CN110435689A - 基于模块化控制的智能障碍探测车及探测方法 - Google Patents

基于模块化控制的智能障碍探测车及探测方法 Download PDF

Info

Publication number
CN110435689A
CN110435689A CN201910846306.1A CN201910846306A CN110435689A CN 110435689 A CN110435689 A CN 110435689A CN 201910846306 A CN201910846306 A CN 201910846306A CN 110435689 A CN110435689 A CN 110435689A
Authority
CN
China
Prior art keywords
module
vehicle
microprocessor
barrier
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910846306.1A
Other languages
English (en)
Other versions
CN110435689B (zh
Inventor
刘家�
王博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Electrification Engineering Co Ltd of China Railway Electrification Engineering Group Co Ltd
Original Assignee
Xian Electrification Engineering Co Ltd of China Railway Electrification Engineering Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Electrification Engineering Co Ltd of China Railway Electrification Engineering Group Co Ltd filed Critical Xian Electrification Engineering Co Ltd of China Railway Electrification Engineering Group Co Ltd
Priority to CN201910846306.1A priority Critical patent/CN110435689B/zh
Publication of CN110435689A publication Critical patent/CN110435689A/zh
Application granted granted Critical
Publication of CN110435689B publication Critical patent/CN110435689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D15/00Other railway vehicles, e.g. scaffold cars; Adaptations of vehicles for use on railways
    • B61D15/08Railway inspection trolleys
    • B61D15/12Railway inspection trolleys power propelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/02Profile gauges, e.g. loading gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads

Abstract

本发明属于障碍探测技术领域,具体涉及基于模块化控制的智能障碍探测车。它包括:车体;所述车体底部设置有轨道轮,通过所述轨道轮,所述车体可以沿着轨道运动;所述轨道轮与驱动电机电连接,所述驱动电机驱动轨道轮运动;所述车体的内部设置有驾驶位,供使用者乘坐使用;其特征在于,它还包括:控制模块、图像识别模块、障碍检测判定模块、速度检测模块、电源控制模块和数据存储模块;所述控制模块分别信号连接于图像识别模块、障碍检测判定模块、速度检测模块、电源控制模块和数据存储模块。具有智能化程度高、适用性广、障碍探测精确和去安全性高的优点。

Description

基于模块化控制的智能障碍探测车及探测方法
技术领域
本发明属于障碍探测技术领域,具体涉及基于模块化控制的智能障碍探测车及探测方法。
背景技术
随着人工智能渗透到每个行业,其发挥的作用也越来越明显,在高速铁路领域,智能装置的使用也越来越多。比如在铁路工程中需要对轨道以及两边进行限界检测或者巡检,以及更深入的对接触网高空线路上的障碍异物进行识别等,进而人为清除障碍。
限界是铁路系统极其重要的参数,高速铁路系统中限界检测的方法比较成熟,使用限界检测车。由于城市轨道交通线路的特殊性,目前没有统一的限界检测方法和设备,更多的是传统的物理机械模型,这种方法的检测不仅精度不准确,而且需要花费人力财力去制作,同时,现有的物理机械模型以及大型设备进出场还具有不方便的缺点。
发明内容
有鉴于此,本发明的主要目的在于提供基于模块化控制的智能障碍探测车及探测方法,具有智能化程度高、适用性广、障碍探测精确和去安全性高的优点。
为达到上述目的,本发明的技术方案是这样实现的:
基于模块化控制的智能障碍探测车,它包括:车体;所述车体底部设置有轨道轮,通过所述轨道轮,所述车体可以沿着轨道运动;所述轨道轮与驱动电机电连接,所述驱动电机驱动轨道轮运动;所述车体的内部设置有驾驶位,供使用者乘坐使用;它还包括:控制模块、图像识别模块、障碍检测判定模块、速度检测模块、电源控制模块和数据存储模块;所述控制模块分别信号连接于图像识别模块、障碍检测判定模块、速度检测模块、电源控制模块和数据存储模块;所述图像识别模块,采集车辆行进方向的实时图像,发送到数据存储模块进行存储;所述障碍检测判定模块,用于感应车辆行进方向的障碍物,计算障碍物与车辆的距离,将计算得到的数据发送至数据存储模块进行存储;所述速度检测模块,实时监测车辆的运动速度,将监测到的数据发送至数据存储模块进行存储;所述电源控制模块,为各个模块提供供电电压。
进一步的,所述图像识别模块包括:采集模块和识别模块;所述图像采集模块为夜视高清摄像头,设置于所述车体的前方,采集车辆行进时的图像信息,将采集到的图像信息发送至识别模块;所述识别模块接收到采集到的图像信息后,进行识别,对识别结果进行归类,同时,将识别结果和归类结果发送至控制模块。
进一步的,所述障碍检测判定模块包括:传感器模块和激光模块;所述传感器模块包括:由多个分布设置的传感器组成的传感器阵列和微处理器;所述传感器阵列感应到前方的障碍物后,将感应到的数据发送至第一微处理器,第一微处理器计算出障碍物距离;所述激光模块包括:激光光路和第二微处理器;所述激光光路通过激光进行测距,将检测到的数据发送至第二微处理器;第二微处理器计算出障碍物距离;所述第一微处理器和第二微处理器均将计算出的障碍物距离发送至控制模块;控制模块根据两者测到的障碍物距离,计算最终的障碍物距离。
进一步的,所述探测车还包括:通信模块;所述通信模块与WEB后台通信连接,实时与WEB后台进行通信。
进一步的,所述速度检测模块包括:光电编码器和GPS卫星定位模块和第三微处理器;所述光电编码器测量车辆前进速度,确定车辆的位移距离,将检测到的数据发送至第三微处理器;所述GPS卫星定位模块,实时获取车辆的GPS位置信息,将获取的GPS位置信息发送至第三微处理器;所述第三微处理器接收到数据后,根据GPS位置信息实时矫正光电编码器获取的数据信息,得到最终的速度信息。
基于模块化控制的智能障碍探测车的探测方法,所述方法执行以下步骤:
步骤1:采集车辆行进方向的实时图像,接收到采集到的图像信息后,进行识别,对识别结果进行归类;
步骤2:感应车辆行进方向的障碍物,计算障碍物与车辆的距离;
步骤3:实时监测车辆的运动速度;
步骤4:根据图像的识别结果、障碍物与车辆的距离和车辆的运动速度,控制车辆的运行,同时将图像的识别结果、障碍物与车辆的距离和车辆的运动速度进行存储和发送。
进一步的,所述步骤1中:采集车辆行进方向的实时图像,接收到采集到的图像信息后,进行识别,对识别结果进行归类的方法执行以下步骤:
步骤1.1:将接收到的图像信息进行图像增强后,再进行图像二值化处理;
步骤1.2:设定三个集合,分别为:相关、弱相关和不相关;每一个集合内对应的概率值分别为:相关:P;弱相关:X;不相关:M;
步骤1.3:设置一个样本点,使用该样本点对图像二值化处理后的图像进行样本点检测,检测完成后,采用如下公式计算图像二值化处理后的图像的样本点和设置的样本点的分类重合概率:其中,k为样本点个数,j为重合的样本点个数;
步骤1.4:计算损失函数:
步骤1.5:将分类重合概率与损失函数进行如下运算,得到最终的分类重合概率为:
步骤1.4:判断pN与P、X和M哪一个更接近,即pN与P、X和M分别作差值绝对值运算,计算结果最接近0;若pj与P更接近,则判断该图像为障碍物,该图像的分类结果为障碍物,若pN与X更接近,则该图像的分类结果为弱障碍物;若pN与P更接近,则判断该图像不是障碍物。
进一步的,所述步骤2中:感应车辆行进方向的障碍物,计算障碍物与车辆的距离的方法执行以下步骤:
步骤2.1:由多个分布设置的传感器组成的传感器阵列感应到前方的障碍物后,将感应到的数据发送至第一微处理器,第一微处理器计算出障碍物距离;其中,传感器阵列感应到前方障碍物后,首先通过各个传感器组测算该障碍物在各个维度的向量计算各个维度空间的距离值,再将各个维度空间的距离值进行整合;进行距离整合采用的公式为:其中:其中,r为常数,x、y和z为传感器的坐标值,a、b和c为各个传感器的空间向量值;H0为矫正系数;
步骤2.2:激光光路通过激光进行测距,将检测到的数据发送至第二微处理器;第二微处理器计算出障碍物距离;
步骤2.3:根据第一微处理器和第二微处理器检测到的障碍物距离,采用如下公式,计算最终的障碍物距离:
S=∫S(X2,X1|X1)dX2=∫S(X2|X1)P(X1|X1)dX1;其中,X2位第二处理器计算得到的障碍物距离;X1为第一处理器计算得到的障碍物距离;X1为设定的常数。
进一步的,所述步骤S3中:实时监测车辆的运动速度的方法执行以下步骤:光电编码器测量车辆前进速度,确定车辆的位移距离,将检测到的数据发送至第三微处理器;GPS卫星定位模块,实时获取车辆的GPS位置信息,将获取的GPS位置信息发送至第三微处理器;所述第三微处理器接收到数据后,根据GPS位置信息实时矫正光电编码器获取的数据信息,得到最终的速度信息。
进一步的,所述车辆内部还设置有多级大功率电源转换控制芯片,通过设置多重滤波电路保证多级电压转换的转换效率与较低的电源纹波,为整套系统各个不同的控制电路提供稳定的合适的供电电压。
本发明的基于模块化控制的智能障碍探测车及探测方法,具有如下有益效果:本发明不受地域和现场施工条件的限制,方便现场组装和使用。节省人力和财力去检测限界和接触网的部分参数,取代了使用大型检测车给现场带来的不便,而且该小车可以使用在很多场合。车辆设计成为模块化快速拆装模式,可以快速增添小车功能结构,实现轨道限界检测功能以及接触网检测、轨道建设质量检测等多种功能检测模块,进一步扩充小车的功能设计,以适应更多应用场景需求,满足不同用户的不同的功能需要;另一个是该小车有两种行驶模式,可以无人驾驶,也可以载人。
同时,本发明在进行图像识别时,采用创新的分类算法,简化了图像识别流程,同时,也不需要人为进行筛选,提升了效率。在进行障碍物距离检测时,通过对障碍物的多种测量,综合判断,提升了障碍物距离检测的准确性。
创新的分类算法,在计算过程中,不需要进行针对每个图片进行完整的识别,只需要计算各个图片的样本点的概率,简化了识别流程,同时使用损失函数对结果进行矫正,提升了准确率。保证了效率的同时,又保证了准确率。
在计算距离过程中,针对空间中的各个维度进行分别计算距离,避免了因为空间阻挡或者单一维度测量引起的不准确性。
附图说明
图1为本发明的实施例提供的基于模块化控制的智能障碍探测车的结构示意图;
图2为本发明的实施例提供的基于模块化控制的智能障碍探测方法的方法实流程示意图;
图3为本发明的实施例提供的基于模块化控制的智能障碍探测方法中的图像识别模块相较于现有技术的识别效率实验效果示意图;
图4位本发明的实施例提供的基于模块化控制的智能障碍探测方法中的障碍检测判定模块相较于现有技术的障碍物距离准确率实验效果示意图。
其中,1-本发明的实验曲线;2-现有技术的实验曲线。
具体实施方式
下面结合附图及本发明的实施例对本发明的方法作进一步详细的说明。
实施例1
基于模块化控制的智能障碍探测车,它包括:车体;所述车体底部设置有轨道轮,通过所述轨道轮,所述车体可以沿着轨道运动;所述轨道轮与驱动电机电连接,所述驱动电机驱动轨道轮运动;所述车体的内部设置有驾驶位,供使用者乘坐使用;它还包括:控制模块、图像识别模块、障碍检测判定模块、速度检测模块、电源控制模块和数据存储模块;所述控制模块分别信号连接于图像识别模块、障碍检测判定模块、速度检测模块、电源控制模块和数据存储模块;所述图像识别模块,采集车辆行进方向的实时图像,发送到数据存储模块进行存储;所述障碍检测判定模块,用于感应车辆行进方向的障碍物,计算障碍物与车辆的距离,将计算得到的数据发送至数据存储模块进行存储;所述速度检测模块,实时监测车辆的运动速度,将监测到的数据发送至数据存储模块进行存储;所述电源控制模块,为各个模块提供供电电压。
具体的,具体的,控制模块为核心控制系统,拟采用嵌入式控制系统作为小车的核心控制系统。使用Cortex-M3系列单片机作为核心控制平台,保证车辆控制的稳定性、精确性以及快速性。同时,使用Cortex-M3系列单片机还具有价格低、功耗控制好、处理速度快、应用接口多等优势,符合系统控制需求,能较好的实现本系统功能设计。其中Cortex-M3系列单片机拟采用STM32F03系列单片机作为嵌入式控制系统的主要控制芯片。STM32单片机采用外部高精度8M晶振,经过内部PLL锁相环倍频后可以达到72M工作频率,足以满足大部分控制系统的处理需求。同时STM32单片机作为一款32位单片机在寄存器处理以及数据处理方面比起8位单片机都具有不小的优势。STM32片内集成了包含ADC、DAC、CRC、PWR、看门狗等多种内设模块,并根据不同的需要分为不同存储大小与引脚数量的版本,可以更好的满足不同的开发需求。
实施例2
在上一实施例的基础上,所述图像识别模块包括:采集模块和识别模块;所述图像采集模块为夜视高清摄像头,设置于所述车体的前方,采集车辆行进时的图像信息,将采集到的图像信息发送至识别模块;所述识别模块接收到采集到的图像信息后,进行识别,对识别结果进行归类,同时,将识别结果和归类结果发送至控制模块。
具体的,在小车系统检测到前方有障碍物进入到车辆限界内时,及时采集障碍物图像并进行保存以供轨道限界检测人员及时判定是否为需要进行处理的障碍物,避免因动物或其他因素引起的误触报警。同时需要考虑到隧道等无灯光环境下的使用与检测,因此在高清摄像模块旁边需要添加红外阵列光源作为夜间摄像头光亮来源。必要时可使用LED阵列探照灯作为辅助照明系统来帮助后台工作人员更好的辨识障碍物。其中高清摄像头拟采用TL-VPort-A系列摄像头所谓图像采集的主要模块,支持高帧频图像处理,支持500万像素,支持8/10-bit RGB RAW,帧速率可由程序控制,分辨率高达2595x1944(15fps),完全满足本图像采集系统需求。
实施例3
在上一实施例的基础上,所述障碍检测判定模块包括:传感器模块和激光模块;所述传感器模块包括:由多个分布设置的传感器组成的传感器阵列和微处理器;所述传感器阵列感应到前方的障碍物后,将感应到的数据发送至第一微处理器,第一微处理器计算出障碍物距离;所述激光模块包括:激光光路和第二微处理器;所述激光光路通过激光进行测距,将检测到的数据发送至第二微处理器;第二微处理器计算出障碍物距离;所述第一微处理器和第二微处理器均将计算出的障碍物距离发送至控制模块;控制模块根据两者测到的障碍物距离,计算最终的障碍物距离。
具体的,障碍检测判定模块采用工业级高精度可见激光距离传感器作为边界检测的主要传感器。通过机械结构的合理设计搭建激光光路,并通过核心控制系统合理分配传感器阵列采集。通过多种采集模式检测进入到车辆限界内的障碍物。通过可见激光阵列作为障碍物的监测传感系统可以最大限度的保证障碍检测的精确度与检测速度。同时对可见激光做无害化处理,在保证激光功率满足检测需求的同时保证可见激光的安全性,防止可见激光对人眼或轨道设施的损害。在车辆限界检测系统中拟采用SK-Z-20系列激光测机模块作为系统的限界距离测定模块。模块采用先进的TOF原理进行激光距离检测,能够快速的检测被测目标的距离值,响应速度可以达到200Hz,且精度误差在2CM以内。整个模块的输出接口采用TTL电平模式进行输出,方便与单片机进行对接通信,嵌入到整个小车系统中。另外为了使用过程中的安全问题,模块激光光源采用780nmⅠ类安全不可见红色激光作为激光测距模块的激光光源,能够保护使用环境不被激光伤害,也能保证使用人员不会被激光灼伤。
具体的,速度检测模块的设计中,采用高精度光电编码器测量小车前进速度,确定小车的位移距离,同时为降低误差避免误差累积,辅助使用较高精度的GPS卫星定位模块,实时刷新位置参数,同时采用多种优化算法降低误差,从而确保准确判断异物出现的相对位置。通过光电编码器与A-GPS的相互配合,精确计算出小车移动的相对位置,同时也能够满足在隧道等各类特殊应用环境中的相对位置定位问题。通过速度检测系统可以给出障碍物的精确相对位置参数以及在轨道线路的公里数,可以帮助后台工作人员快速寻找障碍物位置。及时排除障碍物,极大的方便了轨道限界监测后的检修工作。其中A-GPS模块拟采用ADGM322D模块作为GPS的定位模块。此模块支持GPS卫星通信与北斗卫星通信,带IPX接口天线设计,给予中科微第四代低功耗GNSS SOC单芯片AT6558芯片设计,冷启动捕获灵敏度达到-148dBm,跟踪灵敏度-162dBm,定位精度位2.5米(CEP50)首次定位时间30秒,连续运行功耗<25ma(3.3V)。同时采用UART协议,通信简单,开发方便,可以很好的嵌入到小车系统之中。同时对于小车的相对定位系统采用的光电编码器拟采用欧姆龙公司的500线光电编码器作为小车位移与速度作为主要传感器。欧姆龙公司的光电编码器具有脉冲稳定、测试精度高等优点,可以更好的和GPS系统配合准确定位小车位置。
实施例4
在上一实施例的基础上,所述探测车还包括:通信模块;所述通信模块与WEB后台通信连接,实时与WEB后台进行通信。
实施例5
在上一实施例的基础上,所述速度检测模块包括:光电编码器和GPS卫星定位模块和第三微处理器;所述光电编码器测量车辆前进速度,确定车辆的位移距离,将检测到的数据发送至第三微处理器;所述GPS卫星定位模块,实时获取车辆的GPS位置信息,将获取的GPS位置信息发送至第三微处理器;所述第三微处理器接收到数据后,根据GPS位置信息实时矫正光电编码器获取的数据信息,得到最终的速度信息。
具体的,在数据存储系统中,为了保证小车运行期间检测到的障碍物能够完整的记录下来以供检修人员查询避免错漏障碍物影响行车安全,特设置数据存储系统,及时保存小车运行数据以及小车运行期间检测到的障碍物的图像信息以及位置信息,方便后台检修人员进行查询并及时处理障碍物,保证行车安全。同时使用数据存储系统可为后来的数据分析提供数据样本,通过对数据存储系统内的数据进行分析可以获取较为容易出现障碍物的地点、位置以及障碍物种类,可为整体铁路检修提供参考,也为以后新的铁路干线施工提供注意要点,减少障碍物出现的频率,减轻障碍物处理的工作量,提高铁路修建效率。在实际数据存储的工作中,为了减轻后期人员数据分析的工作量,数据记录系统只记录障碍物出现的图像信息以及位置信息,方便后台工作人员校验障碍物真实性并分派工作人员及时处理障碍物。每幅图像数据的存储大小约为6MB左右,位置信息等文字信息约为1KB左右,根据线路上出现的障碍物的数量的不同,所占用的存储空间也不同。在本系统中拟采用的存储空间约为16GB。
实施例6
基于模块化控制的智能障碍探测车的探测方法,所述方法执行以下步骤:
步骤1:采集车辆行进方向的实时图像,接收到采集到的图像信息后,进行识别,对识别结果进行归类;
步骤2:感应车辆行进方向的障碍物,计算障碍物与车辆的距离;
步骤3:实时监测车辆的运动速度;
步骤4:根据图像的识别结果、障碍物与车辆的距离和车辆的运动速度,控制车辆的运行,同时将图像的识别结果、障碍物与车辆的距离和车辆的运动速度进行存储和发送。
实施例7
在上一实施例的基础上,所述步骤1中:采集车辆行进方向的实时图像,接收到采集到的图像信息后,进行识别,对识别结果进行归类的方法执行以下步骤:
步骤1.1:将接收到的图像信息进行图像增强后,再进行图像二值化处理;
步骤1.2:设定三个集合,分别为:相关、弱相关和不相关;每一个集合内对应的概率值分别为:相关:P;弱相关:X;不相关:M;
步骤1.3:设置一个样本点,使用该样本点对图像二值化处理后的图像进行样本点检测,检测完成后,采用如下公式计算图像二值化处理后的图像的样本点和设置的样本点的分类重合概率:其中,k为样本点个数,j为重合的样本点个数;
步骤1.4:计算损失函数:
步骤1.5:将分类重合概率与损失函数进行如下运算,得到最终的分类重合概率为:
步骤1.4:判断pN与P、X和M哪一个更接近,即pN与P、X和M分别作差值绝对值运算,计算结果最接近0;若pj与P更接近,则判断该图像为障碍物,该图像的分类结果为障碍物,若pN与X更接近,则该图像的分类结果为弱障碍物;若pN与P更接近,则判断该图像不是障碍物。
具体的,z为复变函数中的e常量的共轭常量,w为共轭常量的负数值。
实施例8
在上一实施例的基础上,所述步骤2中:感应车辆行进方向的障碍物,计算障碍物与车辆的距离的方法执行以下步骤:
步骤2.1:由多个分布设置的传感器组成的传感器阵列感应到前方的障碍物后,将感应到的数据发送至第一微处理器,第一微处理器计算出障碍物距离;其中,传感器阵列感应到前方障碍物后,首先通过各个传感器组测算该障碍物在各个维度的向量计算各个维度空间的距离值,再将各个维度空间的距离值进行整合;进行距离整合采用的公式为:其中:其中,r为常数,x、y和z为传感器的坐标值,a、b和c为各个传感器的空间向量值;H0为矫正系数;
步骤2.2:激光光路通过激光进行测距,将检测到的数据发送至第二微处理器;第二微处理器计算出障碍物距离X2
步骤2.3:根据第一微处理器和第二微处理器检测到的障碍物距离,采用如下公式,计算最终的障碍物距离:
S=∫S(X2,X1|X1)dX2=∫S(X2|X1)P(X1|X1)dX1;其中,X2位第二处理器计算得到的障碍物距离;X1为第一处理器计算得到的障碍物距离;X1为设定的常数。
具体的,m、n和p均为空间向量值的a、b和c的算术平均均值,矫正系数H0的取值范围为0.35~1.5,常数r的取值范围为0.5~1.0,X1取值范围1.2~1.5;通过设置三个常数,使得计算结果更加精确,均通过直接设置获得。
实施例9
在上一实施例的基础上,所述步骤S3中:实时监测车辆的运动速度的方法执行以下步骤:光电编码器测量车辆前进速度,确定车辆的位移距离,将检测到的数据发送至第三微处理器;GPS卫星定位模块,实时获取车辆的GPS位置信息,将获取的GPS位置信息发送至第三微处理器;所述第三微处理器接收到数据后,根据GPS位置信息实时矫正光电编码器获取的数据信息,得到最终的速度信息。
在上一实施例的基础上,所述车辆内部还设置有多级大功率电源转换控制芯片,通过设置多重滤波电路保证多级电压转换的转换效率与较低的电源纹波,为整套系统各个不同的控制电路提供稳定的合适的供电电压。
实施例10
以上所述仅为本发明的一个实施例子,但不能以此限制本发明的范围,凡依据本发明所做的结构上的变化,只要不失本发明的要义所在,都应视为落入本发明保护范围之内受到制约。。
所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统的具体工作过程及有关说明,可以参考前述方法实施例中的对应过程,在此不再赘述。
需要说明的是,上述实施例提供的系统,仅以上述各功能模块的划分进行举例说明,在实际应用中,可以根据需要而将上述功能分配由不同的功能模块来完成,即将本发明实施例中的模块或者步骤再分解或者组合,例如,上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块,以完成以上描述的全部或者部分功能。对于本发明实施例中涉及的模块、步骤的名称,仅仅是为了区分各个模块或者步骤,不视为对本发明的不当限定。
所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的存储装置、处理装置的具体工作过程及有关说明,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域技术人员应该能够意识到,结合本文中所公开的实施例描述的各示例的模块、方法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,软件模块、方法步骤对应的程序可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。为了清楚地说明电子硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以电子硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
术语“第一”、“第二”等是用于区别类似的对象,而不是用于描述或表示特定的顺序或先后次序。
术语“包括”或者任何其它类似用语旨在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备/装置不仅包括那些要素,而且还包括没有明确列出的其它要素,或者还包括这些过程、方法、物品或者设备/装置所固有的要素。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (10)

1.基于模块化控制的智能障碍探测车,它包括:车体;所述车体底部设置有轨道轮,通过所述轨道轮,所述车体可以沿着轨道运动;所述轨道轮与驱动电机电连接,所述驱动电机驱动轨道轮运动;所述车体的内部设置有驾驶位,供使用者乘坐使用;其特征在于,它还包括:控制模块、图像识别模块、障碍检测判定模块、速度检测模块、电源控制模块和数据存储模块;所述控制模块分别信号连接于图像识别模块、障碍检测判定模块、速度检测模块、电源控制模块和数据存储模块;所述图像识别模块,采集车辆行进方向的实时图像,发送到数据存储模块进行存储;所述障碍检测判定模块,用于感应车辆行进方向的障碍物,计算障碍物与车辆的距离,将计算得到的数据发送至数据存储模块进行存储;所述速度检测模块,实时监测车辆的运动速度,将监测到的数据发送至数据存储模块进行存储;所述电源控制模块,为各个模块提供供电电压。
2.如权利要求1所述的基于模块化控制的智能障碍探测车,其特征在于,所述图像识别模块包括:采集模块和识别模块;所述图像采集模块为夜视高清摄像头,设置于所述车体的前方,采集车辆行进时的图像信息,将采集到的图像信息发送至识别模块;所述识别模块接收到采集到的图像信息后,进行识别,对识别结果进行归类,同时,将识别结果和归类结果发送至控制模块。
3.如权利要求1所述的基于模块化控制的智能障碍探测车,其特征在于,所述障碍检测判定模块包括:传感器模块和激光模块;所述传感器模块包括:由多个分布设置的传感器组成的传感器阵列和微处理器;所述传感器阵列感应到前方的障碍物后,将感应到的数据发送至第一微处理器,第一微处理器计算出障碍物距离;所述激光模块包括:激光光路和第二微处理器;所述激光光路通过激光进行测距,将检测到的数据发送至第二微处理器;第二微处理器计算出障碍物距离;所述第一微处理器和第二微处理器均将计算出的障碍物距离发送至控制模块;控制模块根据两者测到的障碍物距离,计算最终的障碍物距离。
4.如权利要求1所述的基于模块化控制的智能障碍探测车,其特征在于,所述探测车还包括:通信模块;所述通信模块与WEB后台通信连接,实时与WEB后台进行通信。
5.如权利要求1所述的基于模块化控制的智能障碍探测车,其特征在于,所述速度检测模块包括:光电编码器和GPS卫星定位模块和第三微处理器;所述光电编码器测量车辆前进速度,确定车辆的位移距离,将检测到的数据发送至第三微处理器;所述GPS卫星定位模块,实时获取车辆的GPS位置信息,将获取的GPS位置信息发送至第三微处理器;所述第三微处理器接收到数据后,根据GPS位置信息实时矫正光电编码器获取的数据信息,得到最终的速度信息。
6.基于权利要求1至5之一所述基于模块化控制的智能障碍探测车的探测方法,其特征在于,所述方法执行以下步骤:
步骤1:采集车辆行进方向的实时图像,接收到采集到的图像信息后,进行识别,对识别结果进行归类;
步骤2:感应车辆行进方向的障碍物,计算障碍物与车辆的距离;
步骤3:实时监测车辆的运动速度;
步骤4:根据图像的识别结果、障碍物与车辆的距离和车辆的运动速度,控制车辆的运行,同时将图像的识别结果、障碍物与车辆的距离和车辆的运动速度进行存储和发送。
7.如权利要求1所述的方法,其特征在于,所述步骤1中:采集车辆行进方向的实时图像,接收到采集到的图像信息后,进行识别,对识别结果进行归类的方法执行以下步骤:
步骤1.1:将接收到的图像信息进行图像增强后,再进行图像二值化处理;
步骤1.2:设定三个集合,分别为:相关、弱相关和不相关;每一个集合内对应的概率值分别为:相关:P;弱相关:X;不相关:M;
步骤1.3:设置一个样本点,使用该样本点对图像二值化处理后的图像进行样本点检测,检测完成后,采用如下公式计算图像二值化处理后的图像的样本点和设置的样本点的分类重合概率:其中,k为样本点个数,j为重合的样本点个数;
步骤1.4:计算损失函数:
步骤1.5:将分类重合概率与损失函数进行如下运算,得到最终的分类重合概率为:
步骤1.4:判断pN与P、X和M哪一个更接近,即pN与P、X和M分别作差值绝对值运算,计算结果最接近0;若pj与P更接近,则判断该图像为障碍物,该图像的分类结果为障碍物,若pN与X更接近,则该图像的分类结果为弱障碍物;若pN与P更接近,则判断该图像不是障碍物。
8.如权利要求7所述的方法,其特征在于,所述步骤2中:感应车辆行进方向的障碍物,计算障碍物与车辆的距离的方法执行以下步骤:
步骤2.1:由多个分布设置的传感器组成的传感器阵列感应到前方的障碍物后,将感应到的数据发送至第一微处理器,第一微处理器计算出障碍物距离;其中,传感器阵列感应到前方障碍物后,首先通过各个传感器组测算该障碍物在各个维度的向量计算各个维度空间的距离值,再将各个维度空间的距离值进行整合;进行距离整合采用的公式为:其中:其中,r为常数,x、y和z为传感器的坐标值,a、b和c为各个传感器的空间向量值;H0为矫正系数;
步骤2.2:激光光路通过激光进行测距,将检测到的数据发送至第二微处理器;第二微处理器计算出障碍物距离;
步骤2.3:根据第一微处理器和第二微处理器检测到的障碍物距离,采用如下公式,计算最终的障碍物距离:
S=∫S(X2,X1|XI)dX2=∫S(X2|X1)P(X1|XI)dX1;其中,X2位第二处理器计算得到的障碍物距离;X1为第一处理器计算得到的障碍物距离;XI为设定的常数。
9.如权利要求6所述的方法,其特征在于,所述步骤S3中:实时监测车辆的运动速度的方法执行以下步骤:光电编码器测量车辆前进速度,确定车辆的位移距离,将检测到的数据发送至第三微处理器;GPS卫星定位模块,实时获取车辆的GPS位置信息,将获取的GPS位置信息发送至第三微处理器;所述第三微处理器接收到数据后,根据GPS位置信息实时矫正光电编码器获取的数据信息,得到最终的速度信息。
10.如权利要求6所述的方法,其特征在于,所述车辆内部还设置有多级大功率电源转换控制芯片,通过设置多重滤波电路保证多级电压转换的转换效率与较低的电源纹波,为整套系统各个不同的控制电路提供稳定的合适的供电电压。
CN201910846306.1A 2019-09-09 2019-09-09 基于模块化控制的智能障碍探测车的探测方法 Active CN110435689B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910846306.1A CN110435689B (zh) 2019-09-09 2019-09-09 基于模块化控制的智能障碍探测车的探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910846306.1A CN110435689B (zh) 2019-09-09 2019-09-09 基于模块化控制的智能障碍探测车的探测方法

Publications (2)

Publication Number Publication Date
CN110435689A true CN110435689A (zh) 2019-11-12
CN110435689B CN110435689B (zh) 2020-12-08

Family

ID=68439619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910846306.1A Active CN110435689B (zh) 2019-09-09 2019-09-09 基于模块化控制的智能障碍探测车的探测方法

Country Status (1)

Country Link
CN (1) CN110435689B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111016932A (zh) * 2019-12-02 2020-04-17 江西理工大学 节能型空轨系统的轨道巡检车和检测方法
CN111598061A (zh) * 2020-07-21 2020-08-28 成都中轨轨道设备有限公司 一种自主识别定位轨道标识牌内容的系统和方法
CN115176126A (zh) * 2020-02-26 2022-10-11 德赛洛博技术有限公司 草坪概况数据收集工具

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104331910A (zh) * 2014-11-24 2015-02-04 沈阳建筑大学 一种基于机器视觉的轨道障碍物检测系统
CN105438197A (zh) * 2015-12-23 2016-03-30 株洲时代电子技术有限公司 一种障碍物检测小车及其作业方法
CN108021133A (zh) * 2017-11-29 2018-05-11 江苏若博机器人科技有限公司 一种多传感器融合高速无人车探测避障系统
CN108313088A (zh) * 2018-02-22 2018-07-24 中车长春轨道客车股份有限公司 一种非接触式轨道车辆障碍物检测系统
CN109195856A (zh) * 2016-03-31 2019-01-11 西门子移动有限公司 识别轨道车辆前方的危险空间中的障碍物的方法和系统
CN109552366A (zh) * 2018-12-24 2019-04-02 西安思科赛德电子科技有限公司 机车车载铁道障碍物智能探测报警系统及其预警方法
US20190146520A1 (en) * 2014-03-18 2019-05-16 Ge Global Sourcing Llc Optical route examination system and method
CN109828587A (zh) * 2019-03-08 2019-05-31 南京康尼智控技术有限公司 一种避障系统及避障方法
CN109910955A (zh) * 2019-03-19 2019-06-21 南京理工大学 基于应答器信息传输的轨道交通隧道障碍物检测系统及方法
WO2019138532A1 (ja) * 2018-01-12 2019-07-18 三菱電機株式会社 列車制御システムおよび障害物検知装置
CN110027592A (zh) * 2019-03-08 2019-07-19 浙江众合科技股份有限公司 具有智能障碍物检测及预警功能的cbtc无人驾驶车载控制系统
CN110062727A (zh) * 2016-10-20 2019-07-26 铁路视像有限公司 用于铁路应用的避碰中物体和障碍物检测与分类的系统及方法
CN110087970A (zh) * 2016-12-07 2019-08-02 西门子移动有限责任公司 用于在铁路交通中、尤其在轨道交通中进行障碍物识别的方法、设备和铁路车辆、尤其轨道车辆
JP2019140810A (ja) * 2018-02-13 2019-08-22 株式会社日立製作所 軌道輸送システム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190146520A1 (en) * 2014-03-18 2019-05-16 Ge Global Sourcing Llc Optical route examination system and method
CN104331910A (zh) * 2014-11-24 2015-02-04 沈阳建筑大学 一种基于机器视觉的轨道障碍物检测系统
CN105438197A (zh) * 2015-12-23 2016-03-30 株洲时代电子技术有限公司 一种障碍物检测小车及其作业方法
CN109195856A (zh) * 2016-03-31 2019-01-11 西门子移动有限公司 识别轨道车辆前方的危险空间中的障碍物的方法和系统
CN110062727A (zh) * 2016-10-20 2019-07-26 铁路视像有限公司 用于铁路应用的避碰中物体和障碍物检测与分类的系统及方法
CN110087970A (zh) * 2016-12-07 2019-08-02 西门子移动有限责任公司 用于在铁路交通中、尤其在轨道交通中进行障碍物识别的方法、设备和铁路车辆、尤其轨道车辆
CN108021133A (zh) * 2017-11-29 2018-05-11 江苏若博机器人科技有限公司 一种多传感器融合高速无人车探测避障系统
WO2019138532A1 (ja) * 2018-01-12 2019-07-18 三菱電機株式会社 列車制御システムおよび障害物検知装置
JP2019140810A (ja) * 2018-02-13 2019-08-22 株式会社日立製作所 軌道輸送システム
CN108313088A (zh) * 2018-02-22 2018-07-24 中车长春轨道客车股份有限公司 一种非接触式轨道车辆障碍物检测系统
CN109552366A (zh) * 2018-12-24 2019-04-02 西安思科赛德电子科技有限公司 机车车载铁道障碍物智能探测报警系统及其预警方法
CN109828587A (zh) * 2019-03-08 2019-05-31 南京康尼智控技术有限公司 一种避障系统及避障方法
CN110027592A (zh) * 2019-03-08 2019-07-19 浙江众合科技股份有限公司 具有智能障碍物检测及预警功能的cbtc无人驾驶车载控制系统
CN109910955A (zh) * 2019-03-19 2019-06-21 南京理工大学 基于应答器信息传输的轨道交通隧道障碍物检测系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111016932A (zh) * 2019-12-02 2020-04-17 江西理工大学 节能型空轨系统的轨道巡检车和检测方法
CN111016932B (zh) * 2019-12-02 2021-02-12 江西理工大学 节能型空轨系统的轨道巡检车和检测方法
CN115176126A (zh) * 2020-02-26 2022-10-11 德赛洛博技术有限公司 草坪概况数据收集工具
CN111598061A (zh) * 2020-07-21 2020-08-28 成都中轨轨道设备有限公司 一种自主识别定位轨道标识牌内容的系统和方法

Also Published As

Publication number Publication date
CN110435689B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
US11486548B2 (en) System for detecting crack growth of asphalt pavement based on binocular image analysis
CN110435689A (zh) 基于模块化控制的智能障碍探测车及探测方法
CN106049210B (zh) 一种轨道状态智能检测平台
CN104567708B (zh) 基于主动式全景视觉的隧道全断面高速动态健康检测装置与方法
CN110488841A (zh) 基于智能机器人的变电设备联合巡检系统及其应用方法
CN109599945A (zh) 一种智慧电厂自主巡检机器人巡检系统及方法
CN109460029A (zh) 畜禽养殖场所巡检移动平台及其控制方法
CN109029277A (zh) 一种隧道形变监测系统及方法
CN103984355B (zh) 一种巡检飞行机器人与架空电力线路距离预测和保持方法
CN105404844A (zh) 一种基于多线激光雷达的道路边界检测方法
CN107380163A (zh) 基于磁导航的汽车智能报警预测系统及其方法
CN103327091A (zh) 一种获取乘客轨迹及行为参数的系统与方法
CN103456172A (zh) 一种基于视频的交通参数测量方法
CN103714603A (zh) 基于红外测距传感器的公交车客流统计系统
CN112214019A (zh) 一种无人巡检设备无盲区智能反馈控制系统、方法、终端
CN107576325B (zh) 一种融合视觉里程计和磁传感器的室内定位终端
CN203174478U (zh) 道路检测车
CN111547084A (zh) 基于自移动式轨道交通移动三维扫描系统的数据处理方法
CN207850304U (zh) 一种电气化铁路接触网检测系统
CN109685928A (zh) 一种电子巡更装置和方法
CN112581645A (zh) 一种电缆隧道协同巡检方法及系统
CN109946564A (zh) 一种配网架空线路巡检数据采集方法及巡检系统
CN110926417B (zh) 基于机器视觉的车载铁路隧道检测系统
CN115506216A (zh) 路面平整度分析方法以及养护巡查系统
CN211869371U (zh) 基于模块化控制的智能障碍探测车

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant