CN110457655B - 边坡变形预测方法 - Google Patents

边坡变形预测方法 Download PDF

Info

Publication number
CN110457655B
CN110457655B CN201910740277.0A CN201910740277A CN110457655B CN 110457655 B CN110457655 B CN 110457655B CN 201910740277 A CN201910740277 A CN 201910740277A CN 110457655 B CN110457655 B CN 110457655B
Authority
CN
China
Prior art keywords
prediction
prediction model
slope deformation
data
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910740277.0A
Other languages
English (en)
Other versions
CN110457655A (zh
Inventor
李寻昌
叶君文
许锐
杨咸
闫成龙
李俊
姜超
袁豪杉
杨柯
张文勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201910740277.0A priority Critical patent/CN110457655B/zh
Publication of CN110457655A publication Critical patent/CN110457655A/zh
Application granted granted Critical
Publication of CN110457655B publication Critical patent/CN110457655B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/08Computing arrangements based on specific mathematical models using chaos models or non-linear system models

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Databases & Information Systems (AREA)
  • Operations Research (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Nonlinear Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了边坡变形预测方法,涉及地质监测技术领域,先获取边坡变形数据,利用混沌理论判断数据是否具有混沌特性,当具有混沌特性时,将权零阶局域预测模型、改进的一阶加权局域预测模型和改进的最大Lyapunov指数预测模型结合起来,建立最优权联合混沌预测模型,最后采用预测模型进行变形预测。本发明以延安某滑坡治理工程为例进行了实例分析,分析结果表明本发明的预测方法能够得到更精确的预测结果,对防灾减灾有很好的指导意义。

Description

边坡变形预测方法
技术领域
本发明涉及地质监测技术领域,特别是涉及边坡变形预测方法。
背景技术
进入21世纪以来,由于城市化进程的加快和极端气候条件的频发,人类社会几乎每天都面临着各种灾害的威胁,它们不仅威胁着我们的生命和财产,甚至可能破坏人类的文明成果,在这些灾害中,滑坡因其分布广,数量大,成灾次数频发,成为对人类威胁最大的一种地质灾害。随着科学和技术的进一步发展,如何有效防控滑坡的发生,成为目前防灾减灾的热点问题之一,而滑坡的准确预测预报更成为热点中的焦点问题。因此,滑坡的精准预测和预警不但可以保证受威胁人的生命财产安全,对于社会的和谐稳定也有一定的促进作用。
在当今世界,如何有效的利用已知的滑坡监测数据来开展边坡变形预测已然成为地质灾害研究领域的热点问题。其中贺小黑等为了能更早,更精确的预报滑坡发生,用改进的Verhulat生物生长模型对滑坡监测数据进行分析;崔巍等为了提高模型的预测精度,以新滩滑坡实际监测数据为实例,结合灰色理论以及协同预测等方法,建立了变权组合预测模型;郭承燕等为了减少滑坡灾害为南京带来的损失,在结合南京市历史滑坡数据、气象资料和地质灾害预测数学模型的基础上构建了南京市滑坡灾害预测方法,为南京市山体滑坡灾害的防灾减灾提供技术支持;刘超云等将能直接反应滑坡体滑动的地下水位位移、雨量、地声等影响因素作为数据基础,并结合了Kalman滤波数据融合技术,建立了基于位移参数的Kalman滤波数据融合预测模型,预测了滑坡体的稳定状态及变化趋势;徐冲等基于统计学习理论与地理信息系统(GIS)技术,建立了GIS与支持向量机(SVM)预测模型,通过预测结果的对比,为地震滑坡空间预测模型中核函数的科学选择提供了依据;基于白水河滑坡区的监测数据,宋江明将三维可视化应用在预测上,通过虚拟仿真软件显示滑坡演化的整个过程;林洪洲等通过主要加湿路径和主要除湿路径对降雨型滑坡进行了预测,并根据土-水特征曲线的影响,建立了相应的预测模型。该模型对规划和建立适当的滑坡降雨预警基准具有一定的参考价值。
通过国内外研究者在滑坡预测上的研究,发现主要是采取定量的分析方法,偶尔将定性与之结合。根据相应预测模型的应用,如果能准确的进行滑坡预测则可以有效的避免和降低滑坡灾害的发生。但是,上述方法的预测准确性还有待提高。
发明内容
本发明实施例提供了边坡变形预测方法,可以解决现有技术中存在的问题。
本发明提供了边坡变形预测方法,包括以下步骤:
获取监测目标的边坡变形数据,并利用混沌理论对这些数据进行混沌特性分析;
如果获取的边坡变形数据具备混沌特性,结合加权零阶局域预测模型、改进的一阶加权局域预测模型和改进的最大Lyapunov指数预测模型,建立最优权联合混沌预测模型;
利用最优权联合混沌预测模型进行边坡变形预测。
本发明中的边坡变形预测方法,先获取边坡变形数据,利用混沌理论判断数据是否具有混沌特性,当具有混沌特性时,将权零阶局域预测模型、改进的一阶加权局域预测模型和改进的最大Lyapunov指数预测模型结合起来,建立最优权联合混沌预测模型,最后采用预测模型进行变形预测。本发明以延安某滑坡治理工程为例进行了实例分析,分析结果表明本发明的预测方法能够得到更精确的预测结果,对防灾减灾有很好的指导意义。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的边坡变形预测方法,包括以下步骤:
步骤1,获取监测目标的边坡变形数据,并利用混沌理论对这些数据进行混沌特性分析。
监测目标的地形西高东低,北高南低,中间高两侧低,总体由西向东倾斜,地形起伏较大,地面最高处位于滑坡后壁的青化寺附近,地面标高为1048.01m,地面最低处位于滑坡前缘剪出口位置,地面标高为920.0m,其中滑坡体地面标高为913.88~1010.83m,高差约97m。滑坡体上次级陡坎发育,总体坡度为15°~25°,北侧较缓,南侧较陡。滑坡体后壁明显呈圈椅状陡坎,坎高10~20余米,由青化寺附近的最高点向南北延伸形成滑坡体的侧壁;滑坡体坡脚处由于居民削坡建房、大唐延安发电厂等削坡建厂等人类工程活动的影响,滑坡体前缘剪出口位置大约在坡体与蟠龙河Ⅰ级阶地交汇处,沿原厂区外围围墙线呈南北向延伸。
对于地表变形监测的布设,该监测在滑坡体上建造39个监测点,包括3个基准点、3个工作基点和33个变形监测点。在滑坡体的典型部位布置三个水位监测断面,每个断面布置3个监测孔,分别位于滑坡的后缘、中部和前缘,断面线与地下水流向一致。除此之外还在滑坡体上共布置5个深部位移监测点,其中3个分别位于滑坡的北区、南区和中区1级滑坡体上,2个分别位于两处2级滑坡体上。
对于地表变形监测,在施工期(暂时按六个月计算)每3天进行1次监测,汛期每天进行1次监测,预计75期,施工结束后每15天进行1次监测,汛期每2天进行1次监测,18个月预计对监测点实施63期变形监测,2年累计监测138期。
基准点和工作基点的监测周期:每年进行2期高精度静态监测(2年共计4期),以判定基准点和工作基点的相对稳定性,以确保获取准确、可靠的变形监测结果。
对于深部位移监测,在施工期(暂时按六个月计算)每天进行1次监测,累计180期,施工结束后每15天进行1次监测,汛期每天进行1次监测,18个月累计对监测点实施96期变形监测,2年累计监测276期。
获得边坡变形数据后,首先对其进行检测并剔除个别异常数据,然后再进行标准化处理。标准化处理后采用“3σ”法来对监测的数据进行检测,判断其是否符合一致性的原则。具体方法如下:
假设对监测点执行n次监控,获得的第i次监测值是Ti(i=1,2,...,n),将其跳动特征定义为:
di=|2×Ti-(Ti-1+Ti+1)|
跳动特征的均值为:
Figure BDA0002163690840000041
跳动特征的均方差为:
Figure BDA0002163690840000042
相对差值为:
Figure BDA0002163690840000043
如果Qi>3,则可以将其视为异常值并且可以丢弃。然后使用插值方法获取其替换值(默认不采用第一个和最后一个di值)。
一致性验证通过后,需要对数据进行归一化来解决数据度量的可比性,常用的归一化方法为max-min标准化和Z-score标准化。
数据处理完成后,计算边坡变形数据的Lyapunov指数,当Lyapunov指数大于0时表示边坡变形数据具有混沌特性。计算Lyapunov指数的方法可以采用Wolf法、p-范数法或小数据量法。
步骤2,如果获取的边坡变形数据具备混沌特性,对加权一阶局域预测模型和最大Lyapunov指数预测模型进行改进,将加权零阶局域预测模型、改进的一阶加权局域预测模型和改进的最大Lyapunov指数预测模型结合起来,建立最优权联合混沌预测模型。
加权零阶局域预测模型如下:
1)首先对监测点的水平累计位移时间序列进行预处理,即进行零均值化处理。零均值化处理就是将一组数据的其中每一个数值都减去这组的平均值,然后得到一个以零为均值的时间序列x(t),t=1,2,...,N。
2)采用C-C法计算延迟时间和嵌入维数,根据延迟时间和嵌入维数重构相空间。重构的相空间时间序列为:x(t)=(x(t),x(t-τ),...,x(t-(m-1)τ))。
3)查询相空间中的最邻近点X(t1),X(t2),…,X(tn)。在相空间中计算出的各点到中心点Y(M)之间的欧氏距离:
Figure BDA0002163690840000051
4)计算出Y(M+1)。根据空间轨迹点公式有:
Figure BDA0002163690840000052
5)根据重构空间可知Y(M+1)=x(M+1),x(M+1+τ),…,x(M+1+(m-1)τ)进而可以得到x(M+1)的数值,即预测结果。当进行单点预测时,将τ=1代入Y(M+1)可得x(M+1)的预测值。
改进的加权一阶局域预测模型如下:
1)假设有一组时间序列x(t),t=1,2,...,T,则该相空间的点为xi(t)={xi(t),xi(t+τ),...,xi(t+(m-1)τ)}(i=1,2,...,M)。根据C-C法同时求的延迟时间为τ和嵌入维数为m,根据参数对时间序列进行相空间重构。
2)寻找邻近点,设中心点Yk的邻近点为Ykj,j=1,2,...,q。将Yk到Ykj的距离记为dj,其中dm为中心点到各邻域点的最小距离,则其权重Ykj为:
Figure BDA0002163690840000061
其中一般将a=1。
3)执行预测操作,线性拟合的加权一阶局域:
Figure BDA0002163690840000062
其中
Figure BDA0002163690840000063
令m=1,即:
Figure BDA0002163690840000064
最后通过加权最小二乘法得到:
Figure BDA0002163690840000065
将上述式子看成存在两个未知数a、b的函数,根据求解方法对其进行求偏导进而得到:
Figure BDA0002163690840000066
及:
Figure BDA0002163690840000067
可以对这两个式子进行简化处理,根据简化处理的结果可以得到两个未知数a、b的方程组:
Figure BDA0002163690840000071
Figure BDA0002163690840000072
解上述方程组有:
Figure BDA0002163690840000073
将其代入第3)步的预测运算可得:
Figure BDA0002163690840000074
显然,参考矢量集是Ykj,j=1,2,...,q的一步预测是
Figure BDA0002163690840000075
然后,获得加权一阶局域预测模型的预测值。
4)对加权一阶局域预测模型进行优化处理。为了克服邻近相点不能完全反映出相邻关系,减小预测误差,考虑利用权值pj。对各邻近相点的演化规律进行加权,并以邻近相点的一步演化相点的规律来预测参考相点的一步演化相点,即以q个相点
Figure BDA0002163690840000076
的各分量加权和作为预测相点Yk+1的各分量值。则有:
Figure BDA0002163690840000077
根据预算可以得到一步预测为
Figure BDA0002163690840000078
改进的最大Lyapunov指数预测模型如下:
1)假设有一组时间序列x(t),t=1,2,...,T,然后利用快速傅里叶变换FFT计算出的变形监测点的水平累计位移监测数据的序列平均周期P。
2)根据时间序列x(t),t=1,2,...,T,相空间的点是:
xi(t)={xi(t),xi(t+τ),...,xi(t+(m-1)τ)}(i=1,2,...,M)。根据C-C法求得延迟时间和嵌入维数,并且相位空间根据参数重构。
3)寻找相邻的点,即,发现在相空间作为xj的每个点
Figure BDA0002163690840000081
的最近邻点,并限制其短的分离,即:
Figure BDA0002163690840000082
4)选择相空间中的每个点xj,计算其邻点对的第i个离散时间序列后的距离dj(i),则有:
Figure BDA0002163690840000083
5)对于每个i进行对数函数计算,查找j的所有lndj(i),能够获得平均值y(i),可得:
Figure BDA0002163690840000084
其中q为非零dj(i)的个数,然后根据最小二乘法可以做出其回归线,该直线的斜率就是最大Lyapunov指数λ1
6)根据λ1的平均指数数量,可得:
Figure BDA0002163690840000085
化简可得:
Figure BDA0002163690840000086
当其轨迹发散到一定程度时,该时间序列为不可预测。此时,对应的时间设为T0并且让其等于P,则可得:
Figure BDA0002163690840000091
通过上述式子可知时间序列在进行Lyapunov指数预测时的最大预测量
Figure BDA0002163690840000092
且λ1越大则可预测时间越短。
建立最优权联合混沌预测模型的方法如下:
1.用于测量位移的时间序列(包括m对监测值):(T1,W1),(T2,W2),...,(Tm,Wm)。式中:Wm表示Tm时刻的实际监测位移值。
2.选用y个位移预测模型,可得m对预测位移值:(T1,W1j),(T2,W2j),...,(Tm,Wmj),式中:Wmj表示Tm时刻第j个模型计算得到的预测位移值。
3.计算预测模型的精度矩阵。预测位移值与测量位移值之间的相对误差可表示为:Wmj-Wm。设
Figure BDA0002163690840000093
其中:
Figure BDA0002163690840000094
从中可以看出当式子(Wmj-Wm)2越小时表明预测的数值越接近真实的数值,反之则说明差别比较大。因此,(Q)mj可以用作用于位移预测的精度的度量区分工具,其被称为预测模型的精度矩阵。
4.计算权重,将E=(1,1,...,1)1×m归一化处理将得到矩阵(ωm)1×j。使用y个预测模型来预测监测点的最终位移值,可以获得j个位移预测结果,并且R用于表示位移预测结果,则有:
Figure BDA0002163690840000095
步骤3,利用最优权联合混沌预测模型进行边坡变形预测,并在实际边坡位移值达到预测位移值的一定比例时,进行报警。
本发明中实际边坡位移值达到预测位移值的80%时进行报警。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (3)

1.边坡变形预测方法,其特征在于,包括以下步骤:
步骤1,获取监测目标的边坡变形数据,并利用混沌理论对这些数据进行混沌特性分析;
步骤2,如果获取的边坡变形数据具备混沌特性,结合加权零阶局域预测模型、改进的一阶加权局域预测模型和改进的最大Lyapunov指数预测模型,建立最优权联合混沌预测模型;
步骤3,利用最优权联合混沌预测模型进行边坡变形预测;
获得边坡变形数据后,首先对其进行检测并剔除异常数据,然后再进行标准化处理;
标准化处理后采用3σ法来对边坡变形数据进行检测,判断其是否符合一致性的原则,具体方法为:
假设对监测点执行n次监控,获得的第i次监测值是Ti,i=1,2,...,n,将其跳动特征定义为:
di=|2×Ti-(Ti-1+Ti+1)|
跳动特征的均值为:
Figure FDA0003885177950000011
跳动特征的均方差为:
Figure FDA0003885177950000012
相对差值为:
Figure FDA0003885177950000013
如果Qi>3,则将边坡变形数据视为异常值并且丢弃,然后使用插值方法获取替换值;
一致性验证通过后,采用max-min标准化或Z-score标准化方法对边坡变形数据进行归一化处理;
边坡变形数据归一化处理完成后,采用Wolf法、p-范数法或小数据量法计算边坡变形数据的Lyapunov指数,当Lyapunov指数大于0时表示边坡变形数据具有混沌特性;
改进的加权一阶局域预测模型为:
1)对于时间序列x(t),t=1,2,...,T,该相空间的点为xi(t)={xi(t),xi(t+τ),...,xi(t+(m-1)τ)},采用C-C法求延迟时间τ和嵌入维数m,根据延迟时间和嵌入维数对时间序列进行相空间重构;
2)设相空间的中心点Yk的邻近点为Ykj,j=1,2,...,q,将Yk到Ykj的距离记为dj,其中dm为中心点到各邻近点的最小距离,则
Figure FDA0003885177950000021
的权重为:
Figure FDA0003885177950000022
3)执行预测操作,线性拟合的加权一阶局域:
Figure FDA0003885177950000023
其中
Figure FDA0003885177950000024
令m=1,即:
Figure FDA0003885177950000025
最后通过加权最小二乘法得到:
Figure FDA0003885177950000026
将上式看成存在两个未知数a、b的函数,对上式进行求偏导进而得到:
Figure FDA0003885177950000027
及:
Figure FDA0003885177950000031
对这两个式子进行简化处理,根据简化处理的结果得到两个未知数a、b的方程组:
Figure FDA0003885177950000032
Figure FDA0003885177950000033
解上述方程组有:
Figure FDA0003885177950000034
将其代入第3)步的预测运算得:
Figure FDA0003885177950000035
获得加权一阶局域预测模型的预测值;
4)对各邻近相点的演化规律进行加权,并以邻近相点的一步演化相点的规律来预测参考相点的一步演化相点,即以q个相点
Figure FDA0003885177950000036
的各分量加权和作为预测相点Yk+1的各分量值,则有:
Figure FDA0003885177950000037
根据预算可以得到一步预测为
Figure FDA0003885177950000038
建立最优权联合混沌预测模型的方法如下:
实际监测位移时间序列:(T1,W1),(T2,W2),...,(Tm,Wm),式中Wm表示Tm时刻的实际监测位移值;
选用y个位移预测模型,得m对预测位移值:(T1,W1j),(T2,W2j),...,(Tm,Wmj),式中:Wmj表示Tm时刻第j个模型计算得到的预测位移值;
预测位移值与实际位移值之间的相对误差表示为:Wmj-Wm
Figure FDA0003885177950000041
其中:
Figure FDA0003885177950000042
(Q)mj称为预测模型的精度矩阵;
将E=(1,1,...,1)1×m归一化处理将得到矩阵(ωm)1×j,使用y个预测模型来预测监测点的最终位移值,获得j个位移预测结果,并且R用于表示位移预测结果,则有:
Figure FDA0003885177950000043
2.如权利要求1所述的边坡变形预测方法,其特征在于,所述方法还包括:在实际边坡位移值达到预测位移值的一定比例时,进行报警。
3.如权利要求2所述的边坡变形预测方法,其特征在于,当实际边坡位移值达到预测位移值的80%时进行报警。
CN201910740277.0A 2019-08-12 2019-08-12 边坡变形预测方法 Expired - Fee Related CN110457655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910740277.0A CN110457655B (zh) 2019-08-12 2019-08-12 边坡变形预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910740277.0A CN110457655B (zh) 2019-08-12 2019-08-12 边坡变形预测方法

Publications (2)

Publication Number Publication Date
CN110457655A CN110457655A (zh) 2019-11-15
CN110457655B true CN110457655B (zh) 2022-11-25

Family

ID=68485981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910740277.0A Expired - Fee Related CN110457655B (zh) 2019-08-12 2019-08-12 边坡变形预测方法

Country Status (1)

Country Link
CN (1) CN110457655B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113111573B (zh) * 2021-03-24 2022-09-23 桂林电子科技大学 基于gru的滑坡位移预测方法
CN113609603B (zh) * 2021-06-28 2024-05-14 河海大学 一种快速反映监测点时段解变形的定权方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075074A1 (ja) * 2003-02-24 2004-09-02 Electronic Navigation Research Institute, An Independent Administrative Institution カオス論的指標値計算システム
CN109492793A (zh) * 2018-09-29 2019-03-19 桂林电子科技大学 一种动态灰色费尔哈斯特神经网络滑坡形变预测方法
CN109670630A (zh) * 2018-11-22 2019-04-23 国网宁夏电力有限公司经济技术研究院 基于加权二阶模型的短期风功率混沌预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004075074A1 (ja) * 2003-02-24 2004-09-02 Electronic Navigation Research Institute, An Independent Administrative Institution カオス論的指標値計算システム
CN109492793A (zh) * 2018-09-29 2019-03-19 桂林电子科技大学 一种动态灰色费尔哈斯特神经网络滑坡形变预测方法
CN109670630A (zh) * 2018-11-22 2019-04-23 国网宁夏电力有限公司经济技术研究院 基于加权二阶模型的短期风功率混沌预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
加权一阶局域法在边坡位移预测中的应用研究;盛松涛等;《人民长江》;20061128(第11期);全文 *
基于混沌优化极限学习机的库岸边坡变形预测;张志会;《水力发电》;20181212(第12期);全文 *

Also Published As

Publication number Publication date
CN110457655A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
McMillan Linking hydrologic signatures to hydrologic processes: A review
CN113313384B (zh) 一种融合弹性的城市洪涝灾害风险评估方法
KR101824662B1 (ko) 하천 진단을 통한 하천시설물 관리 방법
Eyoh et al. Modelling and predicting future urban expansion of Lagos, Nigeria from remote sensing data using logistic regression and GIS
CN113283802A (zh) 一种复杂艰险山区滑坡危险性评估方法
CN110457655B (zh) 边坡变形预测方法
KR102473442B1 (ko) 호우 피해예측 방법 및 그 시스템
Fathian et al. Temporal trends in precipitation using spatial techniques in GIS over Urmia Lake Basin, Iran
CN116680658A (zh) 一种基于风险评价的热浪监测站选址方法及系统
Wolff et al. Toward geostatistical unbiased predictions of flow duration curves at ungauged basins
El Shafie et al. Radial basis function neural networks for reliably forecasting rainfall
CN113450027B (zh) 城市内涝灾害的动态暴露性量化方法、装置
Yousuf et al. Runoff and soil loss estimation using hydrological models, remote sensing and GIS in Shivalik foothills: A review
KR20230175137A (ko) 월파 위험도 평가 시스템 및 방법
Karabörk et al. The links between the categorised Southern Oscillation indicators and climate and hydrologic variables in Turkey
Bannayan et al. Predicting realizations of daily weather data for climate forecasts using the non‐parametric nearest‐neighbour re‐sampling technique
Kyselý et al. Return periods of the August 2010 heavy precipitation in northern Bohemia (Czech Republic) in the present climate and under climate change
Shadeed et al. Comparative analysis of interpolation methods for rainfall mapping in the Faria catchment, Palestine
Smakhtin et al. Evaluating wetland flow regulating functions using discharge time‐series
Cao et al. Exploring spatially varying relationships between forest fire and environmental factors at different quantile levels
CN112347706B (zh) 径流重建方法、装置、计算机设备和存储介质
CN103886386A (zh) 一种基于空间网格预测人为火日发生概率的方法
Savage et al. The impact of scale on probabilistic flood inundation maps using a 2D hydraulic model with uncertain boundary conditions
Topcu et al. Observed and projected changes in drought conditions of Turkey
CN118194235B (zh) 一种多模式融合的降水干湿时序变化重构方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221125

CF01 Termination of patent right due to non-payment of annual fee