CN110417032A - A Multi-objective Optimal Control Method for Doubly-fed Fans Participating in System Frequency Modulation - Google Patents

A Multi-objective Optimal Control Method for Doubly-fed Fans Participating in System Frequency Modulation Download PDF

Info

Publication number
CN110417032A
CN110417032A CN201910695508.0A CN201910695508A CN110417032A CN 110417032 A CN110417032 A CN 110417032A CN 201910695508 A CN201910695508 A CN 201910695508A CN 110417032 A CN110417032 A CN 110417032A
Authority
CN
China
Prior art keywords
parameter
wind turbine
speed
variable power
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910695508.0A
Other languages
Chinese (zh)
Inventor
林忠伟
陈振宇
曲晨志
刘瑞
王瑞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201910695508.0A priority Critical patent/CN110417032A/en
Publication of CN110417032A publication Critical patent/CN110417032A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本发明提供了一种双馈风机参与系统调频的多目标优化控制方法,包括:最大功率跟踪策略风电机组进行转速恢复;设计变功率曲线;基于帕累托算法进行变功率曲线参数寻优。本发明的技术方案实现转速恢复过程的多目标优化,可以减少频率的二次跌落和转速恢复时间,提高风力发电系统运行的稳定性,延长运行寿命。

The invention provides a multi-objective optimization control method for double-fed wind turbines participating in system frequency modulation, including: maximum power tracking strategy for wind turbines to restore speed; design variable power curves; and optimize variable power curve parameters based on Pareto algorithm. The technical scheme of the invention realizes the multi-objective optimization of the speed recovery process, can reduce the secondary drop of the frequency and the speed recovery time, improve the stability of the operation of the wind power generation system, and prolong the operation life.

Description

一种双馈风机参与系统调频的多目标优化控制方法A Multi-objective Optimal Control Method for Doubly-fed Fans Participating in System Frequency Modulation

技术领域technical field

本发明属于风力发电系统技术领域,具体涉及一种双馈风机参与系统调频的多目标优化控制方法。The invention belongs to the technical field of wind power generation systems, and in particular relates to a multi-objective optimal control method for double-fed wind turbines participating in system frequency modulation.

背景技术Background technique

风能具有清洁、来源广泛、可再生等多种优点,风力发电已成为当前最具潜力的新能源发电方式之一。随着风电的大规模并网,电网频率的稳定正面临着日益严峻的挑战。一方面是因为双馈异步发电机的应用使得功率与频率,完全解耦,导致风电机组无法及时跟踪频率波动,系统的等效惯量为0;另一方面,风电机组一般采用最大功率跟踪控制策略,无法提供额外的有功功率来应对电网频率的波动。因此,风力发电机不能像传统的火力发电厂那样有效地响应电网系统频率的波动。国内外专家在风电调频方面取得了许多创新性突破。风电机组参与系统调频技术包括留备用和不留备用两类。Wind energy has many advantages such as cleanness, wide sources, and renewable. Wind power generation has become one of the most potential new energy generation methods at present. With the large-scale grid connection of wind power, the stability of grid frequency is facing increasingly severe challenges. On the one hand, due to the application of doubly-fed asynchronous generators, power and frequency are completely decoupled, resulting in wind turbines being unable to track frequency fluctuations in time, and the equivalent inertia of the system is 0; on the other hand, wind turbines generally adopt maximum power tracking control strategy , unable to provide additional active power to cope with fluctuations in grid frequency. Therefore, wind turbines cannot respond to fluctuations in grid system frequency as efficiently as conventional thermal power plants. Experts at home and abroad have made many innovative breakthroughs in wind power frequency regulation. There are two types of frequency modulation technologies for wind turbines participating in the system: reserved and non-reserved.

留备用方式参与电力系统调频就是改变桨距角或转子转速,减小风电机组的稳态输出功率值,使其处于卸载的状态,从而获取一部分备用容量。当系统频率降低时,增加风电场输出功率,用备用的容量参与系统的频率调节。留备用方式虽然具有与火电机组相当的调频性能,但是由于留备用方式使风电机组长期处于减载的状态,大大降低了风力发电的经济效益。Participating in frequency regulation of the power system in a reserve way is to change the pitch angle or rotor speed, reduce the steady-state output power value of the wind turbine, and make it in an unloaded state, thereby obtaining a part of reserve capacity. When the system frequency decreases, increase the output power of the wind farm and use the spare capacity to participate in the frequency regulation of the system. Although the reserve mode has the same frequency regulation performance as the thermal power unit, the wind turbine is in a state of load reduction for a long time due to the reserve mode, which greatly reduces the economic benefits of wind power generation.

不留备用方式则是通过虚拟转子惯性控制在扰动发生后改变风电机组的输出功率,促使风电机组释放存储在转子中的动能,模拟同步机的惯量特性,减少风电并网对系统带来的不利影响,协助改善系统频率响应。转子惯性控制合理利用了存储在风电机组转子中的动能,当系统频率降低时,基于双馈感应发电机电磁转矩控制释放转子动能进行短时功率支撑。而在功率支撑的过程中,随着转子的动能逐渐释放,当发电机转速下降到转速下限时,风电机组退出一次调频控制,恢复MPPT控制,重新吸收风中的能量进行转速恢复,此时,电磁转矩的大幅下降导致有功功率输出的突然下降,从而引起系统频率的第二次下降。The method of not leaving a backup is to change the output power of the wind turbine after the disturbance occurs through the virtual rotor inertia control, prompting the wind turbine to release the kinetic energy stored in the rotor, simulating the inertia characteristics of the synchronous machine, and reducing the disadvantages brought by wind power grid connection to the system effect to help improve system frequency response. The rotor inertia control makes reasonable use of the kinetic energy stored in the wind turbine rotor. When the system frequency decreases, the rotor kinetic energy is released based on the electromagnetic torque control of the doubly-fed induction generator for short-term power support. In the process of power support, as the kinetic energy of the rotor is gradually released, when the generator speed drops to the lower limit of the speed, the wind turbine exits the frequency modulation control, restores the MPPT control, and re-absorbs the energy in the wind to restore the speed. At this time, A large drop in electromagnetic torque leads to a sudden drop in active power output, which causes a second drop in system frequency.

例如中国专利申请号为CN201210037763.4公开了一种双馈风电机组一次调频联合控制方法,利用连续Hopfield神经网络对PD控制器参数进行在线优化设计,建立了自适应能力较强的神经控制器,能实现转子动能和备用功率的联合控制,以频率变化最小作为目标函数,使网络权值对应于系统状态变量,并将神经元的输出作为PD控制器的参数,通过目标函数表达式与能量函数表达式的结合得到参数的变化规律,进而根据规律寻找稳态的输出。该发明利用PSCAD/EMTDC仿真平台对神经联合控制策略进行了详细地仿真研究,并与传统频率控制策略进行了比较,结果表明Hopfield神经联合控制具有更好的一次调频控制效果。但是该发明并没有重点针对退出一次调频控制时系统频率的二次跌落和进行转速恢复的恢复时间进行分析。For example, the Chinese patent application number is CN201210037763.4, which discloses a combined control method for primary frequency modulation of double-fed wind turbines. The continuous Hopfield neural network is used to optimize the parameters of the PD controller online, and a neural controller with strong self-adaptive ability is established. It can realize the joint control of rotor kinetic energy and reserve power, take the minimum frequency change as the objective function, make the network weight correspond to the system state variable, and use the output of the neuron as the parameter of the PD controller, through the expression of the objective function and the energy function The combination of expressions obtains the change law of the parameters, and then finds the steady-state output according to the law. The invention uses the PSCAD/EMTDC simulation platform to carry out detailed simulation research on the neural joint control strategy, and compares it with the traditional frequency control strategy. The result shows that the Hopfield neural joint control has a better primary frequency modulation control effect. However, this invention does not focus on the analysis of the secondary drop of the system frequency and the recovery time for speed recovery when the primary frequency modulation control is withdrawn.

又如中国专利申请号为201810062931.2公开了一种双馈风机辅助同步发电机参与电网二次调频协调控制方法,该发明中的双馈风机具备可控的二次调频能力,在保证经济型与稳定性的前提下,双馈风机能够主动响应AGC控制信号并改变自身出力,且双馈风机辅助同步发电机参与电网二次调频实现了新能源的优先调度,节省了电网二次调频的成本。但是该发明并没有提出对风力发电系统参与系统调频明确需要进行协调优化的主要目标参数进行详细分析,也没有减少频率的二次跌落和转速恢复时间,以及提高风力发电系统运行的稳定性和延长运行寿命的问题。Another example is that the Chinese patent application number is 201810062931.2, which discloses a coordinated control method for double-fed fan auxiliary synchronous generators participating in the secondary frequency regulation of the power grid. Under the premise of stability, the double-fed wind turbine can actively respond to the AGC control signal and change its own output, and the double-fed wind turbine assists the synchronous generator to participate in the secondary frequency regulation of the power grid to realize the priority dispatch of new energy and save the cost of the secondary frequency regulation of the power grid. However, this invention does not propose a detailed analysis of the main target parameters that need to be coordinated and optimized for the wind power system to participate in system frequency regulation, nor does it reduce the secondary drop of frequency and speed recovery time, and improve the stability and extension of wind power system operation. The problem of operating life.

发明内容Contents of the invention

针对现有技术中存在没有重点针对退出一次调频控制时系统频率的二次跌落和进行转速恢复的恢复时间进行分析的不足问题,本发明的目的在于提供一种双馈风机参与系统调频的多目标优化控制方法。In view of the lack of focus on the analysis of the secondary drop of the system frequency and the recovery time for speed recovery when exiting the primary frequency regulation control in the prior art, the purpose of the present invention is to provide a multi-objective system for double-fed fans to participate in system frequency regulation Optimal control method.

本发明解决问题的技术方案是:The technical scheme that the present invention solves the problem is:

所述多目标优化控制方法,包括:The multi-objective optimal control method includes:

步骤1.最大功率跟踪策略风电机组进行转速恢复;Step 1. Maximum power tracking strategy for wind turbines to restore speed;

步骤2.设计变功率曲线;Step 2. Design variable power curve;

步骤3.基于帕累托算法进行变功率曲线参数寻优。Step 3. Optimizing the variable power curve parameters based on the Pareto algorithm.

进一步的,步骤1最大功率跟踪策略风电机组进行转速恢复包括:Further, step 1 maximum power tracking strategy wind turbine speed recovery includes:

步骤11.风电机组在稳定状态下运行时,风电机组运行在最大功率点跟踪状态的A点处;当电网频率降低时,风电机组进行调频,风电机组输出的电磁功率从最大功率点跟踪状态的 A点处增加至最大功率跟踪点状态的B点处;再从最大功率跟踪点状态的B点处沿直线向电磁功率C点处运行进行功率支撑,同时风电机组转速减小至电磁功率C点处对应的转速下限;Step 11. When the wind turbine is running in a steady state, the wind turbine runs at point A of the maximum power point tracking state; when the grid frequency decreases, the wind turbine performs frequency modulation, and the electromagnetic power output by the wind turbine is from the point A of the maximum power point tracking state. Increase from point A to point B in the state of maximum power tracking point; then run along a straight line from point B in the state of maximum power tracking point to point C of electromagnetic power for power support, and at the same time reduce the speed of the wind turbine to point C of electromagnetic power The corresponding speed lower limit;

步骤12.风电机组从最大功率跟踪点状态的B点处沿直线向电功率功率C点处运行进行功率支撑过程中,当风电机组转速达到转速下限时,风电机组退出调频。Step 12. During the process of running the wind turbine from point B of the maximum power tracking point state to the electric power point C along a straight line for power support, when the speed of the wind turbine reaches the lower limit of the speed, the wind turbine quits frequency regulation.

进一步的,步骤2设计变功率曲线包括:Further, step 2 design variable power curve includes:

步骤21.当风电机组转速ωr下降至转速下限ωrmin时,风电机组退出调频,设置变功率曲线系数K,按照下式(1)计算:Step 21. When the speed ω r of the wind turbine drops to the lower limit of the speed ω rmin , the wind turbine quits frequency regulation, and the coefficient K of the variable power curve is set, which is calculated according to the following formula (1):

式中,ωr为风电机组转速,ωref为转速参考值,ωrmin为风电机组参与调频时转速;In the formula, ω r is the speed of the wind turbine, ω ref is the reference value of the speed, and ω rmin is the speed when the wind turbine participates in frequency regulation;

步骤22.设计变功率函数,按照下式(2)计算:Step 22. Design variable power function, calculate according to the following formula (2):

式中:f(t)为变功率函数,t为时间,第一参数a、第二参数b、第三参数t1、第四参数t2In the formula: f(t) is variable power function, t is time, first parameter a, second parameter b, third parameter t 1 , fourth parameter t 2 ;

步骤23.根据变功率曲线系数的公式(1)和变功率函数的公式(2)设计变功率曲线,按照下式(3)计算:Step 23. Design the variable power curve according to the formula (1) of the variable power curve coefficient and the formula (2) of the variable power function, calculate according to the following formula (3):

Pac=K×f(t)……(3)P ac =K×f(t)...(3)

式中:Pac为变功率曲线。Where: P ac is the variable power curve.

进一步的,步骤3基于帕累托算法进行变功率曲线参数寻优包括:Further, step 3 is based on the Pareto algorithm to optimize the variable power curve parameters including:

步骤31.根据变功率曲线的设计,通过对变功率函数f(t)进行仿真测试,设定第一参数a、第二参数b、第三参数t1、第四参数t2的范围值,如下式(4)~(7)所示:Step 31. According to the design of the variable power curve, the range values of the first parameter a, the second parameter b, the third parameter t 1 and the fourth parameter t 2 are set by performing a simulation test on the variable power function f(t), As shown in the following equations (4) to (7):

-0.07≤a≤-0.06……(4)-0.07≤a≤-0.06...(4)

0.1≤b≤0.3……(5)0.1≤b≤0.3...(5)

t1=173……(6)t 1 =173...(6)

220≤t2≤230......(7)220≤t 2 ≤230...(7)

步骤32.通过选取第三参数t1为173以及在第一参数、第二参数和第四参数取值范围内选取第一参数、第二参数和第四参数计算不同的变功率曲线;Step 32. By selecting the third parameter t1 as 173 and selecting the first parameter, the second parameter and the fourth parameter in the value range of the first parameter, the second parameter and the fourth parameter to calculate different variable power curves;

步骤33.将风电机组退出调频时电网频率的二次跌落深度和转速恢复时间作为寻优目标,根据不同的变功率曲线确定电网频率的二次跌落深度和转速恢复时间,以电网频率的二次跌落深度为横坐标、转速恢复时间为纵坐标绘制曲线图,利用帕累托算法进行结果分析,选出帕累托最优的参数。Step 33. Taking the grid frequency’s secondary drop depth and speed recovery time when the wind turbine quits frequency regulation as the optimization target, determine the grid frequency’s secondary drop depth and speed recovery time according to different variable power curves, and use the grid frequency’s secondary Draw a graph with the drop depth as the abscissa and the speed recovery time as the ordinate, and use the Pareto algorithm to analyze the results and select the Pareto optimal parameters.

相对于现有技术,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:

1.本发明的技术方案通过最大功率跟踪策略风电机组进行转速恢复;设计变功率曲线;基于帕累托算法进行变功率曲线参数寻优,实现了维持电网频率的稳定性,确保电力系统的安全的效果。1. The technical solution of the present invention restores the speed of the wind turbine through the maximum power tracking strategy; designs the variable power curve; optimizes the parameters of the variable power curve based on the Pareto algorithm, thereby maintaining the stability of the grid frequency and ensuring the safety of the power system Effect.

2.本发明的技术方案重点针对退出一次调频控制时系统频率的二次跌落和进行转速恢复的恢复时间进行分析,这对于提升风电并网能力具有重要意义。2. The technical solution of the present invention focuses on the analysis of the secondary drop of the system frequency and the recovery time of the speed recovery when the primary frequency regulation control is withdrawn, which is of great significance for improving the wind power grid connection capability.

3.本发明的技术方案主要对风力发电系统参与系统调频明确需要进行协调优化的主要目标参数。对于多个目标优化存在的情况进行详细的分析。基于帕累托优化理论处理多目标优化的帕累托优化边界问题,实现转速恢复过程的多目标优化。并且可以减少频率的二次跌落和转速恢复时间,提高风力发电系统运行的稳定性,延长运行寿命。3. The technical solution of the present invention mainly clarifies the main target parameters that need to be coordinated and optimized for the wind power generation system participating in system frequency regulation. A detailed analysis is performed for situations where multiple objective optimizations exist. Based on the Pareto optimization theory, the Pareto optimization boundary problem of multi-objective optimization is processed, and the multi-objective optimization of the speed recovery process is realized. And it can reduce the secondary drop of the frequency and the speed recovery time, improve the stability of the wind power generation system operation, and prolong the operation life.

附图说明Description of drawings

图1是本发明的所述多目标优化控制方法流程示意图;Fig. 1 is a schematic flow chart of the multi-objective optimal control method of the present invention;

图2是本发明的风电机组运行在MPPT区间时转速恢复方法的原理示意图;Fig. 2 is a schematic diagram of the principle of the speed recovery method of the wind turbine operating in the MPPT interval of the present invention;

图3是本发明的优化的变功率曲线进行转速恢复的结构图;Fig. 3 is the structural diagram that the optimized variable power curve of the present invention carries out speed recovery;

图4是本发明的采用MPPT曲线恢复进行调频与风电不参与调频的频率对比图;Fig. 4 is the frequency comparison chart of adopting MPPT curve restoration of the present invention to carry out frequency modulation and wind power not participating in frequency modulation;

图5是本发明的b在确定的取值范围内的频率变化对比图;Fig. 5 is the comparison diagram of the frequency change of b in the determined value range of the present invention;

图6是本发明的a在确定的取值范围内的频率变化对比图;图7是本发明t2在确定的取值范围内的频率变化对比图。Fig. 6 is a comparison chart of frequency changes of a in a certain value range of the present invention; Fig. 7 is a comparison chart of frequency changes of t 2 in a certain value range of the present invention.

具体实施方式Detailed ways

下面结合说明书附图对本发明所述多目标优化控制方法的具体实施方式作进一步详细说明。The specific implementation of the multi-objective optimization control method of the present invention will be further described in detail below in conjunction with the accompanying drawings.

如图1所示,所述多目标优化控制方法包括:As shown in Figure 1, the multi-objective optimal control method includes:

步骤1.最大功率跟踪策略风电机组进行转速恢复:Step 1. Maximum power tracking strategy wind turbine for speed recovery:

步骤11.图2示出的曲线包括最大功率点跟踪状态(MPPT)曲线、虚线以及CA曲线,点E、G、A和B均位于最大功率点跟踪状态(MPPT)曲线上,虚线为某一个风速下对应的机械功率-转速曲线,CA曲线为变功率曲线,ΔPe1、ΔPe2和ΔPe3分别为电磁功率跌落值,为了改善电网频率的二次跌落问题,通过设计变功率曲线的方法使得双馈风机的风电机组退出调频时电磁功率沿着CA曲线缓慢跌落,直至与MPPT跟踪曲线相交于A点。采用变功率曲线的转速综合恢复方式时风电机组输出功率沿A-B-C-A轨迹运行,风电机组退出调频时电磁功率跌落幅度为ΔPe1,大幅改善电网频率二次跌落问题。风电机组在稳定状态下运行时,风电机组运行在最大功率点跟踪状态的A点处;当电网频率降低时,风电机组进行调频,风电机组输出的电磁功率从最大功率点跟踪状态的A点处增加至最大功率跟踪点状态的B点处;然后从最大功率跟踪点状态的B点处沿直线向电磁功率C点处运行进行功率支撑,同时风电机组转速减小至电磁功率C点处对应的转速下限;Step 11. The curve shown in Fig. 2 comprises maximum power point tracking state (MPPT) curve, dotted line and CA curve, point E, G, A and B are all located on the maximum power point tracking state (MPPT) curve, and dotted line is a certain The corresponding mechanical power-speed curve under wind speed, the CA curve is the variable power curve, and ΔP e1 , ΔP e2 and ΔP e3 are the electromagnetic power drop values respectively. In order to improve the secondary drop problem of the grid frequency, the method of designing the variable power curve makes When the wind turbine of the doubly-fed fan quits frequency regulation, the electromagnetic power drops slowly along the CA curve until it intersects with the MPPT tracking curve at point A. When the speed comprehensive recovery method of the variable power curve is adopted, the output power of the wind turbine runs along the ABCA trajectory, and the electromagnetic power drop range is ΔP e1 when the wind turbine quits frequency modulation, which greatly improves the problem of the secondary drop of the grid frequency. When the wind turbine is running in a stable state, the wind turbine runs at point A of the maximum power point tracking state; when the grid frequency decreases, the wind turbine performs frequency modulation, and the electromagnetic power output by the wind turbine is from point A of the maximum power point tracking state Increase to point B of the maximum power tracking point state; then run along a straight line from point B of the maximum power tracking point state to point C of electromagnetic power for power support, and at the same time the speed of the wind turbine decreases to the corresponding Lower speed limit;

步骤12.风电机组从最大功率跟踪点状态的B点处沿直线向电磁功率C点处运行进行功率支撑过程中,当风电机组转速达到转速下限时,风电机组退出调频。由图2可知,采用传统的最大功率跟踪策略进行转速恢复,风电机组的电磁功率将从C点跌至E点,随后风电机组输出功率沿路线A-B-C-E-A进行MPPT恢复,风电机组退出调频时刻,电磁功率跌落值为ΔPe1+ΔPe2,电网频率发生剧烈的二次跌落。Step 12. During the process of the wind turbine running from point B of the maximum power tracking point state to point C of electromagnetic power along a straight line for power support, when the speed of the wind turbine reaches the lower limit of the speed, the wind turbine quits frequency regulation. It can be seen from Fig. 2 that if the traditional maximum power tracking strategy is used for speed recovery, the electromagnetic power of the wind turbine will drop from point C to point E, and then the output power of the wind turbine will be recovered by MPPT along the route ABCEA. When the wind turbine quits frequency regulation, the electromagnetic power The drop value is ΔP e1 +ΔP e2 , and the frequency of the power grid undergoes a severe secondary drop.

步骤2.设计变功率曲线;Step 2. Design variable power curve;

步骤21.设计策略结构图如图3所示,当风电机组转速ωr下降至转速下限ωrmin时,风电机组退出调频,设置变功率曲线系数K,按照下式(1)计算:Step 21. The structure diagram of the design strategy is shown in Figure 3. When the speed ω r of the wind turbine drops to the lower limit of the speed ω rmin , the wind turbine quits frequency regulation, and the coefficient K of the variable power curve is set, which is calculated according to the following formula (1):

式中,ωr为风电机组转速,ωref为转速参考值,ωrmin为风电机组参与调频时转速。In the formula, ω r is the speed of the wind turbine, ω ref is the reference value of the speed, and ω rmin is the speed when the wind turbine participates in frequency regulation.

设置变功率曲线系数K,使风电机组在退出调频的开始阶段,风电机组的输出的电磁功率不会降落太多,风电机组转速ωr逐渐恢复到ωref,变功率曲线系数从1逐渐减小到0,变功率曲线Pac从负数逐渐变到0。Set the variable power curve coefficient K so that the wind turbine output electromagnetic power will not drop too much when the wind turbine exits the frequency regulation at the beginning stage, the wind turbine speed ω r gradually returns to ω ref , and the variable power curve coefficient gradually decreases from 1 to 0, the variable power curve Pac gradually changes from negative to 0.

步骤22.设计变功率函数,按照下式(2)计算:Step 22. Design variable power function, calculate according to the following formula (2):

式中,f(t)为变功率函数,t为时间,第一参数a、第二参数b、第三参数t1、第四参数t2In the formula, f(t) is a variable power function, t is time, the first parameter a, the second parameter b, the third parameter t 1 , and the fourth parameter t 2 .

步骤23.根据变功率曲线系数的公式(1)和变功率函数的公式(2)设计变功率曲线,按照下式(3)计算:Step 23. Design the variable power curve according to the formula (1) of the variable power curve coefficient and the formula (2) of the variable power function, calculate according to the following formula (3):

Pac=K×f(t)……(3)P ac =K×f(t)...(3)

式中,Pac为变功率曲线。In the formula, P ac is the variable power curve.

步骤3.基于帕累托算法进行变功率曲线参数寻优。Step 3. Optimizing the variable power curve parameters based on the Pareto algorithm.

步骤31.根据变功率曲线的设计,通过对变功率函数f(t)进行仿真测试,设定第一参数a、第二参数b、第三参数t1、第四参数t2的范围值,如(4)~(7)所示:Step 31. According to the design of the variable power curve, the range values of the first parameter a, the second parameter b, the third parameter t 1 and the fourth parameter t 2 are set by performing a simulation test on the variable power function f(t), As shown in (4)~(7):

-0.07≤a≤-0.06……(4)-0.07≤a≤-0.06...(4)

0.1≤b≤0.3……(5)0.1≤b≤0.3...(5)

t1=173……(6)t 1 =173...(6)

220≤t2≤230......(7)220≤t 2 ≤230...(7)

步骤32.通过选取第三参数t1为173以及在第一参数、第二参数和第四参数的取值范围内选取第一参数、第二参数和第四参数计算不同的变功率曲线;Step 32. By selecting the third parameter t1 as 173 and selecting the first parameter, the second parameter and the fourth parameter in the value range of the first parameter, the second parameter and the fourth parameter to calculate different variable power curves;

步骤33.将风电机组退出调频时电网频率的二次跌落深度和转速恢复时间作为寻优目标,根据不同的变功率曲线确定电网频率的二次跌落深度和转速恢复时间,以电网频率的二次跌落深度为横坐标、转速恢复时间为纵坐标绘制曲线图,利用帕累托算法进行结果分析,选出帕累托最优的参数。Step 33. Taking the grid frequency’s secondary drop depth and speed recovery time when the wind turbine quits frequency regulation as the optimization target, determine the grid frequency’s secondary drop depth and speed recovery time according to different variable power curves, and use the grid frequency’s secondary Draw a graph with the drop depth as the abscissa and the speed recovery time as the ordinate, and use the Pareto algorithm to analyze the results and select the Pareto optimal parameters.

具体实施例:Specific examples:

构建由常规同步机组(250MVA/13.8kV)和某型号风电虚拟同步机(2MW/690V×31)构成的仿真系统进行仿真分析,结合上述所述参数寻优方法包括以下步骤:Constructing a simulation system consisting of a conventional synchronous unit (250MVA/13.8kV) and a certain type of wind power virtual synchronous machine (2MW/690V×31) for simulation analysis, combining the above-mentioned parameter optimization method includes the following steps:

步骤1、最大功率跟踪策略进行转速恢复Step 1. Maximum power tracking strategy for speed recovery

在构建的包含风电虚拟同步机和常规同步机组在内的系统仿真模型中,对基于转子惯性控制的风电虚拟同步机频率二次跌落问题进行仿真,如图4所示,并对经典的MPPT恢复方式进行系统调频与风电不参与系统调频的频率变化进行研究和验证。In the system simulation model constructed including the wind power virtual synchronous machine and the conventional synchronous unit, the frequency drop problem of the wind power virtual synchronous machine based on the rotor inertia control is simulated, as shown in Figure 4, and the classic MPPT restoration Research and verify the frequency change of system frequency regulation and wind power not participating in system frequency regulation.

步骤2、变功率曲线的优化设计Step 2. Optimal design of variable power curve

针对变功率函数f(t)进行仿真测试,通过改变函数参数值调整变功率曲线,在退出调频时刻加入变功率曲线策略,t1=173,研究各参数值的变化对转速恢复的影响。The simulation test is carried out for the variable power function f(t), the variable power curve is adjusted by changing the function parameter value, and the variable power curve strategy is added at the time of exiting the frequency modulation, t 1 =173, and the influence of the change of each parameter value on the speed recovery is studied.

步骤2.1、f(t)中b的变化对转速恢复的影响,保持a、t1和t2不变,对f(t)中参数b取不同的值,进行仿真分析,频率变化的对比分别如图5所示;Step 2.1, the impact of the change of b in f(t) on the speed recovery, keep a, t 1 and t 2 unchanged, take different values for the parameter b in f(t), conduct simulation analysis, and compare the frequency changes respectively As shown in Figure 5;

步骤2.2、f(t)中a的变化对转速恢复的影响,保持b、t1和t2不变,对f(t)中参数a取不同的值,进行仿真分析,频率变化的对比分别如图6所示;Step 2.2, the influence of the change of a in f(t) on the speed recovery, keep b, t 1 and t 2 unchanged, take different values for the parameter a in f(t), conduct simulation analysis, and compare the frequency changes respectively As shown in Figure 6;

步骤2.3、f(t)中t2的变化对转速恢复的影响,保持a、b和t1不变,对f(t)中参数t2取不同的值,进行仿真分析,频率变化的对比分别如图7所示;Step 2.3, the impact of the change of t 2 in f(t) on the speed recovery, keep a, b and t 1 unchanged, take different values for the parameter t 2 in f(t), conduct simulation analysis, and compare the frequency changes Respectively as shown in Figure 7;

步骤3、基于帕累托算法寻优Step 3. Optimizing based on Pareto algorithm

步骤3.1,本发明的控制对象是变功率曲线中的参数a、b和t2,参数范围设定如不等式(4)、(5)和(7)设定,在上述参数范围内取一定数量的参数,构成不同的变功率曲线,不同的变功率曲线参数以1、2、3….等编号来标注。对此分别进行仿真测试。Step 3.1, the control object of the present invention is the parameters a, b and t2 in the variable power curve, the parameter range is set as the inequality (4), (5) and (7) setting, a certain number is taken within the above parameter range The parameters of different variable power curves are formed, and the parameters of different variable power curves are marked with numbers such as 1, 2, 3... and so on. This is simulated separately.

步骤3.2,本发明将风电调频在退出调频时频率的二次跌落深度和转速恢复时间作为寻优目标。In step 3.2, the present invention takes the second drop depth of the frequency and the speed recovery time when the frequency regulation of wind power is out of frequency regulation as the optimization target.

步骤3.3,通过步骤3.1和步骤3.2里选取的变功率曲线参数和寻优目标。针对不同的变功率曲线参数,根据仿真或者测试结果分别以频率的二次跌落深度和转速恢复时间为横坐标和纵坐标绘制曲线图,利用帕累托算法进行结果分析,选出帕累托最优的参数。Step 3.3, through the variable power curve parameters and optimization goals selected in steps 3.1 and 3.2. For different variable power curve parameters, according to the simulation or test results, the frequency secondary drop depth and speed recovery time are used to draw curves on the abscissa and ordinate, and the Pareto algorithm is used to analyze the results, and the Pareto optimum is selected. Excellent parameters.

综合以上步骤,风力发电机组采用转子惯性控制参与系统一次调频在转速恢复阶段的二次跌落问题与转速恢复过程的时间存在协调问题。Based on the above steps, there is a coordination problem between the secondary drop problem in the speed recovery stage and the time of the speed recovery process when the wind turbine adopts the rotor inertia control to participate in the primary frequency modulation of the system.

本发明并不限于上述实施方式,在不背离本发明实质内容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落入本发明的保护范围。The present invention is not limited to the above-mentioned embodiments, and without departing from the essence of the present invention, any deformation, improvement, and replacement conceivable by those skilled in the art fall within the protection scope of the present invention.

Claims (4)

1.一种双馈风机参与系统调频的多目标优化控制方法,其特征在于,包括:1. A kind of multi-objective optimal control method that double-fed fan participates in system frequency modulation, is characterized in that, comprises: 步骤1.最大功率跟踪策略风电机组进行转速恢复;Step 1. Maximum power tracking strategy for wind turbines to restore speed; 步骤2.设计变功率曲线;Step 2. Design variable power curve; 步骤3.基于帕累托算法进行变功率曲线参数寻优。Step 3. Optimizing the variable power curve parameters based on the Pareto algorithm. 2.根据权利要求1所述的双馈风机参与系统调频的多目标优化控制方法,其特征在于,步骤1.所述最大功率跟踪策略风电机组进行转速恢复包括:2. The multi-objective optimization control method for DFIG participating in system frequency modulation according to claim 1, characterized in that, step 1. The maximum power tracking strategy of the wind turbine to restore the speed comprises: 步骤11.风电机组在稳定状态下运行时,风电机组运行在最大功率点跟踪状态的A点处;当电网频率降低时,风电机组进行调频,风电机组输出的电磁功率从最大功率点跟踪状态的A点处增加至最大功率跟踪点状态的B点处;再从最大功率跟踪点状态的B点处沿直线向电磁功率C点处运行进行功率支撑,同时风电机组转速减小至电磁功率C点处对应的转速下限;Step 11. When the wind turbine is running in a steady state, the wind turbine runs at point A of the maximum power point tracking state; when the grid frequency decreases, the wind turbine performs frequency modulation, and the electromagnetic power output by the wind turbine is from the point A of the maximum power point tracking state. Increase from point A to point B in the state of maximum power tracking point; then run along a straight line from point B in the state of maximum power tracking point to point C of electromagnetic power for power support, and at the same time reduce the speed of the wind turbine to point C of electromagnetic power The corresponding speed lower limit; 步骤12.风电机组从最大功率跟踪点状态的B点处沿直线向电功率功率C点处运行进行功率支撑过程中,当风电机组转速达到转速下限时,风电机组退出调频。Step 12. During the process of running the wind turbine from point B of the maximum power tracking point state to the electric power point C along a straight line for power support, when the speed of the wind turbine reaches the lower limit of the speed, the wind turbine quits frequency regulation. 3.根据权利要求1所述的双馈风机参与系统调频的多目标优化控制方法,其特征在于,步骤2.所述设计变功率曲线包括:3. The multi-objective optimal control method of the double-fed fan participating in system frequency modulation according to claim 1, characterized in that, step 2. The design variable power curve comprises: 步骤21.当风电机组转速ωr下降至转速下限ωrmin时,风电机组退出调频,设置变功率曲线系数K,按照下式(1)计算:Step 21. When the speed ω r of the wind turbine drops to the lower limit of the speed ω rmin , the wind turbine quits frequency regulation, and the coefficient K of the variable power curve is set, which is calculated according to the following formula (1): 式中,ωr为风电机组转速,ωref为转速参考值,ωrmin为风电机组参与调频时转速;In the formula, ω r is the speed of the wind turbine, ω ref is the reference value of the speed, and ω rmin is the speed when the wind turbine participates in frequency regulation; 步骤22.设计变功率函数,按照下式(2)计算:Step 22. Design variable power function, calculate according to the following formula (2): 式中,f(t)为变功率函数,t为时间,第一参数a、第二参数b、第三参数t1、第四参数t2In the formula, f(t) is a variable power function, t is time, the first parameter a, the second parameter b, the third parameter t 1 , and the fourth parameter t 2 ; 步骤23.根据变功率曲线系数的公式(1)和变功率函数的公式(2)设计变功率曲线,按照下式(3)计算:Step 23. Design the variable power curve according to the formula (1) of the variable power curve coefficient and the formula (2) of the variable power function, calculate according to the following formula (3): Pac=K×f(t)……(3)P ac =K×f(t)...(3) 式中,Pac为变功率曲线。In the formula, P ac is the variable power curve. 4.根据权利要求1所述的双馈风机参与系统调频的多目标优化控制方法,其特征在于,步骤3.所述基于帕累托算法进行变功率曲线参数寻优包括:4. The multi-objective optimization control method for the double-fed fan to participate in system frequency modulation according to claim 1, characterized in that, step 3. The optimization of variable power curve parameters based on the Pareto algorithm comprises: 步骤31.根据变功率曲线的设计,通过对变功率函数f(t)进行仿真测试,设定第一参数a、第二参数b、第三参数t1、第四参数t2的范围值,如(4)~(7)所示:Step 31. According to the design of the variable power curve, the range values of the first parameter a, the second parameter b, the third parameter t 1 and the fourth parameter t 2 are set by performing a simulation test on the variable power function f(t), As shown in (4)~(7): -0.07≤a≤-0.06......(4)-0.07≤a≤-0.06...(4) 0.1≤b≤0.3......(5)0.1≤b≤0.3...(5) t1=173......(6)t 1 =173...(6) 220≤t2≤230......(7)220≤t 2 ≤230...(7) 步骤32.通过选取第三参数t1为173以及在第一参数、第二参数和第四参数取值范围内选取第一参数、第二参数和第四参数计算不同的变功率曲线;Step 32. By selecting the third parameter t1 as 173 and selecting the first parameter, the second parameter and the fourth parameter in the value range of the first parameter, the second parameter and the fourth parameter to calculate different variable power curves; 步骤33.将风电机组退出调频时电网频率的二次跌落深度和转速恢复时间作为寻优目标,根据不同的变功率曲线确定电网频率的二次跌落深度和转速恢复时间,以电网频率的二次跌落深度为横坐标、转速恢复时间为纵坐标绘制曲线图,利用帕累托算法进行结果分析,选出帕累托最优的参数。Step 33. Taking the grid frequency’s secondary drop depth and speed recovery time when the wind turbine quits frequency regulation as the optimization target, determine the grid frequency’s secondary drop depth and speed recovery time according to different variable power curves, and use the grid frequency’s secondary Draw a graph with the drop depth as the abscissa and the speed recovery time as the ordinate, and use the Pareto algorithm to analyze the results and select the Pareto optimal parameters.
CN201910695508.0A 2019-07-30 2019-07-30 A Multi-objective Optimal Control Method for Doubly-fed Fans Participating in System Frequency Modulation Pending CN110417032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910695508.0A CN110417032A (en) 2019-07-30 2019-07-30 A Multi-objective Optimal Control Method for Doubly-fed Fans Participating in System Frequency Modulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910695508.0A CN110417032A (en) 2019-07-30 2019-07-30 A Multi-objective Optimal Control Method for Doubly-fed Fans Participating in System Frequency Modulation

Publications (1)

Publication Number Publication Date
CN110417032A true CN110417032A (en) 2019-11-05

Family

ID=68364293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910695508.0A Pending CN110417032A (en) 2019-07-30 2019-07-30 A Multi-objective Optimal Control Method for Doubly-fed Fans Participating in System Frequency Modulation

Country Status (1)

Country Link
CN (1) CN110417032A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431212A (en) * 2020-02-19 2020-07-17 国电新能源技术研究院有限公司 Multi-controller-multi-target coordinated optimization method for wind power generation system
CN112117781A (en) * 2020-08-06 2020-12-22 南京理工大学 Wind turbine generator power limiting control method for limiting power change rate in rotation speed recovery stage
CN112803494A (en) * 2021-02-19 2021-05-14 国网湖南省电力有限公司 Multi-target AGC coordinated optimization method and system containing wind, light, water and fire
WO2021109579A1 (en) * 2019-12-04 2021-06-10 国网青海省电力公司电力科学研究院 Unit combination method taking wind turbine generator security domain with frequency response control into consideration
CN113098057A (en) * 2021-04-06 2021-07-09 广西大学 Multi-target high-dimensional multi-fractional order optimization method for parameters of doubly-fed wind turbine
CN113193573A (en) * 2021-04-30 2021-07-30 华中科技大学 Fan rotating speed recovery control method, controller and wind power plant
CN117154764A (en) * 2023-10-30 2023-12-01 国网天津市电力公司电力科学研究院 Frequency modulation control method, device and wind power system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986186A (en) * 2014-05-13 2014-08-13 清华大学 A black-start control method for wind-solar-hydraulic complementary microgrid
CN107800154A (en) * 2017-11-14 2018-03-13 西南交通大学 A kind of DFIG participates in more wind speed section integrated control methods of primary frequency regulation of power network
CN108110803A (en) * 2018-01-23 2018-06-01 西南交通大学 Double-fed wind turbine assist in synchronization generator participates in electric grid secondary frequency modulation control method for coordinating
CN108365633A (en) * 2018-04-08 2018-08-03 西南交通大学 A kind of doubly-fed wind turbine hypervelocity virtual inertia control method of Control of decreasing load variable element
CN109842152A (en) * 2019-01-21 2019-06-04 清华大学 Wind turbines participate in the control method and device of inertia response

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986186A (en) * 2014-05-13 2014-08-13 清华大学 A black-start control method for wind-solar-hydraulic complementary microgrid
CN107800154A (en) * 2017-11-14 2018-03-13 西南交通大学 A kind of DFIG participates in more wind speed section integrated control methods of primary frequency regulation of power network
CN108110803A (en) * 2018-01-23 2018-06-01 西南交通大学 Double-fed wind turbine assist in synchronization generator participates in electric grid secondary frequency modulation control method for coordinating
CN108365633A (en) * 2018-04-08 2018-08-03 西南交通大学 A kind of doubly-fed wind turbine hypervelocity virtual inertia control method of Control of decreasing load variable element
CN109842152A (en) * 2019-01-21 2019-06-04 清华大学 Wind turbines participate in the control method and device of inertia response

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R LIU等: "Rotation Speed Recovery Strategy Based On Variable Power Curve of Inertia Control from DFIG Wind Turbine", 《2018 2ND INTERNATIONAL CONFERENCE ON POWER AND ENERGY ENGINEERING》 *
RUI LIU 等: "Rotation Speed Recovery Strategy Based On Particle Swarm Optimization for Variable Power Curve Optimization", 《IOP CONF. SERIES: MATERIALS SCIENCE AND ENGINEERING 439 (2018) 032089》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109579A1 (en) * 2019-12-04 2021-06-10 国网青海省电力公司电力科学研究院 Unit combination method taking wind turbine generator security domain with frequency response control into consideration
US11777313B2 (en) 2019-12-04 2023-10-03 State Grid Qinghai Electric Power Research Institute Unit commitment method considering security region of wind turbine generator with frequency response control
CN111431212A (en) * 2020-02-19 2020-07-17 国电新能源技术研究院有限公司 Multi-controller-multi-target coordinated optimization method for wind power generation system
CN112117781A (en) * 2020-08-06 2020-12-22 南京理工大学 Wind turbine generator power limiting control method for limiting power change rate in rotation speed recovery stage
CN112117781B (en) * 2020-08-06 2022-09-20 南京理工大学 Wind turbine generator power limiting control method for limiting power change rate in rotation speed recovery stage
CN112803494A (en) * 2021-02-19 2021-05-14 国网湖南省电力有限公司 Multi-target AGC coordinated optimization method and system containing wind, light, water and fire
CN112803494B (en) * 2021-02-19 2022-06-21 国网湖南省电力有限公司 Multi-target AGC coordinated optimization method and system containing wind, light, water and fire
CN113098057A (en) * 2021-04-06 2021-07-09 广西大学 Multi-target high-dimensional multi-fractional order optimization method for parameters of doubly-fed wind turbine
CN113098057B (en) * 2021-04-06 2022-10-11 广西大学 A multi-objective high-dimensional multi-fractional optimization method for doubly-fed fan parameters
CN113193573A (en) * 2021-04-30 2021-07-30 华中科技大学 Fan rotating speed recovery control method, controller and wind power plant
CN113193573B (en) * 2021-04-30 2022-05-20 华中科技大学 A kind of fan speed recovery control method, controller and wind farm
CN117154764A (en) * 2023-10-30 2023-12-01 国网天津市电力公司电力科学研究院 Frequency modulation control method, device and wind power system

Similar Documents

Publication Publication Date Title
CN110417032A (en) A Multi-objective Optimal Control Method for Doubly-fed Fans Participating in System Frequency Modulation
CN104600742B (en) Method for compensating wind power plant virtual inertia by utilizing energy accumulation device
CN109861251B (en) A comprehensive control method for doubly-fed fans for microgrid transient steady-state frequency optimization
CN102594244A (en) Joint control method of primary frequency modulation for doubly-fed wind power generation set
CN116667389B (en) A new wind-storage joint prediction and correction control method for power system inertia enhancement
CN115276039B (en) Rotor kinetic energy nonlinear control method suitable for frequency adjustment of wind power grid-connected system
CN112271760A (en) Frequency modulation control method suitable for direct-drive wind power plant alternating current grid connection
CN112332442A (en) Virtual inertia control strategy optimization based on double-fed wind power plant
CN115882524A (en) A Wind Turbine Control Parameter Tuning Method for Improving Frequency Response Capability
Hemeyine et al. Robust takagi sugeno fuzzy models control for a variable speed wind turbine based a DFI-generator
CN107591843B (en) Double-fed wind field reactive power output optimization method in system recovery process
CN114447952A (en) Method for evaluating primary frequency modulation capability of permanent magnet fan wind power plant
CN116093970B (en) Primary frequency modulation model predictive control method for doubly-fed fans taking into account speed protection
CN118572676A (en) An adaptive optimization method for primary frequency modulation response control parameters of hydrogen electrolysis system
CN113162071A (en) Direct-drive permanent magnet wind turbine generator load shedding frequency modulation control method based on variable power tracking
CN113839398B (en) A variable droop coefficient control method for doubly-fed wind turbines participating in primary frequency regulation of power grid
CN114336665B (en) Active power control method for improving inertia reserve level of wind power plant
CN116345490A (en) Improved step-inertia control frequency regulation strategy for wind turbines based on optimized power curve
CN115833230A (en) A Coordinated Control Method of Power Grid Virtual Inertia Based on Fuzzy Control
CN117154756A (en) A wind-storage joint frequency modulation control method considering the state of charge of energy storage
CN113193573B (en) A kind of fan speed recovery control method, controller and wind farm
CN115102228A (en) A multi-objective coordinated frequency optimization method and device for wind farms with flywheel energy storage
CN115263666A (en) Fan dynamic frequency control method considering weight coefficient and rotor energy state
CN114268136A (en) Fan stepping inertia control improvement method considering frequency response characteristic of synchronous machine
CN114447956A (en) A method and system for primary frequency modulation control of a coupled system with coordination of multiple frequency modulation resources

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191105

RJ01 Rejection of invention patent application after publication