CN110419173B - 毫米波无线局域网系统中定向响应的冲突缓解 - Google Patents

毫米波无线局域网系统中定向响应的冲突缓解 Download PDF

Info

Publication number
CN110419173B
CN110419173B CN201880017161.8A CN201880017161A CN110419173B CN 110419173 B CN110419173 B CN 110419173B CN 201880017161 A CN201880017161 A CN 201880017161A CN 110419173 B CN110419173 B CN 110419173B
Authority
CN
China
Prior art keywords
sts
pcp
sector
wtru
resources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880017161.8A
Other languages
English (en)
Other versions
CN110419173A (zh
Inventor
奥盖内科梅·奥泰里
娄汉卿
王晓飞
孙立祥
杨瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Priority to CN202311245227.8A priority Critical patent/CN117544200A/zh
Priority to CN202311243171.2A priority patent/CN117544199A/zh
Publication of CN110419173A publication Critical patent/CN110419173A/zh
Application granted granted Critical
Publication of CN110419173B publication Critical patent/CN110419173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种使用无线发射接收单元(WTRU)进行波束成形训练的方法、装置和系统。所述WTRU可以从接入点(AP)接收在波束成形训练分配期间的信标帧内的关于空间时间时隙(STS)数量的指示。所述WTRU可以基于所述STS数量的函数,在特定STS中向所述AP发送响应信号。所述WTRU可以从所述AP接收确认收到所述响应的应答(ACK)。作为替代,所述AP可以发送指示发生冲突的信号并且改变所述STS数量,并且所述WTRU可以在下一个波束成形训练分配中再次尝试。

Description

毫米波无线局域网系统中定向响应的冲突缓解
相关申请的交叉引用
本申请要求2017年3月10日提交的临时美国申请号62/469,754的权益,其内容通过引用而被结合于此。
背景技术
在下一代移动通信中,可能存在诸如增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)和/或超可靠低延时通信(URLLC)的多种应用。这些应用可以使用范围从700MHz到80GHz的各种频谱带。可能需要解决这些新应用的无线协议中可能出现的问题。
发明内容
一种用于使用无线发射接收单元(WTRU)进行波束成形训练的方法、装置和系统。WTRU可以从接入点(AP)接收在波束成形训练分配期间的的信标帧内的关于空间时间时隙(STS)数量的指示。所述WTRU可以基于所述STS数量的函数,在特定STS中向所述AP发送响应信号。所述WTRU可以从所述AP接收确认接收到所述响应的应答(ACK)。作为替代,所述AP可以发送指示发生冲突的信号并且改变所述STS数量,并且所述WTRU可以在下一个波束成形训练分配中再次尝试。
附图说明
可以从以下结合附图的描述(该描述并不意在限制实施例的范围,而是仅用作示例)中获得对附图更详细的理解,其中附图中相同的附图标记表示相同的元素,并且其中:
图1A是示例无线发射/接收单元(WTRU)的系统示图;
图1B是示例无线电接入网络和/或示例核心网络的系统示图;
图1C是示例通信系统的系统示图;
图2是IEEE 802.11ad信标间隔的示例;
图3是扇区级扫描(SLS)训练的示例;
图4是扇区扫描(SSW)帧的示例格式;
图5是SSW帧中的SSW字段的示例格式;
图6A是SSW帧中的SSW反馈字段的示例;
图6B是SSW帧中的SSW反馈字段的示例;
图7是携带波束细化协议(BRP)帧和训练(TRN)字段的示例物理层会聚过程(PLCP)协议数据单元(PPDU);
图8是增强型SLS实施方式的示例;
图9示出了基线响应实施方式的示例;
图10示出了定向多吉比特(DMG)信标帧中的(空间-时间-时隙)STS长度的配置的示例;
图11示出了用信号通知每个波束的STS数量的示例;
图12示出了改变接入点(AP)定向接收(Rx)间隔中的波束中的STS数量的示例;
图13示出了具有可变大小的信标的示例;可以用信号通知x个波束的信息;
图14示出固定信标大小的示例;可以用信号通知一些或所有N个波束的信息;
图15示出了具有固定信标大小的信标的示例,该信标大小指示在接入之前要等待的时隙的数量;
图16示出了接入点(AP)定向接收间隔内的冲突识别的示例;
图17示出了用于冲突识别的冲突间隔的示例;
图18示出了用于STA特定冲突识别的站(STA)特定标识符的示例;
图19示出了具有相等冲突恢复STS的扇区ACK帧的示例;
图20示出了具有冲突波束特定恢复STS的扇区ACK帧的示例;
图21示出了具有冲突识别和STA特定波束冲突/恢复信令的扇区ACK帧的示例;以及
图22示出了增强型SLS实施方式的示例。
具体实施方式
图1A是诸如无线发射接收单元(WTRU)的示例设备102的示图。如在此所述的,WTRU可与接入点(AP)、站(STA)、用户设备(UE)、移动设备、固定或移动订户单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、平板电脑、物联网设备、个人计算机、无线传感器、消费类电子设备、以及基站等等互换使用。
所述设备102可以是在此描述的多种通信系统中的一者或多者。如图1A所示,所述设备102可包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、数字键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136和其他外围设备138。应该了解的是,在保持符合实施例的同时,设备102还可以包括前述部件的任何子组合。
所述处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)以及状态机等等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理、和/或其他任何能使设备102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收部件122。虽然图1A将处理器118和收发信机120描述成单独组件,然而应该了解,处理器118和收发信机120也可以一起集成在一电子组件或芯片中。
另外,所述处理器118可包括一个或多个处理器。例如,所述处理器118可以包括以下中的一者或多者:通用处理器、专用处理器(例如,基带处理器、MAC处理器等)、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、任何其他类型的集成电路(IC)、状态机等。所述一个或多个处理器118可以彼此集成或不集成。所述处理器118(例如,一个或多个处理器或其子集)可以与一个或多个其他元件/功能(例如,诸如存储器的其他功能)集成。所述处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理、调制、解调和/或可以使所述设备能够在诸如WLAN的无线环境中操作的任何其他功能。所述处理器118可以被配置为执行处理器可执行代码(例如,指令),这其中可包括例如软件和/或固件指令。例如,所述处理器118可以被配置为执行包括在一个或多个处理器(例如,包括存储器和处理器的芯片组)或存储器上的计算机可读指令。该指令的执行可以使所述设备执行本文描述的一个或多个功能。
所述发射/接收部件122可被配置成经由空中接口115来发射或接收去往或来自基站的信号。举个例子,在一个实施例中,所述发射/接收部件122可以是被配置成发射和/或接收RF信号的天线。在另一实施例中,所述发射/接收部件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在再一个实施例中,所述发射/接收部件122可被配置成发射和接收RF和光信号。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
虽然在图1A中将发射/接收部件122描述成是单个部件,但是所述设备102可以包括任何数量的发射/接收部件122。所述发射/接收部件122可包括一个或多个天线。更具体地说,所述设备102可以使用多输入多输出(MIMO)技术。由此,在一个实施例中,所述设备102可以包括两个或多个通过空中接口116来发射和接收无线信号的发射/接收部件122(例如多个天线)。所述一个或多个天线可接收无线电信号。所述处理器可例如通过所述一个或多个天线来接收所述无线电信号。所述一个或多个天线可发射无线电信号(例如,其基于从所述处理器发出的信号)。
所述收发信机120可被配置成对发射/接收部件122所要传送的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,所述设备102可以具有多模能力。因此,收发信机120可以包括允许设备102借助多种无线电接入技术(RAT)(例如UTRA和IEEE802.11)来进行通信的多个收发信机。
所述设备102的处理器118可以耦合到扬声器/麦克风124、数字键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。所述处理器118还可以促进经由扬声器/麦克风124、数字键盘126和/或显示器/触摸板128而至用户的输出。此外,处理器118可以从诸如不可移除存储器130和/或可移除存储器132之类的任何适当的存储器中存取信息,以及将信息存入这些存储器。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户身份模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。在其他实施例中,处理器118可以从那些并非实际位于设备102的存储器存取信息,以及将数据存入这些存储器,作为示例,此类存储器可以位于服务器或家庭计算机(未显示)。
此外,所述设备102的存储器(130和/或132)可以包括用于存储编程和/或数据(例如,处理器可执行代码或指令(例如,软件,固件等)、电子数据、数据库或其他数字信息)的一个或多个部件/组件/单元。所述存储器(130和/或132)可以包括一个或多个存储器单元。一个或多个存储器(130和/或132)单元可以与一个或多个其他功能(例如,包括在所述设备中的其他功能,例如处理器)集成。所述存储器(130和/或132)可以包括只读存储器(ROM)(例如,可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)等)、随机存取存储器(RAM)、磁盘存储媒体、光存储媒体、闪存设备和/或用于存储信息的其他非暂时性计算机可读媒体。所述存储器(130和/或132)可以耦合到处理器118。所述处理器118可以与一个或多个存储器实体(130和/或132)进行通信,例如通过系统总线进行通信或者直接通信等。
处理器118可以接收来自电源134的电力,并且可被配置分发和/或控制用于设备102中的其他组件的电力。电源134可以是为设备102供电的任何适当设备。例如,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池以及燃料电池等等。
处理器118还可以耦合到GPS芯片组136,该GPS芯片组可被配置成提供与设备102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,设备102可以经由空中接口115接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或多个附近基站接收的信号定时来确定其位置。应该了解的是,在保持符合实施例的同时,设备102可以借助任何适当的定位方法来获取位置信息。
处理器118还可以耦合到其他外围设备138,其中所述外围设备可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,外围设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、以及因特网浏览器等。
图1B是示出了示例通信系统100的示图,该示例通信系统100可以包括至少一个无线发射/接收单元(WTRU)(例如,多个WTRU,例如WTRU 102a、102b、102c和102d)、一个或多个基站114a和114b、无线电接入网络(RAN)105、核心网络109、公共交换电话网络(PSTN)108、因特网110和其他网络112,但是应该理解,所公开的实施例考虑了任何数量的WTRU、基站、网络和/或网络元件。WTRU 102a、102b、102c、102d中的每一个可以是被配置为在无线环境中操作和/或通信的任何类型的设备。举例来说,WTRU 102a、102b、102c、102d可以被配置为发送和/或接收无线信号,并且可以包括用户设备(UE)、移动站(例如,WLAN STA)、固定或移动订户单元、寻呼机、移动电话、平板电脑、个人数字助理(PDA)、智能手机、笔记本电脑、上网本、平板电脑、个人电脑、无线传感器、消费类电子产品、以及物联网(IoT)设备等。
所述基站114a、114b中的每一个可以是被配置为与WTRU 102a、102b、102c、102d中的至少一个无线对接的任何类型的设备,以便于接入一个或多个通信网络,例如,核心网络109、因特网110和/或网络112。作为示例,所述基站114a、114b可以是基站收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、站点控制器、接入点(AP)、个人基本服务集(PBSS)控制点(PCP)、以及无线路由器等。虽然所述基站114a、114b每个都被描绘为图1B中的单个元件,基站114a、114b可以包括任何数量的互连基站和/或网络元件。
所述基站114a可以是RAN 105的一部分,该RAN 105还可以包括其他基站和/或网络元件(未示出),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等。所述基站114a和/或基站114b可以被配置为在特定地理区域内发送和/或接收无线信号,该特定地理区域可以被称为小区(未示出)。可以将小区进一步划分为小区扇区。例如,与基站114a相关联的小区可以被划分为三个扇区。因此,在一个实施例中,基站114a可以包括三个收发信机,即,小区的每个扇区一个收发信机。在另一个实施例中,基站114a可以采用多输入多输出(MIMO)技术,因此可以为小区的每个扇区使用多个收发信机。
基站114a、114b可以通过空中接口115与WTRU 102a、102b、102c、102d中的一者或多者通信,所述空中接口115可以是任何合适的无线通信链路(例如,射频(RF)、微波、红外(IR)、紫外(UV)、可见光等)。可以使用任何合适的无线电接入技术(RAT)来建立所述空中接口115。
所述通信系统100可以是多址接入系统,并且可以采用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,RAN 105中的基站114a和WTRU 102a、102b、102c可以实施诸如通用移动电信系统(UMTS)地面无线电接入(UTRA)之类的无线电技术,其可以使用宽带CDMA(WCDMA)建立所述空中接口115。WCDMA可以包括诸如高速分组接入(HSPA)和/或演进HSPA(HSPA+)的通信协议。HSPA可以包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入(HSUPA)。
在另一实施例中,基站114a和WTRU 102a、102b、102c可以实施诸如演进UMTS陆地无线电接入(E-UTRA)之类的无线电技术,其可以使用长期演进(LTE)和/或高级LTE(LTE-A)来建立所述空中接口115。
在其他实施例中,基站114a和WTRU 102a、102b、102c可以实施诸如IEEE 802.16(即,全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、GSM演进增强数据速率(EDGE)、GSM EDGE(GERAN)等之类的无线电技术。
图1B中的基站114b可以是例如无线路由器、家庭节点B、家庭e节点B或接入点,并且可以利用任何合适的RAT来促进局部区域(例如商业场所、家庭、车辆、校园等)中的无线连接。在一个实施例中,基站114b和WTRU 102c、102d可以实施诸如IEEE 802.11之类的无线电技术以建立无线局域网(WLAN)。在另一个实施例中,基站114b和WTRU 102c、102d可以实施诸如IEEE 802.15的无线电技术以建立无线个域网(WPAN)。在又一个实施例中,基站114b和WTRU 102c、102d可以利用基于蜂窝的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A等)来建立微微小区或毫微微小区。如图1B所示,基站114b可以具有到因特网110的直接连接。因此,可以不要求基站114b经由核心网络109接入因特网110。
RAN 105可以与核心网络109通信,该核心网络109可以是被配置为向WTRU 102a、102b、102c、102d中的一者或多者提供语音、数据、应用和/或网际协议语音(VoIP)服务的任何类型的网络。例如,核心网络109可以提供呼叫控制、计费服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等,和/或执行高级安全功能,例如用户认证。尽管未在图1B中示出,应当理解,RAN 105和/或核心网络109可以与使用与RAN 105相同的RAT或不同RAT的其他RAN(未示出)直接或间接通信。例如,除了被连接到可以使用E-UTRA无线电技术的RAN 105之外,核心网络109还可以与采用GSM无线电技术的另一RAN(未示出)通信。
所述核心网络109还可以用作WTRU 102a、102b、102c、102d的网关,以接入PSTN108、因特网110和/或其他网络112。PSTN 108可以包括电路交换电话网络,其提供普通老式电话服务(POTS)。因特网110可以包括使用了公共通信协议(例如传输控制协议/网际协议(TCP/IP)网际协议族中的TCP、用户数据报协议(UDP)和IP)的全球性互联计算机网络设备系统。所述网络112可以包括由其他服务供应商拥有和/或运营的有线或无线通信网络。例如,所述网络112可以包括与一个或多个RAN(未示出)相连的另一个核心网络(未示出),其中所述一个或多个RAN可以与RAN 105使用相同RAT或不同RAT。
通信系统100中的WTRU 102a、102b、102c、102d中的一些或所有WTRU可以包括多模式能力(即,WTRU 102a、102b、102c、102d可以包括用于通过不同的无线链路与不同无线网络通信的多个收发信机)。例如,图1B所示的WTRU 102c可被配置成与使用基于蜂窝的无线电技术的基站114a通信,以及与可以使用IEEE 802.11无线电技术的基站114b通信。
在一个实施例中,通信系统100可以具有带有承载的无线网络,该承载延伸超出无线网络(例如,超出与该无线网络相关联的“围墙花园”)并且可以被指派QoS特性。
另外,所述通信系统100可以是多址接入系统,其向多个无线用户提供诸如语音、数据、视频、消息传递、广播等内容。所述通信系统100可以使多个无线用户能够通过共享系统资源(包括无线带宽)来访问这些内容。例如,所述通信系统100可以采用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、以及单-载波FDMA(SC-FDMA)等。
图1C示出了示例无线局域网(WLAN)122的示图。WLAN 122的一个或多个设备可以用于实施这里描述的一个或多个实施例/特征。所述WLAN 122可以包括但不限于接入点(AP/PCP)114c、站(STA)102e和STA 102f。STA 102e和102f可以与AP 114c相关联。WLAN 122可以被配置为实施IEEE 802.11通信标准的一个或多个协议,其可以包括信道接入方案,诸如DSSS、OFDM或OFDMA等。WLAN 122可以以诸如基础设施模式或ad-hoc模式等的模式操作。STA可以是有线或无线设备,其与本文所述的无线发射接收单元(WTRU)相同或相似。在一个示例中,STA 102e、102f是无线移动设备。AP/PCP 114c可以是有线或无线设备,其与本文所述的WTRU相同或相似。在一个示例中,AP 114c是具有有线和无线接口的固定设备。
以基础设施模式操作的WLAN 122可以包括与一个或多个相关联的STA 102e和102f通信的一个或多个AP 114c。AP 114c以及与该AP 114c相关联的STA 102e和102f可以包括基本服务集(BSS)。例如,AP 114c、STA 102e和STA 102f可以包括BSS WLAN 122。扩展服务集(ESS)可以包括具有一个或多个BSS的一个或多个AP以及与该AP相关联的一个或多个STA(未示出)。AP 114c可以接入分发系统(DS)116和/或与该分发系统(DS)116对接,该分发系统(DS)116可以是有线和/或无线的,并且可以携带至AP 114c和/或来自AP 114c的业务。源自WLAN 122外部的至WLAN 122中的STA 102e或102f的业务可以在WLAN 122中的AP114c处被接收,其可以将该业务发送到WLAN 122中的STA 102e之一。源自WLAN 122中的STA102e并至WLAN 122外部的目的地(例如,到服务器118)的业务可被发送到WLAN 122中的AP114c,其可以将到所述目的地的所述业务(例如,经由DS 116)发送到网络117以被发送到服务器118。WLAN 122内的STA 102e和102f之间的业务可以通过一个或多个AP 114c发送。例如,源STA 102e可以具有旨在用于目的地STA 102f的业务。STA 102e可以将该业务发送到AP 114c,并且AP 114c可以将该业务发送到STA 102f。
作为替代,BSS WLAN 122内的STA 102e和102f之间的业务可以是对等业务。可以使用802.11e DLS或802.11z隧道化DLS(TDLS)通过直接链路建立(DLS)在源STA和目的地STA之间发送对等业务,并且可以直接发送。WLAN 122可以使用独立BSS(IBSS)模式,并且可以不具有AP/PCP和/或STA,并且可以直接与另一WLAN(未示出)通信。这种通信模式可以称为“自组织(ad-hoc)”通信模式。在ad-hoc模式WLAN 122中,STA 102e和102f可以彼此直接通信,且该通信不需要通过AP 114c而被路由。
设备可以使用IEEE 802.11协议来操作,例如AP/PCP 103可以使用802.11ac基础设施操作模式。AP/PCP 114c可以发送信标并且可以在固定信道上这样做。所述固定信道可以是主信道。该信道可以是20MHz宽,并且可以是BSS的操作信道。该信道可以由STA 102e和102f使用,并且可以用于建立与AP/PCP 114c的连接。
STA(一个或多个)和/或AP(一个或多个)可以使用具有冲突避免的载波侦听多路接入(CSMA/CA)信道接入机制。在CSMA/CA中,STA和/或AP可以感测主信道。在一个示例中,如果STA具有要发送的数据,则STA可以感测主信道,并且如果检测到主信道忙,则STA可以退避。在另一示例中,WLAN或其一部分可以被配置为使得一个STA可以在给定时间(例如,在给定BSS中)进行发送。信道接入可以包括请求发送(RTS)和/或允许发送(CTS)信令。在另一示例中,RTS帧的交换可以由发送设备发送,并且响应可以是由接收设备发送的CTS帧。在另一示例中,如果AP具有要发送到STA的数据,则AP可以向STA发送RTS帧。如果STA准备好接收数据,则STA可以用CTS帧进行响应。该CTS帧可以包括时间值,该时间值可以警告其他STA阻止在发起所述RTS的AP可以发送其数据时接入介质/信道。一旦从所述STA接收到CTS帧,AP就可以将所述数据发送到STA。
设备可以经由网络分配矢量(NAV)字段来保留频谱。例如,在IEEE 802.11帧中,NAV字段可以用于在一段时间内保留信道。想要发送数据的STA可以将NAV设置为它可能期望使用该信道的时间。当STA设置NAV时,NAV可以被设置为用于关联的WLAN或其子集(例如,BSS)。其他STA可以将所述NAV倒数至零。当计数器达到零值时,NAV功能可以向另一STA指示该信道现在可用。
802.11ad可以包含修改,其指定用于60GHz频带中的非常高吞吐量(VHT)的MAC和PHY层。802.11ad可支持高达7Gb/秒的数据速率。802.11ad可以支持三种不同的调制模式(例如,具有单载波和扩频的控制PHY、单载波PHY和OFDM PHY)。802.11ad可以使用60GHz免授权频段和/或全球可用的频段。在60GHz,波长为5mm,且可以使用紧凑的天线或天线阵列。天线可以产生窄RF波束(例如,在发射机和接收机处)。所述窄RF波束可以有效地增加覆盖范围并且可以减少干扰。
图2是用于802.11标准(例如802.11ad)的示例信标间隔(BI)的示图。在横轴上示出了时间201。BI 200可以持续一段时间并且可以包括一个或多个(例如,三个)间隔,该间隔包括信标传输间隔(BTI)202、关联波束成形训练(A-BFT)203、通告传输间隔(ATI)204和/或数据传输间隔(DTI)205。所述BTI 202、A-BFT 203和/或ATI 204可以被包括在信标头部间隔(BHI)206中。
所述BTI 202可以包括多个信标帧。信标帧可以由PCP/AP在不同扇区上发送以覆盖一些或所有可能的方向。该帧可以用于PCP/AP的天线扇区的波束成形训练和/或网络通告。STA可以使用A-BFT 203来训练STA的天线扇区以与PCP/AP进行通信。在ATI 204中,PCP/AP可以与关联的和/或波束训练的STA交换管理信息。所述DTI 205可以包括一个或多个基于争用的接入时段(CBAP)和/或调度的服务时段(SP)(在其中,站可交换数据帧)。在CBAP中,多个STA可以根据802.11增强分布式协调功能(EDCF)对信道进行争用。在SP中,专用节点对可被指派以用于在无争用时段期间的通信。
图3是示例波束成形训练(例如,扇区级扫描(SLS))的示图。802.11ad的帧结构可以促进用于波束成形训练(例如,发现和跟踪)的机制。所述波束成形训练协议可以包括两个部分:SLS 304和波束细化协议(BRP)305。所述SLS 304可以用于发送波束成形训练。所述BRP 305可以使得能够接收波束成形训练和/或可以(例如,迭代地)细化发射和/或接收波束。对于任何波束形成训练,可以存在发起者302和响应者305。在发起者302和响应者303之间来回的传输在垂直轴上被示出,并且时间301在水平轴上被示出。在SLS 304的一个示例中,发起者302可以在一个或多个扇区扫描(SSW)帧307a中向响应者303发送发起者扇区扫描(ISS)306a。之后,响应者303可以在一个或多个SSW帧307b中发送响应者扇区扫描(RSS)306b。一旦发起者302从RSS 306b接收到SSW帧307b,它就可以发送SSW反馈308a。响应者303可以作为回应发送SSW应答(ACK)308b。可以重复该过程的一个或多个步骤。之后,可以执行BRP 305。
SLS 304训练可以使用信标帧或SSW帧。当利用信标帧时,AP/PCP可以在每个BI内重复所述信标帧(其利用多个波束/扇区),和/或多个STA可以(例如,同时地)执行BF训练。AP/PCP可能无法在一个BI内扫描所有扇区/波束(例如,由于信标帧的大小)。STA可以等待一个或多个BI来完成ISS训练。延迟也可能是一个考虑因素。当利用SSW帧(例如,用于点对点BF训练)时,可以使用图4中所示的SSW帧格式(例如,通过使用控制PHY)发送SSW帧。
图4是用于选择SSW帧的示例帧格式的示图。八元组410在水平轴上被标记。该格式可以包括:在八元组2的帧控制401、在八元组2的持续时间402、在八元组6的接收机地址(RA)403、在八元组6的404发射机地址(TA)、在八元组3的SSW 405、在八元组3的SSW反馈406、以及在八元组4的帧校验序列(FCS)407。
图5是SSW帧中的SSW字段的示例格式的示图。比特510在水平轴上按照每个元素下面的比特数而被标记,并且比特标识符(一个或多个)在水平轴上在被对应地标记。这些元素可以包括:方向501(其包括1比特)、包括9比特的倒计数(CDOWN)502、包括6比特的扇区ID503、包括2比特的方向多吉比特(DMG)天线ID 504、以及包括6比特的接收扇区扫描(RXSS)505长度。例如,扇区ID 503的长度为6比特,并且可以占用比特位置B10至B15。
图6A是SSW帧中的ISS字段的示例格式的示图。比特610在水平轴的底部上按照每个元素下面的比特数而被标记,并且比特标识符(一个或多个)在水平轴上被对应地标记。这些元素可以包括:包括9比特的ISS中的总扇区601、包括2比特的RX-DMG天线数量602、包括5比特的保留字段603、包括1比特的轮询需求604、以及包括7比特的另一个保留字段605。
图6B是SSW帧中的RXSS字段的示例格式的示图。比特630在水平轴上按照每个元素下面的比特数而被标记,并且比特标识符(一个或多个)在水平轴上被相应地标记。所述元素可以包括:包括6比特的扇区选择621、包括2比特的DMG天线选择622、包括8比特的信噪比(SNR)报告623、包括1比特的轮询需求624、以及包括7比特的保留字段625。
图7是可以用于物理层会聚过程(PLCP)的协议数据单元(PPDU)710的示例的示图。所述PDDU 710可以具有若干帧/字段,诸如训练长度(N)的分组类型训练长度(PTTL)字段701、训练长度(4N)的波束细化协议(BRP)帧702、训练长度(4N)的的自动增益控制(AGC)字段703和训练长度(5N)的BRP训练字段704。所述AGC 703可以被认为是部分训练字段。值(N)可以是训练长度(例如,可以在头部字段中给出的训练长度)。该训练长度可以指示AGC 703是4N个(即,N个训练长度的4倍)子字段,并且可以指示TRN-RX/TX字段是5N个子字段。在一个实施方式中,所述PTTL 701可以是PLCP头部711,所述BRP 702可以是媒体接入控制(MAC)主体712,所述AGC 703可以包括四个字段713a-d,并且所述BRP训练字段704可以是一系列训练(TRN)字段714。每个AGC字段703可以由单载波(SC)正交频分复用(OFDM)波形发送,并且可以由多个长度为64的Golay(格雷)互补序列Ga64 723a-c的组成,且每个具有对应的控制730序列Gb64 733a-e。而且,TRN-RX/TX 714可以由包括子字段7241a-k的多个SC-OFDM波形承载。例如,CE 724a子字段可以与前导码中的相同或相似,并且可以被重复五个训练长度(5N),其中724a将是第一个,724g将是第五个。可以使用旋转的π/2-BPSK调制来发送PPDU710的训练字段中的子字段(例如,所有子字段)。TRN-RX/TX 714的每个子字段(例如,R/T2724c)可以包括在Ga128和Gb128 734a-e之间交替的长度为128的控制Golay互补序列。
如本文所讨论的,BRP可以是一STA改进其天线配置(或天线权重向量)例如以用于传输和/或接收的过程。在这样的过程中,BRP训练分组可以用于训练接收机和/或发射机天线。存在两种类型的BRP分组:BRP-RX,诸如TRN-RX 714(例如,波束成形细化协议接收机)分组,以及BRP-TX,诸如TRN-TX 714(例如,波束成形细化协议发射机)分组。BRP分组可以由DMGPPDU承载,并且其后可以跟随有AGC字段。该AGC字段之后可以是TX或RX TRN字段,例如,如图7所示。
BRP 702MAC主体712帧可以是动作号ACK帧,并且可以具有以下字段中的一者或多者:类别、不受保护的DMG动作、对话令牌、BRP请求字段、DMG波束细化元素、信道测量反馈元素1到信道测量反馈元素k。
802.11ay物理层(PHY)和IEEE 802.11ay MAC层可以具有至少一种操作模式,其能够支持在MAC数据服务接入点处测量的每秒至少20吉比特的最大吞吐量,并且可以维持或提高功率效率(例如,每站的工作效率)。所述802.11ay PHY和MAC层可以具有45GHz以上的免授权频带,其可以具有向后兼容性和/或可以与在相同频带中操作的DMG STA(例如,传统)共存。802.11ay可以与传统标准在相同的频带中运行。可以存在向后兼容性和/或与同一频带中的传统共存。802.11ay可以支持以下中的一者或多者:多输入多输出(MIMO)传输(例如,单用户(SU)-MIMO和/或多用户(MU)-MIMO)和/或包括信道绑定和/或信道聚合的多信道传输。
在一个实施例中,所述TRN-RX/TX字段可以被附加到DMG信标帧,并且可以允许增强DMG(EDMG)STA使用信标帧执行RX/TX训练。这可以在增强的SLS过程中被实施。
图8是示例增强型SLS实施方式的示图。对于给定的信标间隔800,可以存在信标传输间隔(BTI)801、关联波束成形训练(A-BFT)802和/或数据传输间隔(DTI)803,恰如图2中所示。然而,增强的SLS可以在DTI 803中使用波束成形训练分配(BTA)803a。可以使用EDMG扩展调度元素来调度BTA 803a。
如本文所讨论的,在初始BTI 801期间,发起者AP 801可以具有多个扇区训练波束811a-811d,每个扇区训练波束具有唯一的方向,例如由图8中的每个扇区训练波束811a-811d下方的泪滴指示的方向。关于图10和图11更详细地讨论了860和861中所示的部分。
在分配中,发起者AP/PCP 810可以针对BTA 803a以与BTI 801中的相同的顺序(例如,在Rx模式中)重复扇区扫描。响应者EDMG STA X 820、Y 830、Z 840和/或STA DMG L 850可以在一扇区中进行接收,该扇区分别对应于在BTI 801发射扇区扫描(TXSS)期间的特定扇区(例如,最佳扇区),例如分别为821、831、841和/或851。可以从AP/PCP 810发送未示出的扇区ACK帧。通过该增强的SLS,可以将定向分配引入DTI,并且可以在所述分配期间指定和/或使用AP/PCP的接收扇区来监听。
可能已经在BTI 801TXSS期间训练了发射扇区/波束。响应者STA 820、830和840可以接收已经使用TRN-RX字段训练的扇区/波束。可以将TRN-RX字段附加到BTI 801TXSS期间的信标帧。以下一个或多个方面可以被保留在BTA 803a的响应子阶段中:可能在BTA 803a中发生冲突,和/或可以使用冲突解决;可以使用包含多个信道反馈的可能性的修改的响应方法(例如,利用多信道传输);或者,未与AP/PCP 810关联的STA可以在BTA 803a中进行发送。作为增强的SLS的结果,可以执行预关联传输。
在A-BFT 802,AP-PCP 810可以在一系列发射扇区812a、812b和812c中发送,其中散布有接收扇区812d。所述传输可以包括全向传输,例如由812a、812b和812c之上的半圆所指示的。STA 820、830、840和850可以分别用R-TXSS 822、832、842和852进行响应。
图9示出了关注图8右侧的DTI 803部分的示图。对于被类似编号的元素,图9类似于图8。然而,图9的不同之处在于示出了BTA 803a中的基线响应实施方式的示例。响应帧(例如,823a、833a和843a)可以在先前的BTI 801TXSS期间检测到的发起者810扇区(例如,作为最佳的一个扇区)中分别由响应STA 820、830和840发送。
所述PCP/AP 810可以以与BTI 801中(例如,在RX模式中)的扇区扫描相同的顺序重复扇区扫描。PCP/AP 810可以在空间时间时隙(STS)863中重复(例如,每个)扇区一次或多次。实线的STS旨在演示关联的STA的通信,并且虚线的STS旨在演示未关联STA的通信。在一个示例中,BTA 803a可以包括一个或多个子阶段813a-813d。该子阶段813a-813d可以包括响应子阶段823a、833a和843a。在该响应子阶段823a、833a和843a中,STA 820、833和843可以分别向AP/PCP 810发送响应。例如,在子阶段813b中,AP 810可以使其接收波束在4个STS上保持不变。STA 820选择子阶段813b的第二STS并发送823a,而STA 840选择子阶段813b的STS 4并发送843a。在子阶段813d中,AP 810使其接收波束在4个STS上保持不变。STA830选择813d的第3个STS并发送833a。
对于每个响应子阶段823a、833a和843a,可以存在应答(ACK)子阶段。例如,AP 810可以在每个STS上发送扇区ACK 873,并且STA 820、830和840在823b、833b和843b上接收扇区ACK。作为替代,可以在扇区扫描之后在每个扇区中从AP/PCP发送扇区ACK帧。如本文所讨论的,扇区和子阶段可以互换使用。
图10是DMG信标帧的示例信号配置的示图,其中示出了STS长度以及其他元素。在一个实施例中,信号1000可以以传统短训练字段(L-STF)1001开始,接着是传统信道估计字段(L-CEF)1002,接着是传统头部(L-头部)1003,接着是数据1004,接着是STS的数量1005,接着是AGC 1006,然后是TRN-RX 1007。上述顺序可以根据需要重新排列,并且仅是一种配置的示例。扇区的STS数量1005可以相等或不相等。扇区的STS数量1005可以是固定的或可协商的。STS配置(例如,扇区的STS配置是否不相等和/或可协商)可以在对应于扇区的EDMG信标帧中被发送。
图11示出了关注于图8左侧部分的元素860和861的示图。对于被类似编号的元素,图11类似于图8。然而,图11的不同之处在于示出了元素860和861的细节。发起者EDMG AP810可以经历具有811a、811b、811c和811d的DMG信标扇区的BTI。圆圈860突出显示了在响应者EDMG STA x 820处从发起者DMG信标811b接收到DMG信标扇区821的位置。扇区ID=1的DMG信标间隔811b可以具有虚线圆圈860中示出的示例信号配置1000。DMG信标的信号配置1000与关于图10的一般术语中讨论的信号配置相同。信号配置1000中的STS数量可以与ID相关联,其可基于DMG信标811b中所示的扇区ID=1而等于1。同样在861中所示的示例中,TRN-RX 1007可以进一步包括一个或多个包括Golay互补序列1007a-d的TRN-R,并且其前可有全向-RX 1008。
图12示出了示例情形的示图,其中在BTA 803a期间,在发起者处进行定向接收的响应中可能存在冲突。对于被类似编号,图12类似于图8。然而,图12的不同之处在于显示冲突场景。以白色示出的虚线框(例如1201a-1201h)表示发送到发起者EDMG AP 810的关联STA响应1201。以黑色示出的框(例如1202a-1202f)表示未关联的STA响应1202。在一个或多个实施例中,STS的数量可因扇区而异(例如,不相等)和/或可以协商。例如在STA响应间隔期间发生冲突时,可能需要改变或调整扇区的STS的数量。例如,来自响应者EDMG STA z840的1241响应可能与来自响应者EDMG STA x 820的响应1221冲突。图12示出了改变AP定向Rx间隔中的波束中的STS的数量的示例。
在一个或多个实施例中,给定增量(例如,对于扇区)的STS的数量可以相等和/或由规范设置。在一个或多个实施例中,(例如,每个)扇区的STS的数量可以相等和/或可协商(例如,在PCP/AP和STA之间协商)。PCP/AP可以例如基于冲突的存在或不存在(类似于图12的示例)来修改(例如,针对扇区的)STS的数量。PCP/AP可以修改STS的数量以确保使用最小数量的STS和/或避免不必要的开销。可以在信标的字段中(例如,STS数量字段)中用信号通知用于波束的STS的数量。
图13是基于图10中所示的示例的基础设计的信号配置的若干示例,其中STS的数量在大小上是变化的。对于被类似编号的元素,图13类似于图10。然而,图13的不同之处在于示出了可以在STS字段(一个或多个)内用信号通知x个波束的信息(例如,仅用于x个波束)。在一个或多个实施例中,可以在(例如,每个)信标中用信号通知当前波束索引和/或用于具有相应数量的STS的STS(例如,先前STS)的波束索引列表。例如,在信标0 1010中,可能存在用于会话ID 0 1015a的初始STS编号字段,其后是STS数量(NSTS)0 1015b。类似地,对于信标1,可以存在会话ID 1字段1025a,其后是对应的NSTS 1字段1025b,以及会话ID 0字段1025c,其后是NSTS 0字段1025d。可以看出,这遵循一种样式,其中对于信标x 1030(其中x是任意数字),可以存在ID x字段1035a,接着是NSTS x字段1035b,然后是ID x-1字段1035c,接着是NSTS x-1字段1035d,根据需要继续,直到达到零字段。通过使用该系统,执行接收操作的STA可能能够估计STS何时可以按照给定信标中的调度进行竞争。
表1和表2示出了信令参数的示例。例如,参见表1,具有时隙ID 2的时隙组可以在间隔开始之后的9个时隙之后开始和/或可以对4个时隙有效。可以用信号通知整个所述表格、所述表格的一部分和/或所述表格的一些或所有行(例如,在期望的波束之前)。信标帧的大小可以随波束变化。对于表1和/或表2,可以假设可以在N波束增强SLS中用信号通知波束x和/或针对x-1个STS的信息。例如,可以(例如,首先)用信号通知时隙(例如,当前时隙)的时隙组ID以简化解码。可以使解码器能够(例如,隐式地)估计AGC字段的开始。
时隙ID NSTS时隙
0 3
1 6
2 4
3 2
4 1
表1:具有时隙ID和STS数量的示例信令
图14是示出了信标是固定大小的示例的信号图。对于被类似编号的元素,图14类似于图10。然而,图14的不同之处在于示出了关于信令设计的一个实施例,其中信标帧的大小可以保持不变(例如,通过用信号通知一些或所有N个波束的信息)。可以用信号通知一些或所有N个波束的信息。通过用信号通知信息,可以使信标帧的大小保持不变,以允许STA估计(例如,隐式地估计)与信标帧相关联的扇区对应的STS的开始。在图14所示的示例中,STS字段可以以ID 0字段1405a开始,接着是NSTS 0字段1405c,并且这些ID字段和NSTS字段的集合可以分别如字段1405c和1405d所示重复,直到达到1405e和1405f表示的N-1次重复。STS字段最终可以在NSTSN字段和信标ID N字段中达到顶点,其中N是特定信标的编号。
表2给出了实施例的示例参数,其中信标帧的大小以及STS开始索引可以保持不变。可以用信号通知表2的行条目(例如,单行条目)。可以在(例如,每个)信标中用信号通知用于波束(例如,特定波束)的STS开始索引和/或可用于该波束的STS的数量。发信号通知波束(例如,特定波束)的STS开始索引和/或可用于该波束的STS的数量可以使STA能够估计该STA期望竞争的STS何时被调度。
表2:具有时隙ID、STS数量和STS开始索引的示例信令
图15示出了具有固定信标大小的示例配置的信令图,该信标大小指示在使用NSTS时隙开始索引进行接入之前要等待的时隙的数量。信标1500的字段可以类似于图10的字段,其使用相同的数字来表示相似的字段,但在STS字段中可能不同。具体而言,图15包括IDx 1505a字段、NSTS x字段和NSTS时隙开始索引字段1505c,其中x是特定信标。
在一个实施例中,当STA接入STS时,在传输之前可能没有时间进行信道评估(例如,空闲信道评估)。因此,可能需要用于STA的传输协议,其与802.11中的传统CSMA/CA不同。具体地,当STA接入STS时,它可以基于可用STS资源的数量的指示来使用修改的随机接入过程。
在一个实施方式中,所修改的随机接入过程可以以PCP/AP开始,其指示可用的STS资源的数量和/或可以正在发送的STA的数量的估计(CW)。(例如,每个)STA可以生成1和CW(或0和CW-1)之间的数字(例如,随机数)。如果所生成的数小于或等于可用的STS资源的数量(Nres),则STA可以接入所述资源(例如,特定资源)。如果所生成的数小于可用的STS资源的数量,则STA可以随机地接入所述资源(例如,任何所述资源)。如果该数大于可用的STS资源的数量,则STA可以从所生成的数中减去STA资源的数量。STA可以等待下一个PCP/AP定向RX和/或接入所述资源(例如,特定资源)或随机资源。所述STA可以向PCP/AP发送信号以指示该STA正在等待。
在另一实施方式中,(例如,每个)STA可以在Nres和CW之间生成随机数,然后遵循如上面的随机接入过程所描述的剩余步骤。
在另一实施方式中,STA可以执行修改的随机接入过程并且基于散列函数或一些其他函数来决定接入STS(一个或多个)。STA的扇区号M的STS编号N(由N(M)表示)可以是以下参数中的一者或多者的函数或散列函数:所述STA的关联标识符(AID)、MAC地址或其他ID(例如,取决于STA是否与PCP/AP相关联)、定时同步功能(TSF)定时器、扇区号M、可用空间时间时隙数量(Navailable)和/或扇区M的可用空间时间时隙数量(Navailable(M))。例如,N(M)=f(AID,MAC地址,TSF定时器,M,Navailable,Navailable(M))或者N(M)=hash(AID,MAC地址,TSF定时器,M,Navailable,Navailable(M))。
如果一个或多个信道可用于发送BTA,则STA可以在该可用信道中的一者或多者选择STS(一个或多个)。例如,所述STA可以决定在(例如,STA最优选的)信道中使用所述STS(一个或多个)。STA在其上提供反馈的信道号可以是以下参数中的一者或多者的函数:所述STA的AID、MAC地址或其他ID(例如,取决于该STA是否与PCP/AP相关联)、TSF定时器、以及扇区号M、可用的STS的数量、可用于扇区M的STS的数量Navailable(M)、可用信道的数量NumChannel_available、和/或可用于扇区M的信道的数量NumChannel_available(M)。
在一个实施例中,所发送的信号可以不是STA特定的。例如,可以对信号进行能量检测。该信号可以通知PCP/AP:STA没有接收到关于所述STA的传输的应答。
图16是示例冲突检测过程的示图。在一个实施例中,AP可以识别AP定向接收间隔内的冲突。例如,AP可以通过在解码(例如,每个)STS之前在该STS 1601上执行能量检测来直接在AP定向接收间隔内识别冲突。如果STS能量低于阈值1602,则STA可能未接入所述STS,并且AP可以使用所识别的空STS的数量来调整/减少波束的STS的数量1603。随着空STS的数量增加,可以减少为所述波束(例如,所述特定波束)调度的STS的数量。在一个示例中,如果空STS的数量大于NSTS_reduce_threshold(NSTS_减小_阈值),则可以减少NSTS。如果STS能量高于阈值1604和/或STS包含可解码信息1605,则AP可以识别所述STA和/或可以在扇区ACK间隔期间向所述STA发送ACK 1606。如果STS能量高于阈值和/或STS不包含可解码信息1607,AP可以识别冲突,并且AP可以在扇区ACK间隔期间发送冲突检测标志或指示符1608。该冲突检测标志或指示符可以使得STA(该STA曾发送信息到所述AP和/或未收到返回来的ACK)能够确认可能已经存在冲突。STA可以请求额外的信道接入和/或重试获得反馈。AP可以使用所识别的冲突来调整/增加波束的STS的数量1609。在一个示例中,如果具有冲突的STS的数量大于NSTS_increase_threshold(NSTS_增加_阈值),则可以增加所述NSTS。为冲突识别定义的能量阈值可以通过规范来固定或者由规范来调整,例如,以估计冲突中涉及的STA的数量。例如,AP可以指示STA以期望的接收信号强度指示符(RSSI)向一组功率受控STA发送帧。所接收的能量(或RSSI)可用于估计冲突中涉及的STA的数量。该过程可以根据需要而重复1610,和/或针对可能经历能量检测的每个选择的STS进行重复。
图17是示出用于冲突识别方案的冲突间隔的示例的示图。对于被类似编号的元素,图17类似于图8。然而,图17不同之处在于示出了扇区ACK间隔1701,其中STS 1711、1712和1713中的数个ACK由发起者EDMG AP 810发送。所述ACK间隔1701可以通知STA 820、830和840:所述AP 810是否接收到了传输。在一个示例中,未接收扇区ACK的(例如,每个)STA(诸如STA 830)可以向AP发送信号1731,这可发生在例如该STA的期望扇区正在接收时。
同样在图17中,可以存在冲突标识符间隔1702,其可以在扇区ACK间隔1701之后被发送,例如,以识别在AP 810定向接收期间是否存在冲突。例如,在冲突识别间隔(例如,更新的冲突识别间隔)中,AP/PCP 810可以以与BTI和/或RX模式中相同的顺序重复所述扇区扫描。例如,在STS 1703中,AP 810基于分别由STA 820和840发送的信号1721和1741的能量检测来检测冲突。
在一个或多个实施例中,STA特定的正交、伪随机或半正交序列可以被附加到STA响应帧(例如,短扇区扫描帧)的末尾。作为示例,在OFDM波形场景中,可以向(例如,每个)STA指派子载波(例如,特定子载波)以在其上进行发送。AP可以通过识别子载波/子载波组(例如,利用该子载波/子载波组上的能量)来识别发送的STA。如果发生冲突,则可以允许AP识别(例如,单独识别)STA。
图18是实施用于STA特定冲突识别的STA特定标识符的示例的示图。所发送的信号可以特定于STA和/或可基于正交或半正交码而使得能够进行STA的标识。对于被类似编号的元素,图18可以类似于图8。例如,图18的不同之处在于示出了发生冲突的AP定向RX1800。在给定的间隔/帧中,可以存在多个STS 1811、1812、1813、1814、1815和1816。在STS1812处,可以检测到冲突,以作为STA 820和STA 830发送的信号的结果,因为每个信号可以具有反馈部分1860和可分离的(separable)标识符1861,其可以使AP 810能够识别哪个信号属于每个STA。例如,STA 820信号1821可以包括SSW 1822和STA特定可分离标识符1823。类似地,STA 830信号1831可以包括SSW 1832和STA特定标识符1834。
图19、18和20是与冲突恢复有关的信号配置。在一个或多个实施例中,PCP/AP可以通过增加AP定向接收间隔中的STS的数量来为PCP/AP识别出具有冲突的扇区针对(例如,下一个)波束成形训练分配时段而调度附加时隙。在一个实例中,PCP可以创建波束冲突恢复间隔(例如,紧接在扇区ACK之后)。在另一实例中,AP可以在扇区ACK间隔内针对与AP定向接收间隔内的冲突识别有关的特定扇区(例如,仅冲突扇区)发送附加反馈调度信息。
图19是具有相等冲突恢复STS的扇区ACK帧的信号配置示例。在图19所示的示例中,可以存在扇区ACK头部1901,其后是针对每个STA的STA应答,诸如STA1ACK 1902,一直到1903到第N STA ACK 1904。当启用波束冲突时,可以存在用于指示冲突存在的字段1905。
在AP不能识别STA(例如,特定STA)的情况下,AP可以发信号通知是否存在冲突。AP可以发信号通知信息以启用波束恢复间隔(例如,紧接在扇区ACK之后)和/或使STA能够重试获得反馈。AP还可以发信号通知针对冲突扇区的额外STS机会。为了做到这一点,可能存在一字段,其用于标识AP已识别为具有冲突的扇区(例如,冲突扇区)。例如,用于波束的STS的数量1907可以相等,以降低信令复杂度,在这种情况下,先前波束的数量1906和STS的数量1907被包括在所述信号中。
图20示出了具有冲突波束特定恢复STS的扇区ACK帧的示例。在一个或多个实施例中,冲突扇区的STS的数量可以是冲突扇区特定的。图20可以类似于图19,元素1901-1904与元素2001-2004相同。图20与图19不同之处在于它表示了一场景,其中每个冲突扇区的STS数量可以是冲突扇区特定的。AP可以用信号通知存在冲突的信息2005以启用波束恢复间隔(例如,紧接在扇区ACK之后)和/或使STA能够重试获得反馈。AP可以发送STS开始索引2006和STS数量2007,其指示AP可以进入另一组STS(具有特定STS上的特定波束),使得STA知道何时再次尝试从冲突中恢复。
图21是具有冲突识别和STA特定波束冲突/恢复信令的示例扇区ACK帧的信号配置。图21可以类似于图19中,元素1901-1904元素2101-2104相同。然而,图21与图19的不同之处在于它表示了一场景,其中AP能够识别具有冲突的STA(例如,特定STA),并且AP可以发信号通知是否存在冲突和/或发信号信息通知STA:该STA已经发生了冲突。例如,在图21中。在2106中,STA 1被指示了冲突,并且这可根据需要而被重复2107,直到已经报告了冲突了的第n个STA 2108。AP可以轮询STA(例如,单独地每个STA)或者向STA(例如,每个)发送信息,指示该STA可以在恢复期间用于发送信息的STS。
在一个或多个实施例中,例如,在识别了波束内的冲突时,PCP/AP可以在定向分配区域期间调度附加反馈。所述定向分配区域可以包括DTI中的区域。在所述DTI中,PCP/AP可以指定该AP的接收扇区,PCP/AP可以在分配期间将该接收扇区用于监听。在该间隔中,使用了SP(例如,STA特定STS SP)的专用反馈和/或使用了CBAP(或例如,所调度的STS)的基于争用的反馈中的一者或多者可被使用。另外,PCP/AP可以通过增加AP定向接收间隔中的STS的数量来为其识别为具有冲突的扇区在下一个BTA时段期间调度附加时隙。
从STA的角度来看,这意味着STA可以考虑从AP/PCP接收的反馈,使得它可以在下一个BTA时段中在附加STS中进行响应,其中所述反馈可以基于任何本文所讨论的实施例或该实施例的组合而发生。例如,如果STA未接收到ACK,并且AP可由于冲突而提供额外的STS,则STA可以在下一个BTA中再次针对被PCP/AP识别为具有冲突的扇区进行尝试。
在一个或多个实施例中,未关联的STA可能需要一在增强的SLS情况期间由AP寻址的过程。未关联的STA可以在AP定向接收区域中对SLS进行响应。未关联的STA可能在SSW帧中没有AID以使AP能够识别该未关联的STA。为了识别该未关联的STA,STA可以使用一个或多个过程进行响应。
在一个示例中,STA可以使用固定的关联ID(AID)进行响应。该固定AID可以通知AP在接收扇区内发起关联。
在另一示例中,STA可以使用固定AID(其具有生成的随机数以标识所述STA(例如,特定STA))进行响应。具有生成的随机数的固定AID可以使AP和/或STA能够彼此识别。具有生成的随机数的固定AID可以通知AP:该AP可以开始针对所述STA(例如,所述特定STA)的关联实施。所述STA可以使用关于AID的随机选择(例如,从预先选择的AID集合进行选择)进行响应。
在另一个示例中,关于AID的随机选择可以使AP和/或STA能够彼此识别。关于AID的随机选择可以通知AP:该AP可以开始针对所述STA(例如,所述特定STA)的关联实施。
图22是示出了本文描述的关于增强型SLS过程(一个或多个)的一个或多个实施例的示图。与其他图中的类似编号的元素可以被认为是相同或相似的元素。在一个或多个实施例中,未关联的STA可以使用STS(例如,任何可用的STS)。作为替代,未关联STA可以使用一组预留的STS,例如那些阴影STS 1202。在一个示例中,未关联STA可以接入一组STS,例如具有实线(例如,具有较低优先级)的那些STS以最小化与关联STA的冲突。
如关于图19、20和21所讨论的,对于波束恢复间隔2201,AP/PCP 810可以在冲突之后发送反馈2211和2212,使得诸如821和841的STA可以分别重试传输2221和2243。
尽管在优选实施例中以特定组合描述了本发明的特征和元素,但是每个特征或元素可以在没有优选实施例的其他特征和元素的情况下单独使用,或者在具有或不具有本发明的其他特征和元素的各种组合中使用。尽管本文描述的解决方案考虑802.11特定协议,但应理解,本文描述的解决方案不限于此场景,并且也适用于其他无线系统。在所给的解决方案及所提供的示例中,附图内的空白区域可意味着对于此区域不存在限制且可采用任何解决方案。
上述过程可以在结合在计算机可读介质中的计算机程序、软件和/或固件中实施,以由计算机和/或处理器执行。计算机可读媒体的示例包括但不限于电子信号(通过有线和/或无线连接传输)和/或计算机可读存储媒体。计算机可读存储媒体的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储器设备、磁媒体(例如但不限于,内部硬盘和/或可移除磁盘)、磁光媒体和/或光学媒体(例如,CD-ROM盘和/或数字通用盘(DVD))。与软件相关联的处理器可用于实施用于WTRU、终端、基站、RNC和/或任何主计算机的射频收发信机。

Claims (18)

1.一种用于无线发射接收单元WTRU的波束成形训练的方法,该方法包括:
从接入点或个人基本服务集控制点AP/PCP接收信标帧,该信标帧指示用于波束训练分配的所述AP/PCP的扇区的可用空间时间时隙STS资源数量;
基于可能正在传送的站(STA)数量,生成一随机数;
在所生成的随机数小于或等于所述AP/PCP的所述扇区的所述可用STS资源数量的情况下,在来自所述AP/PCP的所述扇区的所述数量的可用STS资源内的一个或多个所述STS资源中发送信号;以及
接收确认由所述AP/PCP接收到所述信号的应答ACK。
2.根据权利要求1所述的方法,其中所述ACK在扇区扫描的扇区中从AP/PCP接收。
3.根据权利要求1所述的方法,其中所述WTRU是增强型定向多吉比特(EDMG)站。
4.根据权利要求1所述的方法,其中所述信号基于信标传输间隔(BTI)期间发生的训练而在一方向上被发送。
5.根据权利要求1所述的方法,其中相比于另一扇区,所述AP/PCP的所述扇区的所述可用STS资源数量是相等或不相等的数。
6.根据权利要求1所述的方法,其中发送关于所述可用STS资源数量的所述指示的所述AP/PCP与所述WTRU相关联。
7.根据权利要求1所述的方法,其中发送关于所述可用STS资源数量的所述指示的所述AP/PCP未与所述WTRU相关联。
8.根据权利要求1所述的方法,其中所述可用STS资源数量在所述信标帧的字段中被指示。
9.一种用于波束成形训练的无线发射接收单元WTRU装置,该装置包括:
处理器,
接收机,可操作地连接到所述处理器,所述接收机和处理器配置成从接入点或个人基本服务集控制点AP/PCP在波束成形训练分配期间接收信标帧,该信标帧指示所述AP/PCP的特定扇区的可用空间时间时隙STS资源数量;
所述处理器进一步被配置为基于可能正在传送的站(STA)数量,生成一随机数;
发射机,可操作地耦合到所述处理器,所述发射机和处理器配置成在所生成的随机数小于或等于所述AP/PCP的所述扇区的所述可用STS资源数量的情况下,在来自所述数量的可用STS资源的一个或多个所述STS资源中发送信号;以及
所述接收机和处理器还配置为接收确认由所述AP/PCP接收到所述信号的应答ACK。
10.根据权利要求9所述的WTRU装置,其中所述ACK在扇区扫描的扇区中从AP接收。
11.根据权利要求9所述的WTRU装置,其中所述WTRU是增强型定向多吉比特(EDMG)站。
12.根据权利要求9所述的WTRU装置,其中所述信号基于信标传输间隔(BTI)期间发生的训练而在一方向上被发送。
13.根据权利要求9所述的WTRU装置,其中相比于另一扇区,所述AP/PCP的所述扇区的所述可用STS资源数量是相等或不相等的数。
14.根据权利要求9所述的WTRU装置,其中发送关于所述可用STS资源数量的所述指示的所述AP/PCP与所述WTRU相关联。
15.根据权利要求9所述的WTRU装置,其中发送关于所述可用STS资源数量的所述指示的所述AP/PCP未与所述WTRU相关联。
16.根据权利要求9所述的WTRU装置,其中所述可用STS资源数量在所述信标帧的字段中被指示。
17.根据权利要求1所述的方法,进一步包括:在所生成的随机数大于所述AP/PCP的所述扇区的所述可用STS资源数量的情况下,发送第二信号,其中该第二信号包括关于所述WTRU正在等待的指示。
18.根据权利要求9所述的WTRU装置,其中所述处理器被进一步配置为在所生成的随机数大于所述AP/PCP的所述扇区的所述可用STS资源数量的情况下,发送第二信号,其中该第二信号包括关于所述WTRU正在等待的指示。
CN201880017161.8A 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解 Active CN110419173B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202311245227.8A CN117544200A (zh) 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解
CN202311243171.2A CN117544199A (zh) 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762469754P 2017-03-10 2017-03-10
US62/469,754 2017-03-10
PCT/US2018/021932 WO2018165648A1 (en) 2017-03-10 2018-03-12 Collision mitigation for directional response in millimeter wave wireless local area network systems

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202311245227.8A Division CN117544200A (zh) 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解
CN202311243171.2A Division CN117544199A (zh) 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解

Publications (2)

Publication Number Publication Date
CN110419173A CN110419173A (zh) 2019-11-05
CN110419173B true CN110419173B (zh) 2023-10-13

Family

ID=61827831

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202311243171.2A Pending CN117544199A (zh) 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解
CN202311245227.8A Pending CN117544200A (zh) 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解
CN201880017161.8A Active CN110419173B (zh) 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN202311243171.2A Pending CN117544199A (zh) 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解
CN202311245227.8A Pending CN117544200A (zh) 2017-03-10 2018-03-12 毫米波无线局域网系统中定向响应的冲突缓解

Country Status (7)

Country Link
US (2) US11363589B2 (zh)
EP (1) EP3593462A1 (zh)
JP (1) JP6861838B2 (zh)
KR (1) KR102488761B1 (zh)
CN (3) CN117544199A (zh)
IL (1) IL269224B2 (zh)
WO (1) WO2018165648A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558620B (en) 2017-01-10 2019-10-02 Canon Kk Communication methods, communication device station and access point
JP7221274B2 (ja) * 2017-07-28 2023-02-13 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいてmu-mimoビームフォーミングトレーニングを行う方法、mu-mimoビームフォーミングトレーニングを支援する方法及びそのための装置
US11251837B2 (en) * 2017-11-20 2022-02-15 Intel Corporation Null data packet feedback report for wireless communications
CN111464221B (zh) * 2020-05-22 2022-04-15 中南大学 毫米波蜂窝网下基于bft的无线接入方法及通信方法
US20210385865A1 (en) * 2020-09-03 2021-12-09 Intel Corporation Intelligent transport system co-channel coexistence frame structure with asymmetric gap durations
WO2023191797A1 (en) * 2022-03-31 2023-10-05 Intel Corporation Apparatus, system, and method of beamforming training over a millimeterwave (mmwave) wireless communication channel

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8879516B2 (en) * 2008-12-10 2014-11-04 Marvell World Trade Ltd Efficient formats of beacon, announcement, and beamforming training frames
US8422961B2 (en) 2009-02-23 2013-04-16 Nokia Corporation Beamforming training for functionally-limited apparatuses
US8743838B2 (en) 2009-09-15 2014-06-03 Intel Corporation Millimeter-wave communication station and method for scheduling association beamforming training with collision avoidance
US8625565B2 (en) * 2009-10-06 2014-01-07 Intel Corporation Millimeter-wave communication station and method for multiple-access beamforming in a millimeter-wave communication network
SG183368A1 (en) 2010-02-24 2012-09-27 Interdigital Patent Holdings Communication using directional antennas
US9967726B2 (en) * 2010-05-14 2018-05-08 Koninklijke Philips N.V. Method and device for deterministic directional discovery of wireless devices
TW201446037A (zh) 2013-02-07 2014-12-01 Interdigital Patent Holdings 具方向性傳輸遠程裝置發現
US9872206B2 (en) 2013-09-10 2018-01-16 Intel Corporation Methods and apparatus for dynamic bandwidth management in millimeter wave systems
WO2017048091A1 (ko) 2015-09-15 2017-03-23 엘지전자 주식회사 빔포밍 훈련을 위한 방법 및 장치
US9838107B2 (en) 2015-10-16 2017-12-05 Lg Electronics Inc. Multiple beamforming training
US10405348B2 (en) * 2016-10-25 2019-09-03 Qualcomm Incorporated Slotted transmission and directional reception of RTS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE 802.11ad: Directional 60 GHz Communication for Multi-Gigabit-per-Second Wi-Fi;Thomas Nitsche等;《IEEE》;第132-141页 *

Also Published As

Publication number Publication date
IL269224B2 (en) 2024-07-01
JP6861838B2 (ja) 2021-04-21
US11877264B2 (en) 2024-01-16
WO2018165648A1 (en) 2018-09-13
KR20190135474A (ko) 2019-12-06
IL269224A (en) 2019-11-28
KR102488761B1 (ko) 2023-01-13
US20220264548A1 (en) 2022-08-18
JP2020515138A (ja) 2020-05-21
US20210084635A1 (en) 2021-03-18
IL269224B1 (en) 2024-03-01
US11363589B2 (en) 2022-06-14
CN117544199A (zh) 2024-02-09
CN110419173A (zh) 2019-11-05
EP3593462A1 (en) 2020-01-15
CN117544200A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
JP7445625B2 (ja) ミリメートル波(mmw)wlanシステム内の多入力多出力(mimo)セットアップ
CN110800220B (zh) Mimo信道接入
CN110419173B (zh) 毫米波无线局域网系统中定向响应的冲突缓解
EP3427401B1 (en) Concurrent mimo beamforming training in mmw wlan systems
US9461792B2 (en) Signaling and procedure design for cellular cluster contending on license-exempt bands
US20190380139A1 (en) Method and apparatus for requesting uplink scheduling in wireless communication system
JP2019512939A (ja) mmW WLANシステムにおけるマルチレゾリューションビームトレーニング
US20230156707A1 (en) System and methods for dynamic scheduling in new radio with user equipment
US12082219B2 (en) System and methods for dynamic scheduling in new radio with user equipment
US20230156693A1 (en) System and methods for dynamic scheduling in new radio with base station

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant