CN110442932A - 一种结合切面曲率和Dinf方法的DEM水流方向模拟方法 - Google Patents

一种结合切面曲率和Dinf方法的DEM水流方向模拟方法 Download PDF

Info

Publication number
CN110442932A
CN110442932A CN201910654697.7A CN201910654697A CN110442932A CN 110442932 A CN110442932 A CN 110442932A CN 201910654697 A CN201910654697 A CN 201910654697A CN 110442932 A CN110442932 A CN 110442932A
Authority
CN
China
Prior art keywords
dinf
flow
tangential curvature
tangential
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910654697.7A
Other languages
English (en)
Other versions
CN110442932B (zh
Inventor
吴鹏飞
刘金涛
费俊源
刘杨洋
姚杰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201910654697.7A priority Critical patent/CN110442932B/zh
Publication of CN110442932A publication Critical patent/CN110442932A/zh
Application granted granted Critical
Publication of CN110442932B publication Critical patent/CN110442932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

本发明提供了一种结合切面曲率和Dinf方法的DEM水流方向模拟方法,属于数字地形分析技术领域。其技术方案为:步骤S1:加载DEM,检索需要计算水流方向的栅格单元及其周围的8个相邻单元,连接它们的中心点划分出Dinf方法需要的8个三角形平面,并计算Dinf流向,设置Dinf流向以正北方向为0°顺时针增大;步骤S2:确定Dinf流向所在的三角形平面,计算该平面上两个下坡方向顶点单元的切面曲率;步骤S3:使用切面曲率对Dinf流向进行校正。本发明的有益效果为:本发明通过将Dinf流向向更收敛的下坡方向转动,使得得到的水流方向更贴近真实情况下水流向山谷汇聚的特征。

Description

一种结合切面曲率和Dinf方法的DEM水流方向模拟方法
技术领域
本发明涉及数字地形分析技术领域,尤其涉及一种结合切面曲率和Dinf方法的DEM水流方向模拟方法。
背景技术
基于DEM结构的水流方向被广泛应用于水文预报、土壤厚度演化、污染物运移等研究领域,然而目前还没有公认的最佳水流方向模拟方法,已有的方法或多或少存在一定问题,这严重限制了以水流方向为基础的相关研究的成果精度。
早期的经典D8方法(O’Callaghan和Mark,1984)由于只允许水流向8个可行方向之一,与现实世界水流在0°至360°中任意方向流动严重不符,进而导致了较大的误差存在。因此,Tarboton于1997年提出了允许水流方向指向任意方向的Dinf方法,初步解决了D8方法所受的限制。然而由于Dinf方法是通过把所计算单元周边区域划分出8个三角形平面来实现水流方向计算的,这种将起伏的复杂地形简化为平面的做法会在弯曲起伏的地形造成一定误差。这种情况最好的解决方法就是将地形起伏纳入水流方向计算的考虑范围。
目前反映地形变化主要使用地形曲率来完成,包括平面曲率、剖面曲率、切面曲率,这其中又以切面曲率与水流过程关系最为密切,能更为准确地反映地形对水流的收敛、发散影响。Hooshyar等(2016)就曾提出利用切面曲率来优化Dinf流向的方法,然而他们的方法只能在切面曲率数值为正的收敛地形下适用。
发明内容
本发明的目的在于为了解决现有无穷流向方法由于地形起伏导致得到的水流方向精度不够,不能做到精确汇流,最终获取的河网不够准确的问题,采用切面曲率对Dinf方向进行修正,进而模拟水流方向,而提出种结合切面曲率和Dinf方法的DEM水流方向模拟方法。
本发明是通过如下措施实现的:一种结合切面曲率和Dinf方法的DEM水流方向模拟方法,包括以下步骤:
步骤S1:加载DEM,检索需要计算水流方向的栅格单元及其周围的8个相邻单元,连接它们的中心点划分出Dinf方法需要的8个三角形平面,并计算Dinf流向,设置Dinf流向以正北方向为0°顺时针增大;
步骤S2:如果Dinf流向在两个三角形平面的交线方向,则直接选择Dinf方向作为最终流向,不再进行后续步骤,否则确定Dinf流向所在的三角形平面,确定该平面上除了中心点P0外的另外2个顶点对应栅格单元的切面曲率;
步骤S3:使用切面曲率对Dinf流向进行校正,将Dinf流向向高切面曲率,即是更为收敛的下坡方向旋转一定角度。
作为本发明提供的一种结合切面曲率和Dinf方法的DEM水流方向模拟方法进一步优化方案,所述步骤S3中更为收敛的下坡方向旋转一定角的具体步骤如下:
(1)、如果2个切面曲率中只有1个属于收敛型,即是只有1个的切面曲率值大于0,最终确定的方向指向大于0的切面曲率值对应的栅格单元中心;
(2)、如果2个切面曲率同为正值或同为负值,则最终水流方向比Dinf流向更接近其中收敛度大或发散度低的地形,将最终流向确定为切面曲率值更大的单元中心所在方向和Dinf流向的角平分线,该角平分线方向α计算方程为:
其中αK为高切面曲率单元中心所在方向,αD为Dinf流向;设置方向指向正北时都为0°,当αK=0且αD>315°时,使用αK=360°代入上述角平分线方向α计算方程中。
作为本发明提供的一种结合切面曲率和Dinf方法的DEM水流方向模拟方法进一步优化方案,所述步骤2中切面曲率的具体计算方法如下:
假如P0的Dinf流向如图4所示的箭头方向,即其所在的三角形平面由P0、P1、P2构成,需要计算切面曲率的点就是P1和P2;以需要计算的点的高程为Z5,切面曲率计算需要的3×3窗口各栅格高程如图5所示,切面曲率的方程为:
其中:
其中△x是DEM栅格的边长。
本发明的有益效果为:
(1)本发明使用下游方向切面曲率的区别对Dinf流向进行调整,发明了一种新型的模拟DEM水流方向的算法,该方法实现步骤简单,并未在Dinf方法的基础上增加过多步骤。相比于Dinf方法,本发明具有在部分地区还原的水系网络更为真实的优势。
(2)本发明通过将Dinf流向向更收敛的下坡方向转动,使得得到的水流方向更贴近真实情况下水流向山谷汇聚的特征;经验证,本发明提供的水流方向比Dinf方法在部分地形更加精确,本发明为水文模型获取水流方向以及更进一步的水系河网提供了新的方法。
(3)本发明为各类水文模型获取高精度水流方向,从而借此提取高精度水系河网提供了更好的解决方案。
附图说明
图1为本发明的整体流程图;
图2为本发明的Dinf方法计算水流方向时划分周围区域的示意图;
图3为本发明的方向与角度对应图;
图4为本发明中Dinf方法模拟效果;
图5为本发明的切面曲率计算时的3×3窗口;
图6(a)为本发明的实施例一使用的DEM;
图6(b)为本发明的实施例一得到的最终水流方向;
图7为本发明测试的的鱼梁流域DEM地形图;
图8(a)为本发明的用于对比的使用Dinf方法还原的鱼梁流域水系;
图8(b)为本发明的使用本发明方法还原的鱼梁流域水系。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,对本方案进行阐述。
参见图1至图8,本发明是:一种结合切面曲率和Dinf方法的DEM水流方向模拟方法,包括以下步骤:
步骤S1、加载DEM,检索需要计算水流方向的栅格单元及其周围的8个相邻单元,连接它们的中心点划分出Dinf方法需要的8个三角形平面(如图2,其中的P0为需要计算水流方向的单元),并计算Dinf流向,为便于后续步骤的方程表达,此处如图3设置Dinf流向以正北方向为0°顺时针增大;
步骤S2、如果Dinf流向在两个三角形平面的交线方向,也即Dinf流向指向某个相邻单元的中心点,则直接选择Dinf方向作为最终流向,不再进行后续步骤,否则确定Dinf流向所在的三角形平面,确定该平面上除了中心点P0外的另外2个顶点对应栅格单元的切面曲率,具体为:
如图4,假如P0的Dinf流向如图4中箭头方向,即其所在的三角形平面由P0、P1、P2构成,需要计算切面曲率的点就是P1和P2;以需要计算的点的高程为Z5,切面曲率计算需要的3×3窗口各栅格高程如图5所示,切面曲率的方程为:
其中:
其中△x是DEM栅格的边长;
步骤S3、使用切面曲率对Dinf流向进行校正,将Dinf流向向高切面曲率,也就是更为收敛的下坡方向旋转一定角度,具体步骤如下:
(1)如果2个切面曲率中只有1个属于收敛型,也就是只有1个的切面曲率值大于0,此时最终确定的方向指向大于0的切面曲率值对应的栅格单元中心,如图4中的情形,若K1>0,K2≤0,则最终水流方向从P0指向对应栅格单元中心P1点;
(2)如果2个切面曲率同为正值或同为负值,即同为收敛地形或发散地形,则将认为最终水流方向比Dinf流向更接近其中收敛度大或发散度低的地形,将最终流向确定为切面曲率值更大的单元中心所在方向和Dinf流向的角平分线;如图4所示,若K1>K2>0,则最终流向为点P1相对P0所在的0°方向和黑色箭头表示的Dinf流向的角平分线方向;该角平分线方向α计算方程为:
其中αK为高切面曲率单元中心所在方向,αD为Dinf流向;由于0°和360°的重合可能导致方程(7)的计算结果存在问题,因此设置方向指向正北时都统一为0°,当αK=0且αD>315°时使用αK=360°代入上面方程;
此步骤确定的水流方向就是本发明得到的最终水流方向。
为了更好地验证本发明模拟水流方向的过程和优越性,以下两个实际例子进行详细说明。
(一)
以图6(a)展示的DEM作为例子,计算其中灰色单元的水流方向。
根据步骤S1使用Dinf方法得到的水流方向αD=162.7°,具体方向如图6(b)中黑色箭头所示;
根据步骤S2中Dinf方向所在三角面需要计算切面曲率的两个单元分别为高程为43.860m和43.103m的单元,二者切面曲率为-0.00927和-0.00906;
根据步骤S3,由于位于灰色单元东南方向的单元切面曲率值更大,故αK=135°(图6(b)中虚线箭头方向),所以最终确定的水流方向(图6(b)中虚白色箭头方向)。
(二)
使用图7所示的鱼梁流域DEM验证本发明的应用效果,使用Tarbonton(1997)提出的方法对Dinf流向和本发明的水流方向进行汇流计算,然后提取出汇流面积大于4.5km2的DEM单元作为主河道。Dinf方法得到的河道如图8(a),本发明得到的河道如图8(b),可见二者间的主要区别在框出的位置,Dinf方法提供的河道在该处过于直,而本发明很好地还原了河道的弯曲,并且与实地勘测结果相近。
综上所述,本发明使用下游方向切面曲率的区别对Dinf流向进行调整,发明了一种新型的模拟DEM水流方向的算法,该方法实现步骤简单,并未在Dinf方法的基础上增加过多步骤,相比于Dinf方法,本方法还原的水系网络更为真实。
本发明未经描述的技术特征可以通过或采用现有技术实现,在此不再赘述,当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (6)

1.一种结合切面曲率和Dinf方法的DEM水流方向模拟方法,其特征在于,包括以下步骤:
步骤S1:加载DEM,检索需要计算水流方向的栅格单元及其周围的8个相邻单元,连接它们的中心点划分出Dinf方法需要的8个三角形平面,并计算Dinf流向,设置Dinf流向以正北方向为0°顺时针增大;
步骤S2:如果Dinf流向在两个三角形平面的交线方向,则直接选择Dinf方向作为最终流向,不再进行后续步骤,否则确定Dinf流向所在的三角形平面,确定该平面上除了中心点P0外的另外2个顶点对应栅格单元的切面曲率;
步骤S3:使用切面曲率对Dinf流向进行校正,将Dinf流向向高切面曲率,即是更为收敛的下坡方向旋转一定角度。
2.根据权利要求1所述的结合切面曲率和Dinf方法的DEM水流方向模拟方法,其特征在于,所述步骤S3中更为收敛的下坡方向旋转一定角度的具体步骤如下:
(1)、如果2个切面曲率中只有1个属于收敛型,即是只有1个的切面曲率值大于0,最终确定的方向指向大于0的切面曲率值对应的栅格单元中心;
(2)、如果2个切面曲率同为正值或同为负值,则最终水流方向比Dinf流向更接近其中收敛度大或发散度低的地形,将最终流向确定为切面曲率值更大的单元中心所在方向和Dinf流向的角平分线,该角平分线方向α计算方程为:
其中αK为高切面曲率单元中心所在方向,αD为Dinf流向;设置方向指向正北时都为0°,当αK=0°且αD>315°时,使用αK=360°代入上述角平分线方向α计算方程中。
3.根据权利要求1或2所述的结合切面曲率和Dinf方法的DEM水流方向模拟方法,其特征在于,所述步骤2中切面曲率的具体计算方法如下:
以需要计算的点的高程为Z5,切面曲率计算需要的3×3窗口各栅格高程,Dinf流向向高切面曲率的方程为:
其中:
其中△x是DEM栅格的边长。
4.一种基于权利要求1-3任一项所述的结合切面曲率和Dinf方法的DEM水流方向模拟方法,其特征在于,包括以下步骤:
步骤S1:加载DEM,检索需要计算水流方向的栅格单元及其周围的8个相邻单元,连接它们的中心点划分出Dinf方法需要的8个三角形平面,并计算Dinf流向,设置Dinf流向以正北方向为0°顺时针增大;
步骤S2:如果Dinf流向在两个三角形平面的交线方向,则直接选择Dinf方向作为最终流向,不再进行后续步骤,否则确定Dinf流向所在的三角形平面,确定该平面上除了中心点P0外的另外2个顶点对应栅格单元的切面曲率;
步骤S3:使用切面曲率对Dinf流向进行校正,将Dinf流向向高切面曲率,即是更为收敛的下坡方向旋转一定角度。
5.根据权利要求4所述的结合切面曲率和Dinf方法的DEM水流方向模拟方法,其特征在于,所述步骤S3中更为收敛的下坡方向旋转一定角的具体步骤如下:
(1)、如果2个切面曲率中只有1个属于收敛型,即是只有1个的切面曲率值大于0,最终确定的方向指向大于0的切面曲率值对应的栅格单元中心;
(2)、如果2个切面曲率同为正值或同为负值,则最终水流方向比Dinf流向更接近其中收敛度大或发散度低的地形,将最终流向确定为切面曲率值更大的单元中心所在方向和Dinf流向的角平分线,该角平分线方向α计算方程为:
其中αK为高切面曲率单元中心所在方向,αD为Dinf流向;设置方向指向正北时都为0°,当αK=0且αD>315°时,使用αK=360°代入上述角平分线方向α计算方程中。
6.根据权利要求4所述的结合切面曲率和Dinf方法的DEM水流方向模拟方法,其特征在于,所述步骤2中切面曲率的具体计算方法如下:
假如P0的Dinf流向如图4所示的箭头方向,即其所在的三角形平面由P0、P1、P2构成,需要计算切面曲率的点就是P1和P2;以需要计算的点的高程为Z5,切面曲率计算需要的3×3窗口各栅格高程如图5所示,切面曲率的方程为:
其中:
其中△x是DEM栅格的边长。
CN201910654697.7A 2019-07-19 2019-07-19 一种结合切面曲率和Dinf方法的DEM水流方向模拟方法 Active CN110442932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910654697.7A CN110442932B (zh) 2019-07-19 2019-07-19 一种结合切面曲率和Dinf方法的DEM水流方向模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910654697.7A CN110442932B (zh) 2019-07-19 2019-07-19 一种结合切面曲率和Dinf方法的DEM水流方向模拟方法

Publications (2)

Publication Number Publication Date
CN110442932A true CN110442932A (zh) 2019-11-12
CN110442932B CN110442932B (zh) 2022-09-23

Family

ID=68430750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910654697.7A Active CN110442932B (zh) 2019-07-19 2019-07-19 一种结合切面曲率和Dinf方法的DEM水流方向模拟方法

Country Status (1)

Country Link
CN (1) CN110442932B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111125893A (zh) * 2019-12-12 2020-05-08 河海大学 一种基于dem和流量汇集的非弥散水流路径模拟方法
CN112989639A (zh) * 2019-12-12 2021-06-18 河海大学 一种基于平均化处理的dem栅格局部排水方向确定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160658A (zh) * 2015-08-10 2015-12-16 南京师范大学 一种基于子流域边界和流路特征的山脊线提取方法
CN107103088A (zh) * 2017-05-03 2017-08-29 南京信息工程大学 一种dem栅格单元大小对汇水区提取影响机理的评价方法
CN108257142A (zh) * 2018-01-11 2018-07-06 中国科学院、水利部成都山地灾害与环境研究所 Dem中斜坡单元提取方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160658A (zh) * 2015-08-10 2015-12-16 南京师范大学 一种基于子流域边界和流路特征的山脊线提取方法
CN107103088A (zh) * 2017-05-03 2017-08-29 南京信息工程大学 一种dem栅格单元大小对汇水区提取影响机理的评价方法
CN108257142A (zh) * 2018-01-11 2018-07-06 中国科学院、水利部成都山地灾害与环境研究所 Dem中斜坡单元提取方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111125893A (zh) * 2019-12-12 2020-05-08 河海大学 一种基于dem和流量汇集的非弥散水流路径模拟方法
CN112989639A (zh) * 2019-12-12 2021-06-18 河海大学 一种基于平均化处理的dem栅格局部排水方向确定方法
CN112989639B (zh) * 2019-12-12 2022-09-16 河海大学 一种基于平均化处理的dem栅格局部排水方向确定方法

Also Published As

Publication number Publication date
CN110442932B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN111985106B (zh) 一种基于多点并行校正的分布式水文模型参数率定方法
Pan et al. Case study: Numerical modeling of the tidal bore on the Qiantang River, China
CN106767780B (zh) 基于Chebyshev多项式插值逼近的扩展椭球集员滤波方法
CN110442932A (zh) 一种结合切面曲率和Dinf方法的DEM水流方向模拟方法
CN110058328A (zh) 东北夏季降水多模式组合降尺度预测方法
CN101942805A (zh) 桥梁节段预制技术三维数控方法
CN109033605B (zh) 一种基于多阶段划分和多单位线选择的流域汇流模拟方法
CN108104052B (zh) 感潮河段支流口门引排水枢纽整体流态模型试验方法
CN104750972A (zh) 复杂水网地区楔形水体容积的计算方法
CN106845035A (zh) 垂线偏差确定中球面地形位间接影响严密方法及系统
CN115115262A (zh) 一种洪水风险灾害评估的方法
Rheinheimer et al. Simulating high-elevation hydropower with regional climate warming in the west slope, Sierra Nevada
Zheng et al. Numerical simulation of typhoon-induced storm surge along Jiangsu coast, Part II: Calculation of storm surge
CN109917424A (zh) 多因子约束下的nwp反演对流层延迟的残差改正方法
CN105787193A (zh) 盾构隧道模型结构的三角形抗力荷载计算方法
CN110457772B (zh) 一种结合平面曲率和最陡下坡方向的dem流向估计方法
CN116227941B (zh) 一种调水工程的风险模拟计算评估方法及系统
Lin et al. Automatic calibration of an unsteady river flow model by using dynamically dimensioned search algorithm
CN111125893B (zh) 一种基于dem和流量汇集的非弥散水流路径模拟方法
CN110374061A (zh) 堆石面板坝的趾板定线确定方法及装置
CN104965988A (zh) 一种高精度大地距离计算方法
Zhang et al. Physically based adjustment factors for precipitation estimation in a large arid mountainous watershed, northwest China
CN112989639B (zh) 一种基于平均化处理的dem栅格局部排水方向确定方法
CN109684692A (zh) 基于auto cad的矿山道路曲线超高加宽要素获取方法
CN115796077B (zh) 潮排潮灌区灌溉用水配置方法、计算机装置及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant