预设方法包括反向传播方法,所述第二预设方法包括自适应性矩估计方法。In an embodiment of the present invention, the first preset method includes a backpropagation method, and the second preset method includes an adaptive moment estimation method.

在本发明的一个实施例中,所述神经网络模型的网络参数集包括网络权值W和网络偏置值b,其中,In an embodiment of the present invention, the network parameter set of the neural network model includes a network weight W and a network bias value b, wherein,

所述网络权值W为:The network weight W is:

Figure BDA0002139058170000041
Figure BDA0002139058170000041

所述网络偏置值b为:The network bias value b is:

Figure BDA0002139058170000042
Figure BDA0002139058170000042

其中,α表示学习率,∈表示固定常数,

Figure BDA0002139058170000043
分别为网络权值W的中间变量,
Figure BDA0002139058170000044
分别为网络偏置值b的中间变量。where α represents the learning rate, ∈ represents a fixed constant,
Figure BDA0002139058170000043
are the intermediate variables of the network weight W, respectively,
Figure BDA0002139058170000044
are the intermediate variables of the network bias value b, respectively.

在本发明的一个实施例中,根据所述网络参数集对测试数据集进行增强处理得到新的数据协方差矩阵,根据所述新的数据协方差矩阵得到新的测试数据集,包括:In an embodiment of the present invention, the test data set is enhanced according to the network parameter set to obtain a new data covariance matrix, and a new test data set is obtained according to the new data covariance matrix, including:

获取测试数据集;Get the test dataset;

对所述测试数据集进行划分得到划分后的测试数据集;Dividing the test data set to obtain a divided test data set;

提取所述划分后的测试数据集的上三角元素的相位特征得到所述测试数据集的相位特征;Extracting the phase feature of the upper triangular element of the divided test data set to obtain the phase feature of the test data set;

将归一化处理的所述测试数据集的相位特征输入至所述四层深度神经网络模型得到增强的测试数据集的相位特征;inputting the normalized phase feature of the test data set into the phase feature of the test data set enhanced by the four-layer deep neural network model;

根据所述增强的测试数据集的相位特征得到所述新的数据协方差矩阵;Obtain the new data covariance matrix according to the phase feature of the enhanced test data set;

根据所述新的数据协方差矩阵得到新的测试数据集。A new test data set is obtained according to the new data covariance matrix.

在本发明的一个实施例中,所述预设DOA估计模型为:In an embodiment of the present invention, the preset DOA estimation model is:

Figure BDA0002139058170000045
Figure BDA0002139058170000045

其中,R′i表示新的测试数据集中新的数据协方差矩阵,a(θi)表示阵列导向矢量,aHi)表示a(θi)的共轭转置,

Figure BDA0002139058170000046
表示估计的米波雷达目标的仰角。where R′ i represents the new data covariance matrix in the new test dataset, a(θ i ) represents the array steering vector, a Hi ) represents the conjugate transpose of a(θ i ),
Figure BDA0002139058170000046
Represents the estimated elevation angle of the meter-wave radar target.

与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:

本发明提供的相位增强的米波雷达目标低仰角DOA估计方法,其神经网络模型是根据实际场景构建的,有效地解决了物理驱动DOA估计中存在的实际信号模型与理想的远场平面波模型失配问题,从而使得米波雷达目标DOA估计精度更高。The phase-enhanced metric wave radar target low-elevation-angle DOA estimation method provided by the present invention, the neural network model of which is constructed according to the actual scene, effectively solves the problem between the actual signal model and the ideal far-field plane wave model existing in the physical-driven DOA estimation. Therefore, the DOA estimation accuracy of the metric wave radar target is higher.

以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.

附图说明Description of drawings

图1是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法的流程示意图;1 is a schematic flowchart of a phase-enhanced metric-wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention;

图2是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法中四层深度神经网络的结构示意图;2 is a schematic structural diagram of a four-layer deep neural network in a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention;

图3是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在不同信噪比条件下测角误差的对比结果示意图;3 is a schematic diagram of a comparison result of angle measurement errors under different signal-to-noise ratio conditions of a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention;

图4是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在不同信噪比条件下特征拟合优度的对比结果示意图;4 is a schematic diagram of a comparison result of the feature fitting goodness of a phase-enhanced metric-wave radar target low-elevation-angle DOA estimation method provided by an embodiment of the present invention under different signal-to-noise ratio conditions;

图5是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在信噪比条件失配下测角误差的对比结果示意图;5 is a schematic diagram of a comparison result of angle measurement errors under a conditional mismatch of signal-to-noise ratios with a phase-enhanced metric-wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention;

图6是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在信噪比条件失配下特征拟合优度的对比结果示意图;6 is a schematic diagram of a comparison result of the feature fitting goodness of a phase-enhanced metric-wave radar target low-elevation-angle DOA estimation method provided in an embodiment of the present invention under the conditional mismatch of signal-to-noise ratio;

图7是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在不同相位误差条件下测角误差的对比结果示意图;7 is a schematic diagram of a comparison result of angle measurement errors under different phase error conditions of a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention;

图8是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在不同相位误差条件下特征拟合优度的对比结果示意图;8 is a schematic diagram of a comparison result of feature fitting goodness under different phase error conditions of a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention;

图9是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在相位误差条件失配下测角误差的对比结果示意图;9 is a schematic diagram of a comparison result of angle measurement errors under a phase error condition mismatch of a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention;

图10是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在相位误差条件失配下特征拟合优度的对比结果示意图;10 is a schematic diagram of a comparison result of the feature fitting goodness of a phase-enhanced metric-wave radar target low-elevation-angle DOA estimation method provided by an embodiment of the present invention under the phase error condition mismatch;

图11是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法中实测数据航迹示意图;11 is a schematic diagram of the measured data track in a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention;

图12是本发明实施例提供的两种传统方法对实测数据处理的测角误差示意图;12 is a schematic diagram of the angle measurement error of the two traditional methods provided by the embodiment of the present invention for processing the measured data;

图13是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法对实测数据处理的测角误差示意图。13 is a schematic diagram of the angle measurement error of the measured data processing by a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.

实施例一Example 1

目前,雷达DOA估计方法包括物理驱动的超分辨DOA估计方法、基于深度学习的DOA估计方法。其中,物理驱动的超分辨DOA估计方法随着实际阵列环境中多径信号分布的复杂性,使得阵列接收的多径信号可能不满足远场平面波模型,导致DOA估计精度不高;基于深度学习的DOA估计方法,由于现有网络模型简单,且没有针对DOA估计分析数据的有效特征和冗余特征,导致将冗余特征一起作为网络的输入,一方面带来网络训练的复杂度,另一方面DOA估计精度不高。At present, radar DOA estimation methods include physics-driven super-resolution DOA estimation methods and deep learning-based DOA estimation methods. Among them, the physical-driven super-resolution DOA estimation method, with the complexity of the multipath signal distribution in the actual array environment, makes the multipath signals received by the array may not satisfy the far-field plane wave model, resulting in low DOA estimation accuracy. DOA estimation method, because the existing network model is simple, and there are no effective features and redundant features for DOA estimation analysis data, resulting in redundant features as the input of the network, on the one hand, it brings the complexity of network training, on the other hand DOA estimation accuracy is not high.

针对如上存在的问题,请参见图1,图1是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法的流程示意图。本实施例提供了一种相位增强的米波雷达目标低仰角DOA估计方法,该方法包括:For the above problems, please refer to FIG. 1. FIG. 1 is a schematic flowchart of a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention. This embodiment provides a phase-enhanced metric wave radar target low-elevation DOA estimation method, the method comprising:

步骤1、获取输入数据集的相位特征和标签数据集的相位特征;Step 1. Obtain the phase feature of the input dataset and the phase feature of the label dataset;

步骤2、对输入数据集的相位特征进行归一化处理得到归一化的输入数据的相位特征;Step 2, normalizing the phase feature of the input data set to obtain the normalized phase feature of the input data;

步骤3、将归一化的输入数据集的相位特征输入至神经网络模型得到网络输出数据集的相位特征;Step 3, input the phase feature of the normalized input data set into the neural network model to obtain the phase feature of the network output data set;

步骤4、根据网络输出数据集的相位特征、标签数据集的相位特征构建目标函数,利用第一预设方法对目标函数进行反向传输处理,且利用第二预设方法更新神经网络模型的网络参数集;Step 4, constructing an objective function according to the phase characteristics of the network output data set and the phase characteristics of the label data set, using the first preset method to perform reverse transmission processing on the objective function, and using the second preset method to update the network of the neural network model parameter set;

步骤5、根据网络参数集的相位特征对测试数据集进行增强处理得到新的数据协方差矩阵,根据新的数据协方差矩阵得到新的测试数据集;Step 5, performing enhancement processing on the test data set according to the phase characteristics of the network parameter set to obtain a new data covariance matrix, and obtaining a new test data set according to the new data covariance matrix;

步骤6、利用预设DOA估计模型对新的测试数据集进行DOA估计得到米波雷达目标的仰角。Step 6, using the preset DOA estimation model to perform DOA estimation on the new test data set to obtain the elevation angle of the meter-wave radar target.

具体而言,本实施例根据输入数据集的相位特征得到适合本场景的神经网络模型,并通过该神经网络模型的网络输出数据集的相位特征与标签数据集的相位特征训练构建目标函数,通过目标函数的反向传播处理,使得网络输出数据集的相位特征逼近标签数据集的相位特征,此时同时得到神经网络模型对应的最优网络参数集,然后通过具有最优网络参数的集神经网络模型对任一测试数据集进行训练,得到增强的新的测试数据集,从而从增强的新的测试数据集中获取精确的米波雷达目标的仰角。Specifically, in this embodiment, a neural network model suitable for this scene is obtained according to the phase feature of the input data set, and the objective function is constructed by training the phase feature of the network output data set of the neural network model and the phase feature of the label data set, The back-propagation processing of the objective function makes the phase characteristics of the network output data set approach the phase characteristics of the label data set. At this time, the optimal network parameter set corresponding to the neural network model is obtained at the same time, and then through the set neural network with the optimal network parameters. The model is trained on any test data set to obtain an enhanced new test data set, thereby obtaining the accurate elevation angle of the meter wave radar target from the enhanced new test data set.

本实施例提供的相位增强的米波雷达目标低仰角DOA估计方法,其神经网络模型是根据实际场景构建的,有效地解决了物理驱动DOA估计中存在的实际信号模型与理想的远场平面波模型失配问题,从而使得米波雷达目标DOA估计精度更高。The phase-enhanced metric wave radar target low-elevation DOA estimation method provided by this embodiment, the neural network model of which is constructed according to the actual scene, effectively solves the actual signal model and the ideal far-field plane wave model existing in the physical-driven DOA estimation. The mismatch problem makes the DOA estimation accuracy of the metric wave radar target higher.

进一步地,步骤1获取输入数据集的相位特征和标签数据集的相位特征,包括步骤1.1、步骤1.2、步骤1.3、步骤1.4:Further, step 1 obtains the phase feature of the input dataset and the phase feature of the label dataset, including step 1.1, step 1.2, step 1.3, and step 1.4:

步骤1.1、构建接收阵列,根据接收阵列得到阵列接收信号、阵列导向矢量。Step 1.1, construct a receiving array, and obtain array received signals and array steering vectors according to the receiving array.

具体而言,本实施例实际场景中构建的接收阵列为K个阵元的均匀线阵,快拍数(采样数)为L,则本实施例阵列导向矢量设计为:Specifically, the receiving array constructed in the actual scene of this embodiment is a uniform linear array of K array elements, and the number of snapshots (number of samples) is L, then the array steering vector of this embodiment is designed as:

Figure BDA0002139058170000071
Figure BDA0002139058170000071

其中,d表示阵元间距,λ表示信号波长,θ表示米波雷达目标的仰角。Among them, d represents the array element spacing, λ represents the signal wavelength, and θ represents the elevation angle of the metric wave radar target.

本实施例场景中的多径信号可以简化为叠加在直达信号上的幅相扰动,若幅相扰动为τ,则本实施例阵列接收信号设计为:The multipath signal in the scene of this embodiment can be simplified as the amplitude and phase disturbance superimposed on the direct signal. If the amplitude and phase disturbance is τ, the array received signal in this embodiment is designed as:

x(t)=τ⊙a(θ)s(t)+n(t),t=1,…,L (2)x(t)=τ⊙a(θ)s(t)+n(t), t=1,...,L (2)

其中,n(t)=[n1(t),n2(t),…,nK(t)]T表示噪声数据矢量,s(t)表示信号源数据,a(θ)表示上述阵列导向矢量,⊙表示点乘。where n(t)=[n 1 (t),n 2 (t),...,n K (t)] T represents the noise data vector, s(t) represents the signal source data, and a(θ) represents the above array Steering vector, ⊙ means dot product.

步骤1.2、根据阵列接收信号、阵列导向矢量分别得到输入数据集、标签数据集。Step 1.2, according to the received signal of the array and the steering vector of the array, the input data set and the label data set are obtained respectively.

具体而言,对于飞行状态下的米波雷达目标,目标真实的仰角处于连续变化状态,本实施例连续对米波雷达目标进行N次探测,N为大于0的整数,得到输入数据集{R1,R2,…,RN}和标签数据集

Figure BDA0002139058170000072
Ri表示多径阵列接收输入数据协方差矩阵,
Figure BDA0002139058170000073
表示多径阵列接收标签数据协方差矩阵,输入数据协方差矩阵Ri、标签数据协方差矩阵
Figure BDA0002139058170000074
均包括幅度特征和相位特征,其中,Specifically, for the meter-wave radar target in the flight state, the real elevation angle of the target is in a state of continuous change. In this embodiment, the meter-wave radar target is continuously detected N times, where N is an integer greater than 0, and the input data set {R 1 ,R 2 ,…,R N } and label dataset
Figure BDA0002139058170000072
R i represents the covariance matrix of the input data received by the multipath array,
Figure BDA0002139058170000073
Indicates that the multipath array receives the label data covariance matrix, the input data covariance matrix R i , the label data covariance matrix
Figure BDA0002139058170000074
Both include amplitude characteristics and phase characteristics, where,

每个输入数据集中的输入数据协方差矩阵Ri设计为:The input data covariance matrix R i in each input dataset is designed as:

Figure BDA0002139058170000075
Figure BDA0002139058170000075

每个标签数据集中的标签数据协方差矩阵

Figure BDA0002139058170000076
设计为:Label data covariance matrix in each label dataset
Figure BDA0002139058170000076
Designed to:

Figure BDA0002139058170000077
Figure BDA0002139058170000077

步骤1.3、分别对输入数据集和标签数据集进行划分得到划分后的输入数据集、划分后的标签数据集。Step 1.3. Divide the input data set and the label data set respectively to obtain the divided input data set and the divided label data set.

具体而言,本实施例为获得更加精准的DOA估计,步骤1.3具体包括步骤1.3.1、步骤1.3.2、步骤1.3.3、步骤1.3.4:Specifically, in order to obtain a more accurate DOA estimation in this embodiment, step 1.3 specifically includes step 1.3.1, step 1.3.2, step 1.3.3, and step 1.3.4:

步骤1.3.1、获取当前帧输入数据和数据划分数目m,m为正奇数。Step 1.3.1. Obtain the input data of the current frame and the number of data divisions m, where m is a positive odd number.

具体而言,本实施例从输入数据集{R1,R2,…,RN}中获取当前帧输入数据,比如当前帧输入数据可以为R1,也可以为R2;从标签数据集

Figure BDA0002139058170000081
中获取当前帧标签数据,比如前帧标签数据可以为
Figure BDA0002139058170000082
也可以为
Figure BDA0002139058170000083
同时确认数据划分数目m,该数据划分数据m决定了进行多少帧相位增强,本实施例数据划分数目m取值为正奇数,即m取值为1、3、5、……。Specifically, this embodiment obtains the current frame input data from the input data set {R 1 , R 2 ,...,R N }, for example, the current frame input data may be R 1 or R 2 ; from the label data set
Figure BDA0002139058170000081
Get the current frame label data from , for example, the previous frame label data can be
Figure BDA0002139058170000082
can also be
Figure BDA0002139058170000083
At the same time, confirm the data division number m, which determines how many frames of phase enhancement are performed.

步骤1.3.2、以当前帧输入数据为中心帧,分别连续向前和向后从输入数据集中提取(m-1)/2帧输入数据得到前向输入数据、后向输入数据。Step 1.3.2. Taking the input data of the current frame as the central frame, extract (m-1)/2 frames of input data from the input data set continuously forward and backward respectively to obtain forward input data and backward input data.

具体而言,本实施例以数据划分数目m为例,以当前帧输入数据为中心帧,连续向前从输入数据集{R1,R2,…,RN}中提取(m-1)/2帧输入数据作为前向输入数据,连续向后从输入数据集{R1,R2,…,RN}中提取(m-1)/2帧输入数据作为后向输入数据,保证划分后的输入数据为m帧,以此对整个输入数据集{R1,R2,…,RN}进行划分。具体比如数据划分数目m为3,在输入数据集{R1,R2,…,RN}中以R2为当前帧输入数据,则连续向前提取1帧输入数据,即向前提取的输入数据为R1,将R1作为前向输入数据,然后连续向后提取1帧输入数据,即向后提取的输入数据为R3,将R3作为后向输入数据,再比如数据划分数目m为5,在输入数据集{R1,R2,…,RN}中以R3为当前帧输入数据,则连续向前提取2帧输入数据,即向前提取的输入数据为R1和R2,将R1和R2作为前向输入数据,连续向后提取2帧输入数据,即向后提取的输入数据为R4和R5,将R4和R5作为后向输入数据。Specifically, in this embodiment, the number m of data divisions is taken as an example, and the input data of the current frame is taken as the central frame, and (m-1) is continuously extracted from the input data set {R 1 , R 2 ,...,R N }. /2 frames of input data are used as forward input data, and (m-1)/2 frames of input data are continuously extracted from the input data set {R 1 , R 2 ,..., R N } in the backward direction to ensure the division The subsequent input data is m frames, so as to divide the entire input data set {R 1 , R 2 ,...,R N }. Specifically, for example, the number of data divisions m is 3. In the input data set {R 1 , R 2 ,..., R N }, with R 2 as the input data of the current frame, one frame of input data is continuously extracted forward, that is, the forward extracted The input data is R 1 , and R 1 is used as the forward input data, and then 1 frame of input data is continuously extracted backward, that is, the input data extracted backward is R 3 , and R 3 is used as the backward input data. For example, the number of data divisions m is 5, in the input data set {R 1 , R 2 ,...,R N }, with R 3 as the current frame input data, then continuously extract 2 frames of input data forward, that is, the forward extracted input data is R 1 and R 2 , take R 1 and R 2 as the forward input data, and continuously extract 2 frames of input data backward, that is, the backward extracted input data are R 4 and R 5 , and use R 4 and R 5 as the backward input data .

步骤1.3.3、根据当前帧输入数据、前向输入数据、后向输入数据得到划分后的输入数据集。Step 1.3.3. Obtain a divided input data set according to the current frame input data, the forward input data, and the backward input data.

具体而言,本实施例将步骤1.3.2得到的当前帧输入数据、前向输入数据、后向输入数据打包得到划分后的输入数据,对整个输入数据集{R1,R2,…,RN}进行划分得到划分后的输入数据集{Φ12,…,ΦM},其中,Φi表示将某一当前帧输入数据、前向输入数据、后向输入数据打包得到划分后的输入数据。具体比如数据划分数目m为3,以R2为当前帧输入数据,得到的前向输入数据为R1,后向输入数据为R3,由当前帧输入数据R2、前向输入数据R1、后向输入数据R3打包得到划分后的输入数据Φ1,具体Φ1={R1,R2,R3},再比如数据划分数目m为5,在输入数据集{R1,R2,…,RN}中以R3为当前帧输入数据,得到的前向输入数据为{R1,R2},后向输入数据为{R4,R5},由当前帧输入数据R3、前向输入数据{R1,R2}、后向输入数据{R4,R5}打包得到划分后的输入数据Φ2,具体Φ2={R1,R2,R3,R4,R5}。其中,M≤N。Specifically, in this embodiment, the input data of the current frame, the forward input data, and the backward input data obtained in step 1.3.2 are packaged to obtain the divided input data. For the entire input data set {R 1 , R 2 ,..., R N } is divided to obtain the divided input data set {Φ 12 ,...,Φ M }, where Φ i indicates that the input data of a current frame, the forward input data and the backward input data are packaged to obtain the division subsequent input data. Specifically, for example, the number of data divisions m is 3, and R 2 is the current frame input data, the obtained forward input data is R 1 , the backward input data is R 3 , the current frame input data R 2 and the forward input data R 1 are obtained. , backward input data R 3 is packaged to obtain the divided input data Φ 1 , specifically Φ 1 ={R 1 , R 2 , R 3 }, for example, the number of data divisions m is 5, in the input data set {R 1 ,R 2 ,...,R N } with R 3 as the current frame input data, the obtained forward input data is {R 1 ,R 2 }, the backward input data is {R 4 ,R 5 }, and the current frame input data R 3 , the forward input data {R 1 , R 2 } and the backward input data {R 4 , R 5 } are packaged to obtain the divided input data Φ 2 , specifically Φ 2 ={R 1 , R 2 , R 3 , R 4 , R 5 }. Among them, M≤N.

需要说明的是,本实施例在数据划分数目m为3或5时得到的Φ1或Φ2只是举例说明,具体Φ1或Φ2由实际输入数据集决定。It should be noted that Φ 1 or Φ 2 obtained when the number of data divisions m is 3 or 5 in this embodiment is only for illustration, and the specific Φ 1 or Φ 2 is determined by the actual input data set.

步骤1.3.4、根据当前帧输入数据得到划分后的帧标签数据集。Step 1.3.4. Obtain a divided frame label data set according to the current frame input data.

具体而言,本实施例将上述中心帧对应的标签数据作为划分后的标签数据,对整个标签数据集

Figure BDA0002139058170000091
进行划分得到划分后的标签数据集
Figure BDA0002139058170000092
具体比如数据划分数目m为3,以R2为当前帧输入数据,则该当前帧输入数据R2对应的标签数据为
Figure BDA0002139058170000093
将标签数据
Figure BDA0002139058170000094
作为划分后的标签数据
Figure BDA0002139058170000095
Figure BDA0002139058170000096
再比如数据划分数目m为5,以R3为当前帧输入数据,则该当前帧输入数据R2对应的标签数据为
Figure BDA0002139058170000097
将标签数据
Figure BDA0002139058170000098
作为划分后的标签数据
Figure BDA0002139058170000099
Figure BDA00021390581700000910
其中,M≤N。Specifically, in this embodiment, the label data corresponding to the above-mentioned central frame is used as the divided label data, and the entire label data set is
Figure BDA0002139058170000091
Divide to get the divided label dataset
Figure BDA0002139058170000092
Specifically, for example, the number of data divisions m is 3, and R 2 is the current frame input data, then the label data corresponding to the current frame input data R 2 is:
Figure BDA0002139058170000093
label data
Figure BDA0002139058170000094
as divided label data
Figure BDA0002139058170000095
Figure BDA0002139058170000096
Another example is that the number of data divisions m is 5, and R 3 is the current frame input data, then the label data corresponding to the current frame input data R 2 is
Figure BDA0002139058170000097
label data
Figure BDA0002139058170000098
as divided label data
Figure BDA0002139058170000099
Figure BDA00021390581700000910
Among them, M≤N.

需要说明的是,本实施例在数据划分数目m为3或5时得到的

Figure BDA00021390581700000911
Figure BDA00021390581700000912
只是举例说明,具体
Figure BDA00021390581700000913
Figure BDA00021390581700000914
由实际标签数据集决定。It should be noted that, in this embodiment, when the number of data divisions m is 3 or 5, the
Figure BDA00021390581700000911
or
Figure BDA00021390581700000912
Just an example, specific
Figure BDA00021390581700000913
or
Figure BDA00021390581700000914
Determined by the actual labeled dataset.

步骤1.4、分别提取划分后的输入数据集、划分后的标签数据集的上三角元素的相位特征得到输入数据集的相位特征、标签数据集的相位特征。Step 1.4: Extract the phase features of the upper triangular elements of the divided input data set and the divided label data set, respectively, to obtain the phase feature of the input data set and the phase feature of the label data set.

具体而言,本实施例提取划分后的输入数据集{Φ12,…,ΦM}的上三角元素的相位特征,得到输入数据集的相位特征{φ12,…,φM};同理,提取划分后的标签数据集

Figure BDA00021390581700000915
的上三角元素的相位特征,得到标签数据集的相位特征
Figure BDA00021390581700000916
Specifically, this embodiment extracts the phase features of the upper triangular elements of the divided input dataset {Φ 12 ,...,Φ M } to obtain the phase features of the input dataset {Φ 12 ,..., φ M }; in the same way, extract the divided label dataset
Figure BDA00021390581700000915
The phase features of the upper triangular elements of , get the phase features of the label dataset
Figure BDA00021390581700000916

本实施例获取的输入数据集的相位特征不仅利用了当前帧输入数据的特征,还充分利用了多帧输入数据之间的相关性的特征,使得DOA估计精度更高。The phase feature of the input data set obtained in this embodiment not only utilizes the feature of the input data of the current frame, but also fully utilizes the feature of the correlation between the input data of multiple frames, so that the DOA estimation accuracy is higher.

进一步地,步骤2对输入数据集的相位特征进行归一化处理得到归一化的输入数据集的相位特征,包括:Further, step 2 normalizes the phase feature of the input data set to obtain the normalized phase feature of the input data set, including:

获取输入数据集的相位特征的均值和标准差;Obtain the mean and standard deviation of the phase features of the input dataset;

根据均值和标准差对输入数据集的相位特征进行高斯归一化处理得到归一化的输入数据集的相位特征。Gaussian normalization is performed on the phase features of the input data set according to the mean and standard deviation to obtain the normalized phase features of the input data set.

具体而言,为保证后续神经网络训练过程中的非线性性且保留输入数据集的分布特征,本实施例对输入数据集的相位特征{φ12,…,φM}在特征维进行高斯归一化处理,经统计输入数据集特征维的均值为u1,标准差为σ1,则输入数据集对应的归一化的相位特征设计为:Specifically, in order to ensure the non-linearity in the subsequent neural network training process and retain the distribution characteristics of the input data set, the phase features {φ 1 , φ 2 ,...,φ M } of the input data set are determined in the feature dimension in this embodiment. After Gaussian normalization, the mean of the feature dimension of the input data set is u 1 and the standard deviation is σ 1 , then the normalized phase feature corresponding to the input data set is designed as:

Figure BDA0002139058170000101
Figure BDA0002139058170000101

对输入数据集的相位特征{φ12,…,φM}中每个输入数据的相位特征进行归一化处理,得到归一化的输入数据集的相位特征

Figure BDA0002139058170000102
Normalize the phase feature of each input data in the phase feature {φ 12 ,…,φ M } of the input dataset to obtain the phase feature of the normalized input dataset
Figure BDA0002139058170000102

进一步地,步骤3根据归一化的输入数据集的相位特征对神经网络模型进行训练得到网络输出数据集的相位特征。Further, step 3 trains the neural network model according to the phase characteristics of the normalized input data set to obtain the phase characteristics of the network output data set.

具体而言,本实施例根据步骤2得到的归一化的输入数据集的相位特征集对神经网络模型进行训练,步骤3具体包括步骤3.1、步骤3.2:Specifically, this embodiment trains the neural network model according to the phase feature set of the normalized input data set obtained in step 2, and step 3 specifically includes steps 3.1 and 3.2:

步骤3.1、构建四层深度神经网络模型。Step 3.1. Build a four-layer deep neural network model.

具体而言,请参见图2,图2是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法中四层深度神经网络的结构示意图。本实施例采用四层深度神经网络模型,网络模型具体结构如图2所示,网络中隐含层节点数为1024,同时网络中的激活函数采用ReLU激活函数,具体ReLU激活函数表示为f(x)=max(x,0)。Specifically, please refer to FIG. 2, which is a schematic structural diagram of a four-layer deep neural network in a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention. This embodiment adopts a four-layer deep neural network model. The specific structure of the network model is shown in Figure 2. The number of hidden layer nodes in the network is 1024, and the activation function in the network adopts the ReLU activation function. The specific ReLU activation function is expressed as f( x)=max(x,0).

步骤3.2、将归一化的输入数据集的相位特征输入至四层深度神经网络模型,训练得到网络输出数据集的相位特征。Step 3.2: Input the phase feature of the normalized input data set into the four-layer deep neural network model, and train to obtain the phase feature of the network output data set.

具体而言,本实施例将归一化的输入数据集的相位特征输入至步骤3.1构建的四层深度神经网络模型,训练得到网络输出数据集的相位特征

Figure BDA0002139058170000103
为了使得训练过程中网络输出数据集的相位特征
Figure BDA0002139058170000104
和标签数据集的相位特征
Figure BDA0002139058170000105
相匹配,本实施例四层深度神经网络模型中的最后一层采用线性映射。Specifically, in this embodiment, the phase feature of the normalized input dataset is input into the four-layer deep neural network model constructed in step 3.1, and the phase feature of the network output dataset is obtained by training.
Figure BDA0002139058170000103
In order to make the phase characteristics of the network output data set during the training process
Figure BDA0002139058170000104
and phase features of the label dataset
Figure BDA0002139058170000105
Correspondingly, the last layer in the four-layer deep neural network model in this embodiment adopts linear mapping.

进一步地,步骤4根据网络输出数据集的相位特征、标签数据集的相位特征构建目标函数,利用第一预设方法对目标函数进行反向传输处理,且利用第二预设方法更新神经网络模型的网络参数集。Further, step 4 constructs an objective function according to the phase characteristics of the network output data set and the phase characteristics of the label data set, uses the first preset method to perform reverse transmission processing on the objective function, and uses the second preset method to update the neural network model. set of network parameters.

具体而言,本实施例构建的目标函数为:Specifically, the objective function constructed in this embodiment is:

Figure BDA0002139058170000106
Figure BDA0002139058170000106

其中,

Figure BDA0002139058170000111
表示网络输出数据集的相位特征,
Figure BDA0002139058170000112
表示标签数据集的相位特征。in,
Figure BDA0002139058170000111
represents the phase feature of the network output dataset,
Figure BDA0002139058170000112
Represents the phase features of the labeled dataset.

本实施例对公式(6)的目标函数利用第一预设方法进行反向传输处理,使得网络输出数据集

Figure BDA0002139058170000113
标签数据集的相位特征
Figure BDA0002139058170000114
相匹配,同时利用第二预设方法更新四层深度神经网络模型的网络参数集。This embodiment uses the first preset method to perform reverse transmission processing on the objective function of formula (6), so that the network outputs the data set
Figure BDA0002139058170000113
Phase Features of Labeled Datasets
Figure BDA0002139058170000114
match, and at the same time update the network parameter set of the four-layer deep neural network model by using the second preset method.

本实施例四层深度神经网络模型的网络参数集包括网络权值W和网络偏置值b,其中,The network parameter set of the four-layer deep neural network model in this embodiment includes a network weight W and a network bias value b, wherein,

网络权值W设计为:The network weight W is designed as:

Figure BDA0002139058170000115
Figure BDA0002139058170000115

网络偏置值b设计为:The network bias value b is designed as:

Figure BDA0002139058170000116
Figure BDA0002139058170000116

其中,α表示学习率,∈表示固定常数,

Figure BDA0002139058170000117
表示网络参数集求解过程中的中间变量,具体
Figure BDA0002139058170000118
的设计如下:where α represents the learning rate, ∈ represents a fixed constant,
Figure BDA0002139058170000117
Represents the intermediate variables in the process of solving the network parameter set, specifically
Figure BDA0002139058170000118
is designed as follows:

Figure BDA0002139058170000119
Figure BDA0002139058170000119

Figure BDA00021390581700001110
Figure BDA00021390581700001110

其中,β1为网络权值W和网络偏置值的一阶矩的指数衰减率,β2为网络权值W和网络偏置值的二阶矩的指数衰减率,vdW表示网络权值W的一阶矩,sdW表示网络权值W的二阶矩,vdb表示网络偏置值b的一阶矩,sdb表示网络偏置值b的二阶矩,vdW,vdb,sdW,sdb的初始值均为0。Among them, β 1 is the exponential decay rate of the first-order moment of the network weight W and the network bias value, β 2 is the exponential decay rate of the second-order moment of the network weight W and the network bias value, v dW represents the network weight value The first-order moment of W, s dW represents the second-order moment of the network weight W, v db represents the first-order moment of the network bias value b, s db represents the second-order moment of the network bias value b, v dW , v db , The initial values of s dW and s db are both 0.

通过反复训练四层深度神经网络,直到目标函数Loss收敛,其对应的训练得到网络参数集为该四层深度神经网络的最优网络参数。By repeatedly training the four-layer deep neural network until the objective function Loss converges, the corresponding training network parameter set is the optimal network parameter of the four-layer deep neural network.

优选地,第一预设方法为反向传播(Backpropagation,简称BP)方法,第二预设方法为自适应性矩估计(Adaptive moment estimation,简称Adam)方法。Preferably, the first preset method is a backpropagation (Backpropagation, BP for short) method, and the second preset method is an adaptive moment estimation (Adaptive moment estimation, Adam for short) method.

进一步地,步骤5根据网络参数集对测试数据集进行增强处理得到新的数据协方差矩阵,根据新的数据协方差矩阵得到新的测试数据集。Further, step 5 performs enhancement processing on the test data set according to the network parameter set to obtain a new data covariance matrix, and obtains a new test data set according to the new data covariance matrix.

具体而言,本实施例步骤5包括步骤5.1、步骤5.2、步骤5.3、步骤5.4、步骤5.5、步骤5.6:Specifically, step 5 of this embodiment includes step 5.1, step 5.2, step 5.3, step 5.4, step 5.5, and step 5.6:

步骤5.1、获取测试数据集。Step 5.1. Obtain the test data set.

具体而言,本实施例从实际场景获取一测试数据集,该测试数据集的构建如公式(3)中输入数据集的构建。Specifically, in this embodiment, a test data set is obtained from an actual scene, and the construction of the test data set is the same as the construction of the input data set in formula (3).

步骤5.2、对测试数据集进行划分得到划分后的测试数据集。Step 5.2: Divide the test data set to obtain a divided test data set.

具体而言,本实施例根据上述步骤1.3中输入数据集的划分方式,对测试数据集进行划分得到划分后的测试数据集。Specifically, this embodiment divides the test data set according to the division method of the input data set in the above step 1.3 to obtain the divided test data set.

步骤5.3、提取划分后的测试数据集的上三角元素的相位特征得到测试数据集的相位特征。Step 5.3: Extract the phase feature of the upper triangular element of the divided test data set to obtain the phase feature of the test data set.

具体而言,本实施例根据上述步骤1.3中划分后的输入数据集、划分后的标签数据集的提取方式,提取划分后的测试数据集的上三角元素的相位特征得到测试数据集的相位特征。Specifically, in this embodiment, according to the extraction method of the divided input data set and the divided label data set in the above step 1.3, the phase characteristics of the upper triangular elements of the divided test data set are extracted to obtain the phase characteristics of the test data set. .

步骤5.4、将归一化处理的测试数据集的相位特征输入至四层深度神经网络模型,训练得到增强的测试数据集的相位特征。Step 5.4: Input the phase feature of the normalized test data set into the four-layer deep neural network model, and train the phase feature of the enhanced test data set.

具体而言,本实施例将测试数据集的相位特征输入至四层深度神经网络模型前,首先对测试数据集的相位特征进行归一化处理,归一化具体方式如上述输入数据集的归一化处理方式,则归一化的测试数据集的相位特征设计为:Specifically, in this embodiment, before the phase feature of the test data set is input into the four-layer deep neural network model, the phase feature of the test data set is first normalized. The normalized processing method, the phase feature of the normalized test data set is designed as:

Figure BDA0002139058170000121
Figure BDA0002139058170000121

其中,

Figure BDA0002139058170000122
表示步骤5.3得到的测试数据集的相位特征,u2表示通过统计标签数据集的相位特征的均值,σ2表示通过统计标签数据集的相位特征的标准差。in,
Figure BDA0002139058170000122
represents the phase feature of the test data set obtained in step 5.3, u 2 represents the mean value of the phase feature of the statistical label dataset, and σ 2 represents the standard deviation of the phase feature of the statistical label dataset.

步骤5.5、根据增强的测试数据集的相位特征得到新的数据协方差矩阵。Step 5.5, obtaining a new data covariance matrix according to the phase feature of the enhanced test data set.

具体而言,本实施例以步骤5.4得到的

Figure BDA0002139058170000131
作为四层深度神经网络的输入,经四层深度神经网络训练后得到测试数据集增强的相位特征φi′,将原测试数据集中的幅度信息ρi、对角元素Γi和增强的相位特征φ′i,重组得到新的数据协方差矩阵R′i。Specifically, this example is obtained in step 5.4
Figure BDA0002139058170000131
As the input of the four-layer deep neural network , the enhanced phase feature φ i ′ of the test data set is obtained after the training of the four-layer deep neural network . φ′ i , recombine to obtain a new data covariance matrix R′ i .

步骤5.6、根据所述新的数据协方差矩阵得到新的测试数据集。Step 5.6: Obtain a new test data set according to the new data covariance matrix.

具体而言,本实施例对归一化的测试数据集的相位特征分别进行如上步骤5.5的训练过程,得到每个测试数据对应的新的数据协方差矩阵R′i,由这些新的数据协方差矩阵R′i构建得到新的测试数据集{R′1,R′2,...,R′N}。Specifically, in this embodiment, the phase characteristics of the normalized test data set are respectively subjected to the training process in step 5.5 above to obtain a new data covariance matrix R′ i corresponding to each test data. The variance matrix R′ i is constructed to obtain a new test data set {R′ 1 , R′ 2 ,...,R′ N }.

进一步地,步骤6利用预设DOA估计模型对新的测试数据集进行DOA估计得到米波雷达目标的仰角。Further, step 6 uses a preset DOA estimation model to perform DOA estimation on the new test data set to obtain the elevation angle of the meter-wave radar target.

具体而言,本实施例对新的测试数据集中每个新的数据协方差矩阵进行DOA估计,具体地,利用预设DOA估计模型对每个新的数据协方差矩阵进行DOA估计,本实施例预设DOA估计模型设计为:Specifically, in this embodiment, DOA estimation is performed on each new data covariance matrix in the new test data set. Specifically, DOA estimation is performed on each new data covariance matrix by using a preset DOA estimation model. This embodiment The preset DOA estimation model is designed as:

Figure BDA0002139058170000132
Figure BDA0002139058170000132

其中,R′i表示新的测试数据集中新的数据协方差矩阵,a(θi)表示阵列导向矢量,aH(θ)表示a(θi)的共轭转置。where R′ i represents the new data covariance matrix in the new test dataset, a(θ i ) represents the array steering vector, and a H (θ) represents the conjugate transpose of a(θ i ).

本实施例通过公式(12),求解出测试数据集中每个米波雷达目标的仰角

Figure BDA0002139058170000133
In this embodiment, the elevation angle of each meter-wave radar target in the test data set is obtained by formula (12).
Figure BDA0002139058170000133

综上所述,相对于物理驱动的DOA估计方法而言,本实施例提供的DOA估计方法有效解决了实际信号模型与理想的远场平面波模型的失配问题,使得DOA估计精度更高;相对于已有的数据驱动的DOA估计方法(比如基于SVR的DOA估计方法)而言,本实施例提供的DOA估计方法不仅利用了当前帧输入数据的特征,而且充分利用了多帧输入数据之间的相关性的特征,使得DOA估计精度更高。To sum up, compared with the physically driven DOA estimation method, the DOA estimation method provided in this embodiment effectively solves the mismatch between the actual signal model and the ideal far-field plane wave model, so that the DOA estimation accuracy is higher; For the existing data-driven DOA estimation method (such as the DOA estimation method based on SVR), the DOA estimation method provided in this embodiment not only utilizes the characteristics of the input data of the current frame, but also makes full use of the difference between the input data of multiple frames. The characteristics of the correlation make DOA estimation more accurate.

为了验证本申请提供的相位增强的米波雷达目标低仰角DOA估计方法的有效性,本实施例通过以下仿真实验做以进一步说明:In order to verify the effectiveness of the phase-enhanced metric wave radar target low-elevation DOA estimation method provided by this application, this embodiment is further described by the following simulation experiments:

模拟仿真环境Simulation environment

实验的数据产生及处理在MATLAB2017a上完成,四层深度神经网络模型训练在Python3.5上完成。本实施例通过四种模拟场景来验证本方法的有效性。The data generation and processing of the experiment was completed on MATLAB2017a, and the training of the four-layer deep neural network model was completed on Python 3.5. This embodiment verifies the effectiveness of the method through four simulation scenarios.

实验场景1Experimental Scenario 1

场景中阵列结构为21阵元的均匀线阵,波长λ为1米,阵元间距d为半波长,快拍数为42,信噪比范围为-10dB~-2dB,信噪比采样间隔为2dB,目标仰角的范围为1°~5°,阵列中存在的相位误差为20°。请参见图3、图4,图3是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在不同信噪比条件下测角误差的对比结果示意图,图4是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在不同信噪比条件下特征拟合优度的对比结果示意图,图3的横坐标表示信噪比,纵坐标表示测角误差,图4的横坐标表示信噪比,纵坐标表示特征拟合优度,本实施例测角误差为均方根误差,由图3、图4可以看出,信噪比越高、帧数(数据划分数目)越大,特征拟合优度越好,测角误差也越小。The array structure in the scene is a uniform linear array with 21 array elements, the wavelength λ is 1 meter, the array element spacing d is half wavelength, the number of snapshots is 42, the signal-to-noise ratio range is -10dB to -2dB, and the signal-to-noise ratio sampling interval is 2dB, the target elevation angle ranges from 1° to 5°, and the phase error in the array is 20°. Please refer to FIG. 3 and FIG. 4. FIG. 3 is a schematic diagram of the comparison results of angle measurement errors under different signal-to-noise ratio conditions of a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention. A schematic diagram of the comparison results of the feature fitting goodness of a phase-enhanced metric-wave radar target low-elevation DOA estimation method under different signal-to-noise ratio conditions provided by the embodiment of the invention, the abscissa of FIG. 3 represents the signal-to-noise ratio, and the ordinate represents the measurement. Angle error, the abscissa in Figure 4 represents the signal-to-noise ratio, and the ordinate represents the feature fit goodness. The angle measurement error in this embodiment is the root mean square error. It can be seen from Figures 3 and 4 that the higher the signal-to-noise ratio, the higher The larger the number of frames (number of data divisions), the better the feature fit and the smaller the angle measurement error.

实验场景2Experimental Scenario 2

场景中阵列结构为21阵元的均匀线阵,波长λ为1米,阵元间距d为半波长,快拍数为42,标签数据集的信噪比范围为-10dB~0dB,测试数据集的信噪比范围为-11dB~-1dB,信噪比采样间隔均为2dB,目标仰角范围为1°~5°,阵列中存在的相位误差为20°。请参见图5、图6,图5是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在信噪比条件失配下测角误差的对比结果示意图,图6是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在信噪比条件失配下特征拟合优度的对比结果示意图,图5的横坐标表示信噪比,纵坐标表示测角误差,图6的横坐标表示信噪比,纵坐标表示特征拟合优度,本实施例测角误差为均方根误差,由图5、图6可以看出,信噪比越高、帧数越大,特征拟合优度越好,测角误差也越小。同时,由图6可以看出帧数提高到一定程度时,因为帧与帧之间的相关性减小,所以网络特征拟合性能趋近于饱和状态,可以看出本申请对信噪比具有较强的泛化能力。The array structure in the scene is a uniform linear array with 21 array elements, the wavelength λ is 1 meter, the array element spacing d is half wavelength, the number of snapshots is 42, the signal-to-noise ratio of the tag data set ranges from -10dB to 0dB, and the test data set The signal-to-noise ratio ranges from -11dB to -1dB, the signal-to-noise ratio sampling interval is 2dB, the target elevation angle ranges from 1° to 5°, and the phase error existing in the array is 20°. Please refer to FIG. 5 and FIG. 6 . FIG. 5 is a schematic diagram of the comparison result of the angle measurement error under the mismatch of the signal-to-noise ratio condition of a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention, and FIG. 6 is the present invention. A schematic diagram of the comparison results of the feature fitting goodness of a phase-enhanced metric wave radar target low-elevation DOA estimation method under the conditional mismatch of the signal-to-noise ratio provided by the embodiment of the invention, the abscissa of FIG. 5 represents the signal-to-noise ratio, and the ordinate represents the measurement. Angle error, the abscissa in Figure 6 represents the signal-to-noise ratio, and the ordinate represents the feature fit goodness. In this embodiment, the angle measurement error is the root mean square error. It can be seen from Figures 5 and 6 that the higher the signal-to-noise ratio, the The larger the number of frames, the better the feature fit, and the smaller the angle measurement error. At the same time, it can be seen from FIG. 6 that when the number of frames increases to a certain extent, because the correlation between frames decreases, the network feature fitting performance tends to be saturated. Strong generalization ability.

实验场景3Experimental Scenario 3

场景中阵列结构为21阵元的均匀线阵,波长λ为1米,阵元间距d为半波长,快拍数为42,信噪比为0dB,目标仰角范围为1°~5°,阵列中存在的相位误差的范围为5%~20%,误差采样间隔为5%。请参见图7、图8,图7是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在不同相位误差条件下测角误差的对比结果示意图,图8是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在不同相位误差条件下特征拟合优度的对比结果示意图,图7的横坐标表示相位误差,纵坐标表示测角误差,图8的横坐标表示相位误差,纵坐标表示特征拟合优度,本实施例测角误差为均方根误差,由图7可以看出,帧数越大,测角误差越小,相比与现有方法,本申请测角精度得到了有效提高,由图8可以看出,帧数越大,特征拟合优度越好,相比与现有方法,本申请网络特征拟合性能优于现有方法。The array structure in the scene is a uniform linear array with 21 array elements, the wavelength λ is 1 meter, the array element spacing d is half wavelength, the number of snapshots is 42, the signal-to-noise ratio is 0dB, the target elevation angle range is 1°~5°, the array The range of the phase error that exists in 5% to 20% is 5%, and the error sampling interval is 5%. Please refer to FIG. 7 and FIG. 8. FIG. 7 is a schematic diagram of the comparison results of angle measurement errors under different phase error conditions of a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention, and FIG. 8 is the present invention. A schematic diagram of the comparison results of the feature fit goodness of a phase-enhanced metric wave radar target low-elevation DOA estimation method under different phase error conditions provided by the embodiment, the abscissa of FIG. 7 represents the phase error, and the ordinate represents the angle measurement error, The abscissa in Fig. 8 represents the phase error, and the ordinate represents the feature goodness of fit. The angle measurement error in this embodiment is the root mean square error. It can be seen from Fig. 7 that the larger the number of frames, the smaller the angle measurement error. Compared with the existing method, the angle measurement accuracy of the present application has been effectively improved. It can be seen from FIG. 8 that the larger the number of frames, the better the feature fitting goodness. Compared with the existing method, the present application network feature fitting performance is better. on existing methods.

实验场景4Experimental Scenario 4

场景中阵列结构为21阵元的均匀线阵,波长λ为1米,阵元间距d为半波长,快拍数为42,信噪比为0dB,标签数据集相位误差范围为5%~20%,测试数据集相位误差范围为3%~23%,相位误差采样间隔均为5%,目标仰角范围为1°~5°。图9是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在相位误差条件失配下测角误差的对比结果示意图,图10是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法在相位误差条件失配下特征拟合优度的对比结果示意图,图9的横坐标表示相位误差,纵坐标表示测角误差,图10的横坐标表示相位误差,纵坐标表示特征拟合优度,本实施例测角误差为均方根误差,由图9可以看出,帧数越大,测角误差越小,相比与现有方法,本申请测角精度得到了有效提高,由图10可以看出,帧数越大,特征拟合优度越好,相比与现有方法,本申请网络特征拟合性能优于现有方法,同时由图10可以看出,帧数提高到一定程度时,因为帧与帧之间的相关性减小,所以网络拟合性能趋近于饱和状态,可以看出本申请对相位误差同样具有较高的泛化性能。The array structure in the scene is a uniform linear array with 21 array elements, the wavelength λ is 1 meter, the array element spacing d is half wavelength, the number of snapshots is 42, the signal-to-noise ratio is 0dB, and the phase error range of the tag data set is 5% to 20 %, the phase error range of the test data set is 3% to 23%, the sampling interval of the phase error is 5%, and the target elevation angle range is 1° to 5°. FIG. 9 is a schematic diagram of a comparison result of angle measurement errors under a phase error condition mismatch of a phase-enhanced metric wave radar target low-elevation DOA estimation method provided by an embodiment of the present invention, and FIG. 10 is a phase-enhanced method provided by an embodiment of the present invention. Schematic diagram of the comparison results of the characteristic goodness-of-fit of the metric wave radar target low-elevation DOA estimation method under the mismatch of the phase error condition, the abscissa of Fig. 9 represents the phase error, the ordinate of Fig. , the ordinate represents the feature goodness of fit, and the angle measurement error in this embodiment is the root mean square error. It can be seen from FIG. 9 that the larger the number of frames, the smaller the angle measurement error. Compared with the existing method, this application measures The angular accuracy has been effectively improved. It can be seen from Figure 10 that the larger the number of frames, the better the feature fitting goodness. Compared with the existing method, the network feature fitting performance of the present application is better than the existing method. 10 It can be seen that when the number of frames increases to a certain extent, because the correlation between frames decreases, the network fitting performance tends to be saturated. performance.

为验证本申请所提供的DOA估计方法的实用性,本实施例对某阵地米波雷达实测数据进行处理。实际场景中雷达3dB波束宽度约为5°,目标所处的阵地环境非常恶劣,存在较多的树木和丘陵等物体,请参见图11,图11是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法中实测数据航迹示意图。In order to verify the practicability of the DOA estimation method provided in this application, this embodiment processes the measured data of a meter wave radar at a certain position. In the actual scene, the 3dB beam width of the radar is about 5°. The position environment where the target is located is very harsh, and there are many objects such as trees and hills. Please refer to FIG. 11. FIG. Schematic diagram of the measured data track in the low-elevation DOA estimation method of the meter-wave radar target.

请参见图12、图13,图12是本发明实施例提供的两种传统方法对实测数据处理的测角结果示意图,图13是本发明实施例提供的一种相位增强的米波雷达目标低仰角DOA估计方法对实测数据处理的测角误差示意图,对于图12中的两种传统方法为DBF方法和SSMUSIC方法,以DBF方法和SSMUSIC方法脱机处理某条航线数据,由图12可以看出,DBF方法和SSMUSIC方法均已失效,因为这两种方法进行平滑处理后,将所有特征矢量作为噪声矢量和多径信号加入到原始数据中,使得测试数据集和标签数据集不匹配,进而导致测角误差大。而对于本申请,经过四层深度神经网络进行相位特征增强后,由图13可以看出,测角误差几乎均匀分布在±0.5°范围内,测量性能明显提高。以测角误差为0.3°作为有效点迹的评价标准,经过四层深度神经网络增强后的有效点迹提高到95.6%,性能是非常显著的。本申请具有较高的可靠性。Please refer to FIG. 12 and FIG. 13 . FIG. 12 is a schematic diagram of the angle measurement results of the two traditional methods provided by the embodiment of the present invention processing the measured data. Schematic diagram of the angle measurement error of the elevation DOA estimation method for the processing of the measured data. For the two traditional methods in Figure 12, the DBF method and the SSMUSIC method are used to process a certain route data offline, as can be seen from Figure 12 , both the DBF method and the SSMUSIC method have failed, because after the smoothing of these two methods, all feature vectors are added to the original data as noise vectors and multipath signals, so that the test data set and the label data set do not match, which in turn leads to The angle measurement error is large. For the present application, after the phase feature enhancement is performed by the four-layer deep neural network, it can be seen from Figure 13 that the angle measurement error is almost uniformly distributed within the range of ±0.5°, and the measurement performance is significantly improved. Taking the angle measurement error of 0.3° as the evaluation standard of the effective point trace, the effective point trace after the enhancement of the four-layer deep neural network is increased to 95.6%, and the performance is very significant. This application has high reliability.

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.

Claims (8)

1. A phase-enhanced meter-wave radar target low elevation DOA estimation method is characterized by comprising the following steps:
acquiring phase characteristics of an input data set and phase characteristics of a tag data set;
normalizing the phase characteristics of the input data set to obtain the phase characteristics of the normalized input data set;
inputting the phase characteristics of the normalized input data set into a neural network model to obtain the phase characteristics of a network output data set;
constructing an objective function according to the phase characteristics of the network output data set and the label data set, performing reverse transmission processing on the objective function by using a first preset method, and updating a network parameter set of the neural network model by using a second preset method;
according to the network parameter set, carrying out enhancement processing on a test data set to obtain a new data covariance matrix, and according to the new data covariance matrix, obtaining a new test data set;
performing DOA estimation on the new test data set by using a preset DOA estimation model to obtain an elevation angle of the meter-wave radar target;
wherein obtaining phase characteristics of the input data set and the tag data set comprises:
constructing a receiving array, and obtaining an array receiving signal and an array guide vector according to the receiving array;
respectively obtaining an input data set and a tag data set according to the array receiving signals and the array steering vectors;
dividing the input data set and the label data set respectively to obtain a divided input data set and a divided label data set;
respectively extracting the phase characteristics of the upper triangular elements of the divided input data set and the divided label data set to obtain the phase characteristics of the input data set and the phase characteristics of the label data set;
wherein, divide said input data set and label data set separately and get the input data set after dividing, label data set after dividing, including:
acquiring input data of a current frame and the data division number m, wherein m is a positive odd number;
respectively and continuously extracting (m-1)/2 frames of input data from the input data set forwards and backwards by taking the current frame of input data as a central frame to obtain forward input data and backward input data;
obtaining the divided input data set according to the current frame input data, the forward input data and the backward input data;
and obtaining the divided label data set according to the current frame input data.
2. The method of phase-enhanced meter wave radar target low elevation DOA estimation according to claim 1, wherein normalizing the phase signature of the input data set to obtain a normalized phase signature of the input data set comprises:
obtaining a mean and a standard deviation of phase characteristics of the input data set;
and carrying out Gaussian normalization processing on the phase characteristics of the input data set according to the mean value and the standard deviation to obtain the phase characteristics of the normalized input data set.
3. The phase-enhanced meter wave radar target low elevation DOA estimation method according to claim 1, wherein inputting the phase characteristics of the normalized input data set to a neural network model to obtain the phase characteristics of a network output data set comprises:
constructing a four-layer deep neural network model;
and inputting the phase characteristics of the normalized input data set into the four-layer deep neural network model, and training to obtain the phase characteristics of the network output data set.
4. The phase-enhanced meter-wave radar target low elevation DOA estimation method according to claim 1, wherein the constructed objective function is:
Figure FDA0003159014220000021
wherein,
Figure FDA0003159014220000022
representing the phase characteristics of the network output data set,
Figure FDA0003159014220000023
representing the phase characteristics of the tag data set.
5. The phase-enhanced meter-wave radar target low elevation DOA estimation method according to claim 1, wherein the first preset method comprises a back propagation method and the second preset method comprises an adaptive moment estimation method.
6. The phase-enhanced meter-wave radar target low elevation DOA estimation method according to claim 1, wherein the set of network parameters of the neural network model includes a network weight W and a network bias value b, wherein,
the network weight W is:
Figure FDA0003159014220000024
the network bias value b is:
Figure FDA0003159014220000031
where α represents a learning rate, ∈ represents a fixed constant,
Figure FDA0003159014220000032
respectively, are intermediate variables of the network weight W,
Figure FDA0003159014220000033
respectively, intermediate variables of the network bias value b.
7. The method of phase-enhanced metric wave radar target low elevation DOA estimation according to claim 3, wherein the enhancing the test dataset according to the network parameter set to obtain a new data covariance matrix, and the obtaining the new test dataset according to the new data covariance matrix comprises:
acquiring a test data set;
dividing the test data set to obtain a divided test data set;
extracting the phase characteristics of the upper triangular elements of the divided test data set to obtain the phase characteristics of the test data set;
inputting the phase characteristics of the test data set subjected to normalization processing into the four-layer deep neural network model to obtain the phase characteristics of the enhanced test data set;
obtaining the new data covariance matrix according to the phase characteristics of the enhanced test data set;
and obtaining a new test data set according to the new data covariance matrix.
8. The phase-enhanced meter-wave radar target low elevation angle DOA estimation method according to claim 1, wherein the preset DOA estimation model is:
Figure FDA0003159014220000034
wherein R'iRepresents a new data covariance matrix, a (θ), in a new test data seti) Representing array steering vectors, aHi) Denotes a (theta)i) The conjugate transpose of (a) is performed,
Figure FDA0003159014220000035
representing the estimated elevation angle, theta, of a meter-wave radar targetiRepresenting the true elevation angle of the meter-wave radar target.
CN201910662647.3A 2019-07-22 2019-07-22 A Phase-Enhanced Method for Estimating Low-Elevation DOA for Meter-Wave Radar Targets Active CN110471026B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910662647.3A CN110471026B (en) 2019-07-22 2019-07-22 A Phase-Enhanced Method for Estimating Low-Elevation DOA for Meter-Wave Radar Targets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910662647.3A CN110471026B (en) 2019-07-22 2019-07-22 A Phase-Enhanced Method for Estimating Low-Elevation DOA for Meter-Wave Radar Targets

Publications (2)

Publication Number Publication Date
CN110471026A CN110471026A (en) 2019-11-19
CN110471026B true CN110471026B (en) 2021-08-24

Family

ID=68508174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910662647.3A Active CN110471026B (en) 2019-07-22 2019-07-22 A Phase-Enhanced Method for Estimating Low-Elevation DOA for Meter-Wave Radar Targets

Country Status (1)

Country Link
CN (1) CN110471026B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114791583B (en) * 2022-03-08 2024-08-02 西安电子科技大学 Low elevation angle target DOA estimation method based on sum/difference mode of deep neural network
CN115236584A (en) * 2022-06-10 2022-10-25 中国人民解放军空军工程大学 Estimation method of low elevation angle of metric wave radar based on deep learning
CN116125421B (en) * 2023-02-07 2023-10-20 中国电子科技集团公司第五十四研究所 Array radar multi-echo signal target detection method based on deep learning
CN119126009A (en) * 2024-11-13 2024-12-13 之江实验室 A Direction Finding Method for Phase Enhancement of Weak Array Signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220896A (en) * 2012-04-13 2014-12-17 高通股份有限公司 Systems, methods, and apparatus for estimating direction of arrival
CN109725285A (en) * 2018-12-28 2019-05-07 西安云脉智能技术有限公司 A kind of DOA estimation method based on the adaptive phase angle conversion of MVDR covariance matrix element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012505B (en) * 2010-10-15 2012-12-05 西安电子科技大学 Method for estimating direction of arrival of radar low-elevation target
CN102288944B (en) * 2011-05-12 2013-09-25 西安电子科技大学 Super-resolution height measuring method based on topographic matching for digital array meter wave radar
CN103353595B (en) * 2013-06-18 2015-01-07 西安电子科技大学 Meter Wave Radar Altimetry Method Based on Array Interpolation Compressed Sensing
TW201734404A (en) * 2016-03-30 2017-10-01 啟碁科技股份有限公司 Angle estimating method and radar system
CN108535698B (en) * 2018-04-04 2021-07-20 西安电子科技大学 Beamspace-Based Low Elevation Estimation Method for Meter-Wave Radar
CN109597046B (en) * 2018-11-29 2022-11-18 西安电子科技大学 Metric wave radar DOA estimation method based on one-dimensional convolutional neural network
CN109597048B (en) * 2018-11-29 2023-08-11 西安电子科技大学 Meter wave radar DOA estimation method based on two-dimensional convolutional neural network
CN109597047B (en) * 2018-11-29 2022-11-18 西安电子科技大学 Meter wave radar DOA estimation method based on supervised deep neural network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220896A (en) * 2012-04-13 2014-12-17 高通股份有限公司 Systems, methods, and apparatus for estimating direction of arrival
CN109725285A (en) * 2018-12-28 2019-05-07 西安云脉智能技术有限公司 A kind of DOA estimation method based on the adaptive phase angle conversion of MVDR covariance matrix element

Also Published As

Publication number Publication date
CN110471026A (en) 2019-11-19

Similar Documents

Publication Publication Date Title
CN110471026B (en) A Phase-Enhanced Method for Estimating Low-Elevation DOA for Meter-Wave Radar Targets
Xiang et al. Improved de-multipath neural network models with self-paced feature-to-feature learning for DOA estimation in multipath environment
CN109597046B (en) Metric wave radar DOA estimation method based on one-dimensional convolutional neural network
CN108828547B (en) Meter-wave radar low elevation height measurement method based on deep neural network
CN109255308A (en) There are the neural network angle-of- arrival estimation methods of array error
CN108169708B (en) Direct positioning method of modular neural network
CN109597048B (en) Meter wave radar DOA estimation method based on two-dimensional convolutional neural network
CN114791583B (en) Low elevation angle target DOA estimation method based on sum/difference mode of deep neural network
CN109597047B (en) Meter wave radar DOA estimation method based on supervised deep neural network
Shen et al. Matched-field geoacoustic inversion based on radial basis function neural network
Xiang et al. A novel phase enhancement method for low-angle estimation based on supervised DNN learning
WO2020083918A1 (en) Method and system for adaptive beamforming of ultrasound signals
CN111257845B (en) Approximate message transfer-based non-grid target angle estimation method
CN111427022A (en) An Array Radar Angle Measurement Method Based on Maximum Likelihood Estimation
CN112014791A (en) Near-field source positioning method of array PCA-BP algorithm with array errors
CN112328965A (en) Method for multi-maneuvering-signal-source DOA tracking by using acoustic vector sensor array
CN117471457A (en) Sparse SAR learning imaging method, device and medium based on deep expanded complex network
CN114487988B (en) Angle of Arrival Estimation System Based on Deep Learning
CN115236584A (en) Estimation method of low elevation angle of metric wave radar based on deep learning
Liu et al. Labelled non-zero diffusion particle flow smc-phd filtering for multi-speaker tracking
CN109683128B (en) Single-shot direction finding method in shock noise environment
CN113985348B (en) Single snapshot coherent super-resolution DOA estimation technology based on multi-task learning
CN117609688A (en) Mesh-free signal source DOA estimation method and system based on transfer learning
CN111537976B (en) Moving target detection method and device of airborne radar
Zhang et al. Sound source localization with sparse Bayesian-based feature matching via deep transfer learning in shallow sea

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant