CN110411489B - 蓝宝石光纤fp传感器干涉谱增强的模式控制装置 - Google Patents

蓝宝石光纤fp传感器干涉谱增强的模式控制装置 Download PDF

Info

Publication number
CN110411489B
CN110411489B CN201910641680.8A CN201910641680A CN110411489B CN 110411489 B CN110411489 B CN 110411489B CN 201910641680 A CN201910641680 A CN 201910641680A CN 110411489 B CN110411489 B CN 110411489B
Authority
CN
China
Prior art keywords
sensor
optical fiber
sapphire
light
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910641680.8A
Other languages
English (en)
Other versions
CN110411489A (zh
Inventor
张东生
张家伟
贾晓雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910641680.8A priority Critical patent/CN110411489B/zh
Publication of CN110411489A publication Critical patent/CN110411489A/zh
Application granted granted Critical
Publication of CN110411489B publication Critical patent/CN110411489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0988Diaphragms, spatial filters, masks for removing or filtering a part of the beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种蓝宝石光纤FP传感器干涉谱增强的模式控制装置,利用整形滤波片对光束进行光学滤波,滤去大部分高阶模式的光场,获得与蓝宝石光纤FP传感器基模匹配的光场,使入射蓝宝石光纤FP传感器的光场与蓝宝石光纤FP传感器的基模匹配,控制蓝宝石光纤中传播的模式数量。同时提供了一种整形滤波片的加工方法。本发明有效提高蓝宝石光纤FP传感器干涉谱的可见度,达到提高蓝宝石光纤FP传感器的量程以及测量精度的目的。

Description

蓝宝石光纤FP传感器干涉谱增强的模式控制装置
技术领域
本发明涉及光纤传感领域,尤其涉及一种蓝宝石光纤法布里-珀罗(FP)传感器干涉光谱的模式控制方法。
背景技术
航空航天技术对于国家的国防安全以及经济发展均有重要的战略意义。为保证航天器能够安全稳定的工作,需要各类传感器对系统的各部分的信息进行及时的收集、传递。对于某些航天系统,如航空发动机和高超音速飞行器,工作温度在1300℃以上,且工作环境腐蚀性强、电磁环境复杂。要在如此严苛的工况条件下,获取相关对象的刚度、强度和应力、应变等信息,对传感器有十分高的要求。大多数传感器难以胜任相关工作,而蓝宝石光纤的熔点为2053℃,且具有高耐热性、高抗腐蚀性及抗电磁干扰等特点,利用其制成的蓝宝石光纤FP传感器能够在该复杂环境下工作,且具有灵敏度高、方便在线监测等优点,是解决上述传感问题的理想选择。
但蓝宝石光纤FP传感器具有干涉信号可见度较低的问题,严重影响了传感器应变测量的精度和量程,使得蓝宝石光纤FP传感器难以满足实际应用中对相关技术指标的要求。因此需要相关方法和装置对蓝宝石光纤FP传感器的干涉光谱进行增强、优化,以提高传感器的性能。而造成蓝宝石光纤FP传感器信号可见度低这一问题的主要原因是蓝宝石光纤中传播的模式数量庞大。如果减少在其中传播的模式数量,便能够提高蓝宝石光纤FP传感器的信号可见度。
发明内容
本发明要解决的技术问题在于针对现有技术中蓝宝石光纤FP传感器具有干涉信号可见度较低缺陷,提供一种蓝宝石光纤FP传感器干涉谱增强装置及方法。
本发明解决其技术问题所采用的技术方案是:
提供一种蓝宝石光纤FP传感器干涉谱增强的模式控制装置,包括:
光学滤波光路,包括共光轴设置的光源、第一透镜、光阑、第二透镜和整形滤波片,所述第一透镜与所述第二透镜共焦设置,共焦处设置所述光阑,所述第二透镜后设置所述整形滤波片,所述整形滤波片分为中心滤波片透光区与环形滤波片不透光区,所述滤波片透光区直径与蓝宝石光纤FP传感器中光场基模的模场直径相同;所述光源出射的高斯光束经所述第一透镜聚焦,经所述光阑滤除杂散光后经所述第二透镜准直后形成准直光束,所述准直光束入射所述整形滤波片,形成与蓝宝石光纤FP传感器基模匹配的入射光;
匹配光路,包括半透半反镜、蓝宝石光纤FP传感器、第三透镜和光电探测处理系统,所述半透半反镜与所述光学滤波光路的光轴成45°设置,所述半透半反镜后设置所述蓝宝石光纤FP传感器,所述第三透镜的光轴与所述光学滤波光路的光轴正交,交点在所述半透半反镜中心,所述光电探测处理系统设置在所述第三透镜的焦点处,使入射蓝宝石光纤FP传感器的光场与蓝宝石光纤FP传感器的基模匹配。
所述整形滤波片分为中心滤波片透光区与环形滤波片不透光区,所述滤波片透光区直径与蓝宝石光纤FP传感器中光场基模的模场直径相同。
接上述技术方案,所述整形滤波片根据所述蓝宝石光纤FP传感器中的光场模式设计而成。
接上述技术方案,所述蓝宝石光纤FP传感器的引入光纤前端经过研磨抛光处理。
接上述技术方案,所述整形滤波片的材料为光学玻璃或蓝宝石晶片。
接上述技术方案,所述整形滤波片的加工方法,包括以下步骤:
S1、对蓝宝石光纤FP传感器进行建模,求解所用蓝宝石光纤FP传感器的电磁性质,计算所用蓝宝石光纤中传输的基模光场的性质,获得蓝宝石光纤FP传感器中传输的基模光场的模场直径;
S2、根据基模光场的模场直径设计整形滤波片;
S3、根据设计的整形滤波片,利用飞秒激光加工技术在光学玻璃或者蓝宝石晶片上加工得到整形滤波片。
本发明产生的有益效果是:提供一种蓝宝石光纤FP传感器干涉谱增强的模式控制装置,利用与蓝宝石光纤FP传感器中光场基模对应的整形滤波片对光束进行光学滤波,滤去大部分高阶模式的光场,获得与蓝宝石光纤基模匹配的光场,使入射蓝宝石光纤的光场与蓝宝石光纤的基模匹配,控制蓝宝石光纤中传播的模式数量。本发明有效提高蓝宝石光纤FP传感器干涉谱的可见度,达到提高蓝宝石光纤FP传感器的量程以及测量精度的目的。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的光路示意图;
图2是本发明实施例的整形滤波片结构示意图;
图3是本发明实施例的蓝宝石光纤FP传感器光场基模仿真图;
图4是本发明实施例的蓝宝石光纤FP传感器光场部分高阶模仿真图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明提供一种蓝宝石光纤FP传感器干涉谱增强的模式控制装置,包括光学滤波光路,该光学滤波电路包括共光轴设置的光源1、第一透镜2、光阑3、第二透镜4和整形滤波片5,第一透镜2与第二透镜4共焦设置,共焦处设置光阑3,第二透镜4后设置整形滤波片5。
如图2所示,整形滤波片5分为中心滤波片透光区51与环形滤波片不透光区52,滤波片透光区51直径与蓝宝石光纤FP传感器7中光场基模的模场直径相同。
光源1出射的高斯光束经第一透镜2聚焦,经光阑3滤除杂散光后经第二透镜4准直后形成准直光束,该准直光束入射整形滤波片5,如图3所示的基模光场能够通过整形滤波片,而如图4所示的高阶模光场不能通过整形滤波片,最终形成与蓝宝石光纤FP传感器7基模匹配的入射光,减少蓝宝石光纤FP传感器7中的模式数量。该方法有效提高蓝宝石光纤FP传感器7干涉谱的可见度,达到提高蓝宝石光纤FP传感器7的量程以及测量精度的目的。
如图1所示,本发明的装置还包括匹配光路,包括半透半反镜6、蓝宝石光纤FP传感器7、第三透镜8和光电探测处理系统9,半透半反镜6与光学滤波光路的光轴成45°设置,半透半反镜6后设置蓝宝石光纤FP传感器7,第三透镜8的光轴与光学滤波光路的光轴正交,交点在半透半反镜6中心,光电探测处理系统9设置在第三透镜8的焦点处,使入射蓝宝石光纤FP传感器7的光场与蓝宝石光纤FP传感器7的基模匹配。
进一步地,整形滤波片5根据蓝宝石光纤FP传感器7中的光场模式设计而成,在一块透明晶片上,通过飞秒激光加工技术,对晶片特定区域进行加工,使得只有与蓝宝石光纤FP传感器7基模匹配的光场能够通过该整形滤波片5,从而使入射到蓝宝石光纤FP传感器7中的光仅激发其基模,达到控制蓝宝石光纤FP传感器7中模式数量的目的。
进一步地,蓝宝石光纤FP传感器7的引入光纤前端经过研磨抛光处理。
进一步地,整形滤波片5的材料为光学玻璃或蓝宝石晶片。
进一步地,整形滤波片5的加工方法,包括以下步骤:
S1、对蓝宝石光纤FP传感器7进行建模,求解所用蓝宝石光纤的电磁性质,计算所用蓝宝石光纤FP传感器7中传输的基模光场的性质,获得蓝宝石光纤FP传感器7中传输的基模光场的模场直径;
S2、根据S1计算出的基模光场的模场直径,设计整形滤波片5;
S3、根据S2设计的整形滤波片5,通过飞秒激光加工技术在光学玻璃或者蓝宝石晶片上加工得到整形滤波片5。
作为一个具体实施例,如图2所示,根据整形滤波片5的设计利用飞秒激光,对光学玻璃或蓝宝石晶片上的相应部分进行粗糙化处理形成滤波片不透光区52,光学玻璃或蓝宝石晶片上中间部分为滤波片透光区51,其直径与计算得到的蓝宝石光纤中基模的模场直径相同。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (5)

1.一种蓝宝石光纤FP传感器干涉谱增强的模式控制装置,其特征在于,包括:
光学滤波光路,包括共光轴设置的光源、第一透镜、光阑、第二透镜和整形滤波片,所述第一透镜与所述第二透镜共焦设置,共焦处设置所述光阑,所述第二透镜后设置所述整形滤波片,所述整形滤波片分为中心滤波片透光区与环形滤波片不透光区,所述滤波片透光区直径与蓝宝石光纤FP传感器中光场基模的模场直径相同;所述光源出射的高斯光束经所述第一透镜聚焦,经所述光阑滤除杂散光后经所述第二透镜准直后形成准直光束,所述准直光束入射所述整形滤波片,形成与蓝宝石光纤FP传感器基模匹配的入射光;
匹配光路,包括半透半反镜、蓝宝石光纤FP传感器、第三透镜和光电探测处理系统,所述半透半反镜与所述光学滤波光路的光轴成45°设置,所述半透半反镜后设置所述蓝宝石光纤FP传感器,所述第三透镜的光轴与所述光学滤波光路的光轴正交,交点在所述半透半反镜中心,所述光电探测处理系统设置在所述第三透镜的焦点处,使入射蓝宝石光纤FP传感器的光场与蓝宝石光纤FP传感器的基模匹配;
所述整形滤波片分为中心滤波片透光区与环形滤波片不透光区,所述滤波片透光区直径与蓝宝石光纤FP传感器中光场基模的模场直径相同。
2.根据权利要求1所述的模式控制装置,其特征在于,所述整形滤波片根据所述蓝宝石光纤FP传感器中的光场模式设计而成。
3.根据权利要求1所述的模式控制装置,其特征在于,所述蓝宝石光纤FP传感器的引入光纤前端经过研磨抛光处理。
4.根据权利要求1所述的模式控制装置,其特征在于,所述整形滤波片的材料为光学玻璃或蓝宝石晶片。
5.根据权利要求1所述的模式控制装置,其特征在于,所述整形滤波片的加工方法,包括以下步骤:
S1、对蓝宝石光纤FP传感器进行建模,求解所用蓝宝石光纤FP传感器的电磁性质,计算所用蓝宝石光纤FP传感器中传输的基模光场的性质,获得蓝宝石光纤FP传感器中传输的基模光场的模场直径;
S2、根据基模光场的模场直径设计整形滤波片;
S3、根据设计的整形滤波片,利用飞秒激光加工技术在光学玻璃或者蓝宝石晶片上加工得到整形滤波片。
CN201910641680.8A 2019-07-16 2019-07-16 蓝宝石光纤fp传感器干涉谱增强的模式控制装置 Active CN110411489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910641680.8A CN110411489B (zh) 2019-07-16 2019-07-16 蓝宝石光纤fp传感器干涉谱增强的模式控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910641680.8A CN110411489B (zh) 2019-07-16 2019-07-16 蓝宝石光纤fp传感器干涉谱增强的模式控制装置

Publications (2)

Publication Number Publication Date
CN110411489A CN110411489A (zh) 2019-11-05
CN110411489B true CN110411489B (zh) 2024-01-30

Family

ID=68361655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910641680.8A Active CN110411489B (zh) 2019-07-16 2019-07-16 蓝宝石光纤fp传感器干涉谱增强的模式控制装置

Country Status (1)

Country Link
CN (1) CN110411489B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111854813B (zh) * 2020-07-27 2022-02-15 中国电子科技集团公司第四十九研究所 一种温度自补偿式非本征法布里珀罗腔及制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050232541A1 (en) * 2003-08-01 2005-10-20 Mihailov Stephen J Optical fiber sensor based on retro-reflective fiber bragg gratings
US20060029322A1 (en) * 2003-03-21 2006-02-09 Mihailov Stephen J Optical fiber sensor based on retro-reflective fiber bragg gratings
CN101893739A (zh) * 2009-04-23 2010-11-24 Ofs飞泰尔公司 多模光纤中高次模的空间滤波
CN103674085A (zh) * 2013-12-16 2014-03-26 西安电子科技大学 U型结构的蓝宝石光纤光栅温度与应力传感器及制备方法
CN109060169A (zh) * 2018-08-29 2018-12-21 厦门大学 一种基于细径光纤的高温传感器
CN208738604U (zh) * 2018-07-26 2019-04-12 深圳番越光电有限公司 一种实现单模单频的线偏振光纤激光输出的光纤盘装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057854A (ja) * 2011-09-09 2013-03-28 Olympus Corp 光伝送装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060029322A1 (en) * 2003-03-21 2006-02-09 Mihailov Stephen J Optical fiber sensor based on retro-reflective fiber bragg gratings
US20050232541A1 (en) * 2003-08-01 2005-10-20 Mihailov Stephen J Optical fiber sensor based on retro-reflective fiber bragg gratings
CN101893739A (zh) * 2009-04-23 2010-11-24 Ofs飞泰尔公司 多模光纤中高次模的空间滤波
CN103674085A (zh) * 2013-12-16 2014-03-26 西安电子科技大学 U型结构的蓝宝石光纤光栅温度与应力传感器及制备方法
CN208738604U (zh) * 2018-07-26 2019-04-12 深圳番越光电有限公司 一种实现单模单频的线偏振光纤激光输出的光纤盘装置
CN109060169A (zh) * 2018-08-29 2018-12-21 厦门大学 一种基于细径光纤的高温传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DESIGN AND EXPERIMENTAL STUDY OF A FIBER BRAGG GRATING PRESSURE SENSOR;Huang Jun 等;《PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON INNOVATIVE DESIGN AND MANUFACTURING (ICIDM)》;全文 *
多模光纤和蓝宝石光纤珐珀传感器研究;陈勇;《中国优秀硕士学位论文电子期刊 信息科技辑》;40-49 *
微型光纤F-P传感器用于材料热膨胀系数的测量;李立彤等;《光电子 激光》;第25卷(第11期);全文 *
高阶模滤除法抑制蓝宝石光纤光栅反射谱带宽;王艳红等;《红外与激光工程》;第41卷(第11期);全文 *

Also Published As

Publication number Publication date
CN110411489A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
CN104614104B (zh) 光纤法珀压力传感器及其制作方法
CN107152941B (zh) 一种腔长可控的光纤f-p腔构成装置
CN110411489B (zh) 蓝宝石光纤fp传感器干涉谱增强的模式控制装置
US5459576A (en) Differential phase contrast inspection system
CN104296607A (zh) 激光引信闭馈测试装置及测试系统及测试方法
CN205373934U (zh) 一种测量钢化玻璃表面应力的拉曼光谱仪
CN103092001B (zh) 光束位置和角度的调节装置
CN105136747B (zh) 基于表面等离子体的多模光纤探针生物传感装置
CN206362310U (zh) 一种非球面检测光路中光学间隔测量系统
CN110986836B (zh) 基于环形芯光纤的高精度粗糙度测量装置
CN108445602A (zh) 一种用于测量镀膜透镜中心厚度的共焦光学系统
CN111089844A (zh) 一种用于微机电系统监测的光纤探针
CN110617901A (zh) 一种具有倾角反射面的蓝宝石光纤f-p高温传感器及制备方法和温度传感系统
CN206311075U (zh) 一种大口径精密轮廓测量系统
CN202748008U (zh) 一种非接触测量光学透镜中心厚度的测量装置
CN110686773B (zh) 一种基于激光振镜的太阳辐照度模拟光源
Shi et al. High-sensitivity and direction recognizable SPR microdisplacement sensor based on fiber V-groove
CN110631509B (zh) 基于光栅泰伯像的物体表面曲率检测系统及方法
CN109471244B (zh) 一种基于机器视觉的大视场双远心镜头
CN202747999U (zh) 对柱面进行干涉检测的镜头
CN106767959B (zh) 一种光纤法珀传感器解调系统
CN110411488A (zh) 蓝宝石光纤fp传感器干涉谱可见度增强的模式滤波装置
CN116931236B (zh) 一种基于探针对准晶圆的双倍率光学系统
CN216593812U (zh) 一种双色红外测温仪
CN104614850A (zh) 一种大焦距静态光电显微镜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhang Dongsheng

Inventor after: Zhang Jiawei

Inventor after: Jia Xiaowen

Inventor before: Zhang Dongsheng

Inventor before: Zhang Jiawei

Inventor before: Jia Xiaowen

GR01 Patent grant
GR01 Patent grant