CN110430523B - 基于WiFi指纹的室内定位接入点三维部署算法 - Google Patents

基于WiFi指纹的室内定位接入点三维部署算法 Download PDF

Info

Publication number
CN110430523B
CN110430523B CN201910495169.1A CN201910495169A CN110430523B CN 110430523 B CN110430523 B CN 110430523B CN 201910495169 A CN201910495169 A CN 201910495169A CN 110430523 B CN110430523 B CN 110430523B
Authority
CN
China
Prior art keywords
rss
rps
signal
positioning
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910495169.1A
Other languages
English (en)
Other versions
CN110430523A (zh
Inventor
陈光柱
白楠
侯睿
陈正阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN201910495169.1A priority Critical patent/CN110430523B/zh
Publication of CN110430523A publication Critical patent/CN110430523A/zh
Application granted granted Critical
Publication of CN110430523B publication Critical patent/CN110430523B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提出了基于WiFi指纹的室内定位接入点三维部署算法。根据位置指纹定位原理,针对三维室内环境中参考点的网格划分方式,提出一种基于六棱柱的网格划分方法;采用信号覆盖率和改进后的信号空间欧氏距离为接入点部署的多目标优化函数,用人工免疫算法进行求解获取最优的接入点部署位置。本发明的有益效果是:当室内环境存在人员或机器对WiFi信号产生干扰时,定位的实时性好、精度高,实现了复杂多变环境下的定位鲁棒性。

Description

基于WiFi指纹的室内定位接入点三维部署算法
技术领域
本发明涉及三维室内位置指纹定位,跟踪领域。
背景技术
在基于WIFI的室内位置指纹定位系统中,几乎所有的定位算法都是基于移动目标接收的RSS去确定目标位置的,然而在实际的室内场景中,由于三维室内环境的复杂性、无线通信易干扰性导致确定AP的最佳数量及位置是一项极具挑战性的事情。目前大多数AP部署模型的建立是基于二维平面的,为了与实际的三维定位场景相结合并提高定位精度,提出了一种六棱柱网格划分方法应用于三维室内定位系统,并建立以最大的信号覆盖率与信号空间欧式距离的多目标函数,实现三维定位空间下的最优AP部署。
发明内容
本发明的提供了基于WiFi指纹的室内定位接入点三维部署算法,提出了基于信号覆盖率和信号空间欧氏距离的三维AP部署多目标函数,并用优化算法求解。
本发明的创新点是在复杂的、无线通信容易受到干扰的三维室内环境下,找到最佳的AP的数目和位置是一项极具挑战性的事情。针对二维平面内正方形网格的划分方式存在定位误差大的问题,提出了RPs空间下的六棱柱网格划分方法,建立了考虑信号覆盖率和信号空间欧氏距离的三维AP部署多目标函数,并采用优化算法进行求解。主要步骤为:
步骤一:提出三维空间下参考点的六棱柱网格划分方式;
步骤二:确定信号覆盖率的目标函数;
步骤三:确定改进的信号空间欧式距离的目标函数;
步骤四:利用优化算法求解接入点部署位置。
有益效果:本发明设计的基于WiFi指纹的室内定位接入点三维部署算法,可以在复杂的、无线通信容易受到干扰的三维室内环境下,快速找到AP的最佳部署位置。且本发明设计的算法具有抗干扰能力强,自适应性能良好的效果,可以提高定位阶段的定位精度。
附图说明
图1:RPs空间的六棱柱网格划分方式图
图2:三维空间下的WiFi信号波动及覆盖示意图
具体实施方式
下面结合附图1至附图2,对本发明作进一步详述。
本发明的所提及的基于WiFi指纹的室内定位接入点三维部署算法中六棱柱网格划分方式如图1所示:
三维室内空间被划分为多个六棱柱网格,每个参考点被标记为一个黑色的圆点,位于六棱柱网格的中心,RPs={RP1,…,RPM},M是参考点的数量。APs根据部署方式放置在适当的位置,APs={AP1,…,APN},N是接入点的数量。
设所有的AP设备都具有相同的工作参数,例如传输功率和传输增益,则可以将第j个RP被第i个AP信号所覆盖的概率定义为:
Figure GDA0002135827760000021
其中RSSs表示第j个RP处科员接收到的最小RSS,RSSe表示WiFi信号的不确定因子,其与信号波动的标准偏差有关。α,β分别表示AP设备的相关参数。λ表示AP设备的输入参数,λ=RSSj(k)-(RSSs+RSSe)。
由室内位置指纹定位原理可知,为保证空间定位结果的唯一性,要求定位区域中的每个参考点至少要被三个AP设备所覆盖。若每个参考点被AP覆盖的概率相互独立,则参考点j至少被三个AP所覆盖的概率可以被计算为:
cj=1-(cj1+cj2+cj3)
其中:
Figure GDA0002135827760000022
Figure GDA0002135827760000023
Figure GDA0002135827760000024
设Cth为概率阈值,那么RP能够有效被AP所覆盖的条件为:
cj≥Cth
为使所有目标区域内的参考点实现更好的信号覆盖率,根据定位区域内的RP个数,得到所有RP的信号覆盖率函数f1
Figure GDA0002135827760000031
传统的确定型定位方法是根据信号空间的欧式距离,找到与待定位点欧式距离较小的点作为定位结果,由此可知移动目标的定位精度与RP之间的信号欧式距离密切相关。用RSSi,j,表示的第i个RP和第j个RP之间的信号空间欧式距离,定义如下:
Figure GDA0002135827760000032
传统的信号空间欧氏距离计算方法未考虑RSS信号波动的影响,导致定位的误差增大。考虑到WiFi信号波动性的影响,引入RSS的标准偏差值来修正RP之间的信号空间欧式距离,提高RSSi,j的准确度,用I_RSSi,j表示的第i个RP和第j个RP之间的改进信号空间欧氏距离定义如下:
Figure GDA0002135827760000033
其中,SDi,k,SDj,k分别表示第i个RP和第j个RP接收的第k个RSS的标准偏差值。I_RSSi,j可以更准确地反映两个RPs接收到的RSS之间的相似性。因此,用I_RSSave(i)表示的第i个RP改进的平均信号空间欧式距离定义如下:
Figure GDA0002135827760000034
其中Q表示一组RPs,这组RPs与第i个RP的距离小于dQ,dQ表示距离阈值。q表示Q中RPs的数量。
最终,所有RPs改进的平均信号空间欧氏距离函数f2
Figure GDA0002135827760000035
然而,当两个RPs之间的信号空间欧氏距离越大时,那么两个RPs之间的物理距离就越远,就会造成定位精度的下降。因此,两个RPs之间的物理距离不应该太远,需要找到一个阈值,其可以容忍定位空间中所有RPs的信号波动引起的定位误差。在图2中,点RP1 andRP2表示2个RPs的位置。e1表示接收到的RP1信号波动值,p表示移动目标的位置。显然,P应该定位在RP2,但由于RSS接收到的信号波动,P可能错误地被定位在RP1处。当两个RPs之间的信号空间欧氏距离的一半大于RSS的波动值时,由WiFi信号波动引起的RSS波动不会对定位精度造成影响。因此,f2应当满足以下要求:
Figure GDA0002135827760000041
其中ei表示在第i个RP处接收到的RSS的波动值。当定位空间和AP设备被给定时,ei通常可以通过实验获得。上式保证RPs之间的平均信号空间欧氏距离大于ei,从而消除了WiFi信号的波动影响。因此f2被修改为:
Figure GDA0002135827760000042
由于AP部署位置的多样性,AP部署问题已被证明是一个NP完全问题。利用优化算法求解AP部署位置。
实验结果及分析:分别在非工作场景机器运行场景、人类活动场景、人类活动&机器运行场景下进行实验测试,与矩心部署算法与指纹多样性部署算法进行对比分析,如表1所示。
表1.在四种场景下三种APS部署算法的平均定位误差
Figure GDA0002135827760000043
Figure GDA0002135827760000051
不同AP部署方式在4个场景中的平均定位误差值如表1所示,与矩心算法和指纹多样性算法相比,在非工作场景中,本发明所提算法在3个APs下的平均定位误差降低了近1米和0.4米,在4个APs下的平均定位误差降低了0.3米和0.3米,在5个APs下的平均定位误差降低了0.1米和0.5米;在机器运行场景中,在3个APs下的平均定位误差降低了0.3米和0.8米,在4个APs下的平均定位误差降低了0.1米和0.3米,在5个APs下的平均定位误差降低了0米和0.2米;在人员活动场景中,在3个APs下的平均定位误差降低了0.2米和0.7米,在4个APs下的平均定位误差降低了0米和0.1米,在5个APs下的平均定位误差降低了0.4米和0.7米;在人员活动和机器运行场景中,在3个APs下的平均定位误差降低了0.5米和0.8米,在5个APs下的平均定位误差降低了0.1米和1.1米。
经实验验证,本发明在复杂的室内环境下取得了更高的定位精度。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以作出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (1)

1.基于WiFi指纹的室内定位接入点三维部署算法,其特征在于:该算法的主要步骤如下:
步骤一:提出三维空间下参考点的六棱柱网格划分方式;
步骤二:确定信号覆盖率的目标函数;信号覆盖率的目标函数的推导过程具体描述如下:
三维室内空间中的RP表示参考点,M是参考点的数量,其中RPs={RP1,…,RPM},三维室内空间中的AP表示接入点,N是AP的数量,其中APs={AP1,…,APN},设所有的AP设备都具有相同的工作参数,如传输功率和传输增益,则将第j个RP被第k个AP信号所覆盖的概率定义为:
Figure FDA0002839741150000011
其中RSSs表示第j个RP处接收到的最小RSS,RSSe表示WiFi信号的不确定因子,其与信号波动的标准偏差有关,α,β分别表示AP设备的相关参数,λ表示AP设备的输入参数,λ=RSSj(k)-(RSSs+RSSe),
由室内位置指纹定位原理可知,为保证空间定位结果的唯一性,要求定位区域中的每个RP至少要被三个AP设备所覆盖,若每个RP被AP覆盖的概率相互独立,则第j个RP至少被三个AP所覆盖的概率可以得到:
cj=1-(cj1+cj2+cj3),
其中:
Figure FDA0002839741150000012
Figure FDA0002839741150000013
Figure FDA0002839741150000014
RP能够被AP所有效覆盖的条件为:cj≥Cth
其中Cth为概率阈值,
为使所有目标区域内的RP实现更好的信号覆盖率,根据定位区域内的RP个数,得到所有RP的信号覆盖率函数f1
Figure FDA0002839741150000021
步骤三:确定改进的信号空间欧式距离的目标函数;改进的信号空间欧式距离的目标函数的推导过程具体描述如下:
考虑到WiFi信号波动性的影响,引入RSS的标准偏差值来修正RP之间的信号空间欧式距离,提高RSSi,j的准确度,用I_RSSi,j表示第i个RP和第j个RP之间的改进信号空间欧氏距离定义如下:
Figure FDA0002839741150000022
其中,SDi,k,SDj,k分别表示第i个RP和第j个RP接收的第k个RSS的标准偏差值,I_RSSi,j可以更准确地反映两个RPs接收到的RSS之间的相似性,因此,用I_RSSave(i)表示的第i个RP改进的平均信号空间欧式距离定义如下:
Figure FDA0002839741150000023
其中Q表示一组RPs,这组RPs与第i个RP的距离小于dQ,dQ表示距离阈值,q表示Q中RPs的数量,最终,对于所有RPs改进的信号空间欧氏距离函数f2
Figure FDA0002839741150000024
其中ei表示在第i个RP处接收到的RSS的波动值,
步骤四:利用优化算法求解接入点部署位置。
CN201910495169.1A 2019-06-10 2019-06-10 基于WiFi指纹的室内定位接入点三维部署算法 Active CN110430523B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910495169.1A CN110430523B (zh) 2019-06-10 2019-06-10 基于WiFi指纹的室内定位接入点三维部署算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910495169.1A CN110430523B (zh) 2019-06-10 2019-06-10 基于WiFi指纹的室内定位接入点三维部署算法

Publications (2)

Publication Number Publication Date
CN110430523A CN110430523A (zh) 2019-11-08
CN110430523B true CN110430523B (zh) 2021-04-13

Family

ID=68408526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910495169.1A Active CN110430523B (zh) 2019-06-10 2019-06-10 基于WiFi指纹的室内定位接入点三维部署算法

Country Status (1)

Country Link
CN (1) CN110430523B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646368A (zh) * 2016-12-30 2017-05-10 东南大学 一种基于指纹匹配的可见光通信场景中三维定位方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378361B (zh) * 2011-04-02 2014-05-28 河海大学常州校区 基于三维空间锚球交域重心的无线传感器网络定位方法
CN104469792A (zh) * 2014-12-29 2015-03-25 哈尔滨工业大学 指纹定位中基于多假设分析的ap部署优化方法
CN104965974B (zh) * 2015-06-08 2018-04-27 浙江银江研究院有限公司 一种基于覆盖度评估及优化警力资源部署的方法
CN107666707B (zh) * 2017-09-30 2020-01-10 长沙学院 一种基于距离测量和位置指纹的室内定位方法
US10145962B1 (en) * 2017-10-06 2018-12-04 Cisco Technology, Inc. Adaptive localization and incremental deployment of infrastructure with crowd-sourced feedback
CN109413575A (zh) * 2018-12-04 2019-03-01 重庆邮电大学 一种室内定位的自适应ap布局方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646368A (zh) * 2016-12-30 2017-05-10 东南大学 一种基于指纹匹配的可见光通信场景中三维定位方法

Also Published As

Publication number Publication date
CN110430523A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
He et al. Tilejunction: Mitigating signal noise for fingerprint-based indoor localization
CN104883734B (zh) 一种基于地理指纹的室内被动定位方法
CN109672973B (zh) 一种基于最强ap的室内定位融合方法
CN109068267B (zh) 一种基于LoRa SX1280的室内定位方法
CN110049549B (zh) 基于WiFi指纹的多融合室内定位方法及其系统
CN109085569B (zh) 一种基于区域划分的多雷达航迹关联方法
CN109511085A (zh) 一种基于MeanShift和加权k近邻算法的UWB指纹定位方法
CN108449708A (zh) 一种基于信号分布检验的Wi-Fi室内定位方法
CN108225332B (zh) 基于监督的室内定位指纹地图降维方法
Zhou-guo et al. An improved indoor UHF RFID localization method based on deviation correction
Han et al. CNN-based attack defense for device-free localization
CN110430523B (zh) 基于WiFi指纹的室内定位接入点三维部署算法
Li et al. WiFi indoor location method based on RSSI
Sun et al. A novel GCN based indoor localization system with multiple access points
Subakti et al. Indoor Localization with Fingerprint Feature Extraction
Lei et al. Enhanced geometric filtering method based device-free localization with UWB wireless network
CN109246601B (zh) 一种无线网络的定位方法及装置
CN109600711B (zh) 一种基于信道响应频域和空域联合处理的室内定位方法
CN111654843B (zh) 自动更新指纹数据库的方法及系统、wifi定位方法及系统
Yu et al. An intelligent space location identification system based on passive RFID tags
CN108519579B (zh) 基于区间重叠度分析优选AP的WiFi指纹定位方法
CN111654808A (zh) 一种更新指纹数据库的方法及系统、wifi定位方法及系统
CN114286306B (zh) 室内信号定位方法、装置、计算机设备及存储介质
CN113055814B (zh) 一种改进wknn的室内定位方法
CN112379328B (zh) 一种鲁棒式低功耗tdoa定位方法及鲁棒式中值过滤器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant