CN110436770B - 一种多芯型传像光纤预制棒的制备方法 - Google Patents

一种多芯型传像光纤预制棒的制备方法 Download PDF

Info

Publication number
CN110436770B
CN110436770B CN201910453265.XA CN201910453265A CN110436770B CN 110436770 B CN110436770 B CN 110436770B CN 201910453265 A CN201910453265 A CN 201910453265A CN 110436770 B CN110436770 B CN 110436770B
Authority
CN
China
Prior art keywords
core
glass tube
quartz glass
quartz
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910453265.XA
Other languages
English (en)
Other versions
CN110436770A (zh
Inventor
陈刚
熊良明
朱继红
罗杰
李志涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Optical Fibre and Cable Co Ltd
Original Assignee
Yangtze Optical Fibre and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Optical Fibre and Cable Co Ltd filed Critical Yangtze Optical Fibre and Cable Co Ltd
Priority to CN201910453265.XA priority Critical patent/CN110436770B/zh
Publication of CN110436770A publication Critical patent/CN110436770A/zh
Application granted granted Critical
Publication of CN110436770B publication Critical patent/CN110436770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01214Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multifibres, fibre bundles other than multiple core preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

本发明涉及一种多芯型传像光纤预制棒的制备方法,其特征在于先制备单芯棒,芯层的折射率为阶跃型或渐变型,单芯棒直径为10~50mm;将单芯棒拉制成单芯玻璃丝,单芯玻璃丝的直径为0.5~2mm;再将等长的单芯玻璃丝清洗干燥后堆积填充至石英玻璃管内,直至充满石英玻璃管内孔;最后对充满单芯玻璃丝的石英玻璃管加热使其熔缩成实心的多芯棒,即制成多芯型石英传像光纤预制棒。本发明的有益效果在于:将单芯玻璃丝堆积填充到石英玻璃管内,通过一次熔缩工艺熔制实心多芯预制棒,该方法工艺简单稳定,可操作性强,拉丝时不易滑动和断丝,产出率高,制作成本低,产品质量好。所制备的实心多芯预制棒可用于拉制多芯型石英传像光纤。

Description

一种多芯型传像光纤预制棒的制备方法
技术领域
本发明涉及一种多芯型传像光纤预制棒的制备方法,属于传像光纤制备技术领域。
背景技术
传像光纤,也称为成像光纤,是一种可以弯曲的传输图像的无源器件,主要用于内窥镜内的图像传输,是各种内窥镜不可缺少的核心重要光学元器件。传像光纤具有体积小、重量轻、使用自由度大、易实现复杂空间结构的图像传输、无源实时传像、耐高温、抗电磁辐射、抗核辐射等优点,广泛应用于医疗、工业、科研、航天和军事等领域。
以传像光纤为传像元件的光纤内窥镜具有探头直径小、价格便宜、无源、装置小型化、使用方便、不受电磁杂波的影响等优势,可以用于高温、电磁辐射、核辐射等恶劣环境,而CCD或CMOS电子内窥镜的成像过程涉及光电转换和电光转换,因而不能在以上恶劣环境下使用。这使得传像光纤在军事上可用于主战坦克的机关枪瞄准、舰船用全方位环观测仿真系统、光纤瞄准轻武器、光纤潜望镜侦查、军用飞机光纤观测瞄准系统、核爆轰实验图像即时采集等。
传统的传像光纤是一种多组分玻璃制作的束型的光纤传像束,是把几万根10-20um的多组分玻璃光纤两端进行相关排列,胶合定位,中间呈散乱状态,它的缺点是存在胶合边界,制作难度大、工艺复杂、成本高、吸收损耗大等。多芯型石英传像光纤是把成千上万根石英光纤整齐地排列在石英套管内,融为一体,形成单根多芯型石英传像光纤,它具有分辨率高、可制造长度长和成本低等优点。石英传像光纤与多组分玻璃光纤传像束相比具有以下优点:1)可实现超细直径,更适于医疗内窥镜的应用;2)光学传输性能卓越,图像质量更高;3)分辨率更高;4)可实现长距离的光学传输;5)化学稳定性高,机械耐久性高;6)在医学、工业和军工等领域具有更广泛的应用前景。
在中国专利CN101334501A中,采用空气孔道和高分子聚合物做成的光纤基质构成微结构光纤传像束,这种光纤传像束由聚甲基丙烯酸甲酯、聚苯乙烯或聚碳酸酯等热塑性高分子材料制作,透光率低,不能耐高温。在专利CN1800892A中,将复合细丝排列成片,把排好的单片用环氧胶固定,固化后将单片层叠并用胶胶合形成像束,由于要使用环氧胶,不仅影响像元填充率、降低了传像束的有效通光面积和分辨率,而且也不能耐高温。在专利CN102520479A中,将石英预制棒拉制成单丝直径为20-50μm的石英光纤细丝,然后用溜丝排片法将石英光纤细丝集合成束,制作成石英光纤传像束,这种光纤传像束单丝直径大、像元数和分辨率较低,而且石英光纤细丝直径很小,集合成束难度大,耗时费力。
多芯型石英传像光纤的制备都需要先制备多芯预制棒,然后再拉制成光纤,现有的制备多芯预制棒的工艺,是先将直径较粗的玻璃丝填充到玻璃管内形成多芯预制棒(一次复丝),拉制成多芯玻璃丝,然后再将多芯玻璃丝填充到玻璃管内形成复合多芯预制棒(二次复丝),最后拉制成传像光纤。在专利CN101702045B中,将预制棒拉制成单丝,将合适数量的单丝按六边形密堆积排列后拉制成复丝,然后将复丝再次按密堆积的方式进行排列成为复丝束,将复丝束拉制成光纤传像束,这种方法在六边形堆积时,六边形边缘与圆形的玻璃管内壁之间存在间隙,在拉制复丝时单丝之间以及单丝与外套管之间没有固定,容易滑动和断丝,工艺性较差。
发明内容
本发明所要解决的技术问题在于针对上述现有技术存在的不足,提供一种多芯型传像光纤预制棒的制备方法,该方法工艺简单,制作成本低,可操作性强,而且玻璃丝不易滑动和断丝,产出率高,产品质量好。
本发明为解决上述提出的问题所采用的技术方案为:
先制备单芯棒,芯层的折射率为阶跃型或渐变型,单芯棒直径为10~50mm;
将单芯棒拉制成单芯玻璃丝,单芯玻璃丝的直径为0.5~2mm;
再将等长的单芯玻璃丝清洗干燥后堆积填充至石英玻璃管内,直至充满石英玻璃管内孔;最后对充满单芯玻璃丝的石英玻璃管加热使其熔缩成实心的多芯棒,即制成多芯型石英传像光纤预制棒。
按上述方案,所述的单芯棒外包层/芯层直径比为1.1~2.0。
按上述方案,所述的单芯玻璃丝的长度为200~1000mm。
按上述方案,在石英玻璃管内填充单芯玻璃丝时玻璃管水平放置,单芯玻璃丝在重力作用下自然形成紧密堆积;所述的芯玻璃丝直径相同。
按上述方案,所述的石英玻璃管的内径为60~200mm。
按上述方案,所述的石英玻璃管内填充的单芯玻璃丝为2000~30000根。
按上述方案,石英玻璃管内填充的单芯玻璃丝或多芯玻璃丝的数量根据以下公式计算:
Y=3*Q*(Q-1)+k (1)
Q=R/d=D/(2*d) (2)
式中,Y为石英玻璃管内填充的单芯玻璃丝或多芯玻璃丝的数量;Q为绕玻璃管截面圆心堆积的圈数;k为修正系数,取1~10;R为石英玻璃管内圆半径;D为石英玻璃管内圆直径;d为所填充的单芯玻璃丝或多芯玻璃丝的直径。
按上述方案,所述的充满单芯玻璃丝的石英玻璃管加热熔缩是在熔缩塔高温加热炉里加热熔缩成实心的多芯棒,熔缩过程用真空泵连接抽气管对石英玻璃管内进行抽真空。
按上述方案,所述的熔缩塔高温加热炉包括石英玻璃管炉体,在炉体的外周安设可轴向往复移动的加热炉套,在炉体的上端安设玻璃堵头和密封盖,炉体的下端支撑座,在炉体的一端还安设有抽气管,抽气管与真空泵相连通。
本发明的有益效果在于:将单芯玻璃丝堆积填充到石英玻璃管内,通过一次熔缩工艺熔制实心多芯预制棒,该方法工艺简单稳定,可操作性强,拉丝时不易滑动和断丝,产出率高,制作成本低,产品质量好。所制备的实心多芯预制棒可用于拉制多芯型石英传像光纤。
附图说明
图1为本发明一个实施例的工艺流程框图。
图2、图3、图4分别为本发明的单芯棒折射率剖面图。
图5为本发明玻璃管内玻璃丝堆积填充图。
图6为本发明熔缩塔高温加热炉结构及熔缩工艺示意图。
图7为本发明一次熔缩所得实心多芯预制棒的端面示意图
图8、图9为本发明一次熔缩所得实心多芯预制棒的端面局部显微图
具体实施方式
以下结合附图和实施例对本发明作进一步的说明。
本发明的工艺流程见图1,本发明的具体实现方式为:
(1)高NA芯棒制备:采用PCVD或者VAD平台制备出高NA(数值孔径)的单芯棒,单芯棒包含芯层、内包层和外包层三层同轴的结构,通过芯层和内包层的折射率差来实现光波导,折射率剖面见图2~4,a,b,c分别为芯层、内包层和外包层的半径,Δ1和Δ2分别为芯层和内包层对于纯二氧化硅外包层的相对折射率差。其中图2和图3所示的折射率剖面,芯层a通过掺锗实现高折射率,内包层b通过掺氟实现低折射率,外包层c为纯二氧化硅。图4所示的折射率剖面,芯层a为纯二氧化硅层(或者掺杂了少量的锗或氟),内包层b为掺氟层,通过掺氟实现低于芯层的折射率,外包层c为纯二氧化硅层。芯层a和内包层b之间的折射率差实现光波导,保证多芯传像光纤的每个芯子(像元)可以传输光,外包层c起到保护芯层和内包层的作用。基于此,被观测物体发出的光被传像光纤的成千上万个像元传输到光纤的另一端,包含被观测物体图像信息的光在另一端即通过这成千上万个像元显示出物体的图像,从而实现图像传输。芯层和内包层之间折射率差越大,则数值孔径越大,传像光纤观测角度范围也就越大。
单芯棒的参数如表1所示:
表1芯棒参数
Figure BDA0002075795580000041
(2)单芯玻璃丝拉制:将上述光纤芯棒在拉丝塔上拉制成直径为1mm、长度为200-1000mm的单芯玻璃丝。
(3)玻璃丝管内堆积填充:如图5所示,将上述拉丝的直径为1mm的单芯玻璃丝清洗干燥后堆积填充在内径为120mm的石英玻璃管内,直至填满玻璃管,填充时玻璃管水平放置,玻璃丝在重力作用下会自然形成紧密堆积,一共可以填充超过10000根。可以根据需要通过改变单芯玻璃丝直径和石英玻璃管内径来得到不同的填充数量。
(4)多芯预制棒熔制:将填充满单芯玻璃丝的石英玻璃管放入熔缩塔高温加热炉里加热使其熔缩成实心的多芯预制棒;此多芯预制棒为实心棒,便于拉丝时的夹持和拉锥掉头,不会出现玻璃丝滑动和断丝的现象,可用于拉制多芯传像光纤。所述的熔缩塔高温加热炉包括石英玻璃管炉体1,在炉体的外周安设可轴向往复移动的加热炉套6,在炉体的上端安设玻璃堵头2和密封盖3,炉体的下端安设支撑座7,形成一个密闭空间,在炉体的上端还安设有抽气管4,抽气管与真空泵相连通。将填充满单芯玻璃丝的玻璃管5放在熔缩塔高温加热炉内加热使其熔缩成实心的多芯预制棒,熔缩过程用真空泵连接抽气管4对玻璃管进行抽真空,防止气体残留形成气泡或气线,最终熔缩成实心的10000芯预制棒,可以根据需要通过改变单芯玻璃丝直径和石英玻璃管内径来得到不同芯数的传像光纤预制棒。如图7所示,圆形的玻璃单丝在熔缩后变成六边形,形成最紧密堆积。图8为所得实心多芯预制棒的端面局部显微图,单丝的芯层和包层均形成六边形,芯层可以观察到光斑,这是传像光纤进行图像传输的光学基础。将所得实心多芯预制棒在拉丝塔上拉丝,即可得到传像光纤。

Claims (3)

1.一种多芯型传像光纤预制棒的制备方法,其特征在于
先制备单芯棒,芯层的折射率为阶跃型或渐变型,单芯棒直径为10~50mm;
所述的单芯棒外包层/芯层直径比为1.1~2.0;
将单芯棒拉制成单芯玻璃丝,单芯玻璃丝的直径为0.5~2mm;
再将等长的单芯玻璃丝清洗干燥后堆积填充至石英玻璃管内,直至充满石英玻璃管内孔;
最后对充满单芯玻璃丝的石英玻璃管加热使其熔缩成实心的多芯棒,即制成多芯型石英传像光纤预制棒;
所述的石英玻璃管的内径为60~200mm;所述的石英玻璃管内填充的单芯玻璃丝为2000~30000根;石英玻璃管内填充的单芯玻璃丝的数量根据以下公式计算:
Y=3*Q*(Q-1)+k (1)
Q=R/d=D/(2*d) (2)
式中,Y为石英玻璃管内填充的单芯玻璃丝的数量;Q为绕玻璃管截面圆心堆积的圈数;k为修正系数,取1~10;R为石英玻璃管内圆半径;D为石英玻璃管内圆直径;d为所填充的单芯玻璃丝的直径;
所述的充满单芯玻璃丝的石英玻璃管加热熔缩是在熔缩塔高温加热炉里加热熔缩成实心的多芯棒,熔缩过程用真空泵连接抽气管对石英玻璃管内进行抽真空;所述的熔缩塔高温加热炉包括石英玻璃管炉体,在炉体的外周安设可轴向往复移动的加热炉套,在炉体的上端安设玻璃堵头和密封盖,炉体的下端支撑座,在炉体的一端还安设有抽气管,抽气管与真空泵相连通。
2.按权利要求1所述的多芯型传像光纤预制棒的制备方法,其特征在于所述的单芯玻璃丝的长度为200~1000mm。
3.按权利要求1或2所述的多芯型传像光纤预制棒的制备方法,其特征在于在石英玻璃管内填充单芯玻璃丝时玻璃管水平放置,单芯玻璃丝在重力作用下自然形成紧密堆积;所述的芯玻璃丝直径相同。
CN201910453265.XA 2019-05-28 2019-05-28 一种多芯型传像光纤预制棒的制备方法 Active CN110436770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910453265.XA CN110436770B (zh) 2019-05-28 2019-05-28 一种多芯型传像光纤预制棒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910453265.XA CN110436770B (zh) 2019-05-28 2019-05-28 一种多芯型传像光纤预制棒的制备方法

Publications (2)

Publication Number Publication Date
CN110436770A CN110436770A (zh) 2019-11-12
CN110436770B true CN110436770B (zh) 2022-03-25

Family

ID=68428704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910453265.XA Active CN110436770B (zh) 2019-05-28 2019-05-28 一种多芯型传像光纤预制棒的制备方法

Country Status (1)

Country Link
CN (1) CN110436770B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115806382A (zh) * 2022-12-29 2023-03-17 长飞光纤光缆股份有限公司 一种传像光纤及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86101341A (zh) * 1985-03-04 1986-09-03 住友电气工业株式会社 多芯光导纤维的制造方法
JP2005242086A (ja) * 2004-02-27 2005-09-08 Fujitsu Ltd マルチコアファイバ及びその製造方法
CN2833630Y (zh) * 2005-04-15 2006-11-01 中国科学院西安光学精密机械研究所 光纤传像束
CN101702045A (zh) * 2009-11-17 2010-05-05 长飞光纤光缆有限公司 一种高分辨率光纤传像束的制造方法
CN103936277A (zh) * 2014-03-20 2014-07-23 富通集团有限公司 一种多芯光纤的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86101341A (zh) * 1985-03-04 1986-09-03 住友电气工业株式会社 多芯光导纤维的制造方法
JP2005242086A (ja) * 2004-02-27 2005-09-08 Fujitsu Ltd マルチコアファイバ及びその製造方法
CN2833630Y (zh) * 2005-04-15 2006-11-01 中国科学院西安光学精密机械研究所 光纤传像束
CN101702045A (zh) * 2009-11-17 2010-05-05 长飞光纤光缆有限公司 一种高分辨率光纤传像束的制造方法
CN103936277A (zh) * 2014-03-20 2014-07-23 富通集团有限公司 一种多芯光纤的制造方法

Also Published As

Publication number Publication date
CN110436770A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN110228942B (zh) 一种多芯型石英传像光纤的制备方法
CN101702045B (zh) 一种高分辨率光纤传像束的制造方法
CN103282809B (zh) 多芯光纤带及其制造方法
US9052433B2 (en) Multicore optical fiber (variants)
CN110418770B (zh) 制造具有不同芯尺寸的成像纤维装置和光纤装置的方法
CN111812772B (zh) 一种空芯保偏反谐振光纤及其制备方法
CN104614804B (zh) 一种高分辨率和低断丝率的柔性光纤传像束及其酸溶制备方法
US9207398B2 (en) Multi-core optical fibers for IR image transmission
JP2011526879A5 (ja) 曲げに強い光ファイバーを形成するための方法
CN101840022A (zh) 一种环形分布多芯光纤及其制备方法
CN101598835A (zh) 光纤传像束及其制造方法
JPH0684254B2 (ja) 耐放射線性マルチプルファイバ
CN110436770B (zh) 一种多芯型传像光纤预制棒的制备方法
CN101852889B (zh) 一种变周期型阵列多芯光纤及其制备方法
CN102981212A (zh) 一种光子带隙光纤
EP3918389A1 (en) Optimized core particles for optical fiber preform and optical fiber preform thereof
CN114200575A (zh) 一种有序排列的高na多芯成像光纤及其制备方法
US4728350A (en) Process and apparatus for producing optical-fiber preforms for mid-infrared range fibers
CN212134990U (zh) 一种梯度折射率光纤复合丝及传像束
CN108594362B (zh) 红外光纤面板及其制备方法
CN109752794A (zh) 一种光波导围裹微流通道的混合集成双芯光纤及制备方法
CN115557692A (zh) 大数值孔径预制棒的制备方法
EP3918387A1 (en) Optical fibre preform and method of manufacturing thereof
EP3918386A1 (en) Ultra-low loss optical fiber
CN104955778A (zh) 制造用于具有低水峰的光学纤维的预制体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant