CN110405537A - 一种基于深度学习的导轨精度预测模型的建立方法 - Google Patents
一种基于深度学习的导轨精度预测模型的建立方法 Download PDFInfo
- Publication number
- CN110405537A CN110405537A CN201910645915.0A CN201910645915A CN110405537A CN 110405537 A CN110405537 A CN 110405537A CN 201910645915 A CN201910645915 A CN 201910645915A CN 110405537 A CN110405537 A CN 110405537A
- Authority
- CN
- China
- Prior art keywords
- guide rail
- vibration
- sound
- state
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000013135 deep learning Methods 0.000 title claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 41
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 8
- 230000005236 sound signal Effects 0.000 claims abstract description 7
- 238000012549 training Methods 0.000 claims description 28
- 238000005299 abrasion Methods 0.000 claims description 25
- 230000006870 function Effects 0.000 claims description 10
- 230000000007 visual effect Effects 0.000 claims description 9
- 230000015556 catabolic process Effects 0.000 claims description 8
- 238000006731 degradation reaction Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000013527 convolutional neural network Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 208000037656 Respiratory Sounds Diseases 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000013598 vector Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 3
- 239000012895 dilution Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000009825 accumulation Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims 1
- 238000000513 principal component analysis Methods 0.000 claims 1
- 230000003044 adaptive effect Effects 0.000 abstract description 4
- 238000004092 self-diagnosis Methods 0.000 abstract description 2
- 238000013499 data model Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000012847 principal component analysis method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004438 eyesight Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- ONUFESLQCSAYKA-UHFFFAOYSA-N iprodione Chemical compound O=C1N(C(=O)NC(C)C)CC(=O)N1C1=CC(Cl)=CC(Cl)=C1 ONUFESLQCSAYKA-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910645915.0A CN110405537B (zh) | 2019-07-17 | 2019-07-17 | 一种基于深度学习的导轨精度预测模型的建立方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910645915.0A CN110405537B (zh) | 2019-07-17 | 2019-07-17 | 一种基于深度学习的导轨精度预测模型的建立方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110405537A true CN110405537A (zh) | 2019-11-05 |
CN110405537B CN110405537B (zh) | 2022-02-08 |
Family
ID=68361900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910645915.0A Active CN110405537B (zh) | 2019-07-17 | 2019-07-17 | 一种基于深度学习的导轨精度预测模型的建立方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110405537B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110378045A (zh) * | 2019-07-24 | 2019-10-25 | 湘潭大学 | 一种基于深度学习的导轨精度预维护方法 |
CN111274989A (zh) * | 2020-02-11 | 2020-06-12 | 中国科学院上海微系统与信息技术研究所 | 一种基于深度学习的野外车辆识别方法 |
CN111581425A (zh) * | 2020-04-28 | 2020-08-25 | 上海鼎经自动化科技股份有限公司 | 一种基于深度学习的设备声音分类方法 |
CN112607555A (zh) * | 2020-11-23 | 2021-04-06 | 西人马联合测控(泉州)科技有限公司 | 用于电梯导轨状态检测的模型的训练方法、检测方法 |
CN112814890A (zh) * | 2021-02-05 | 2021-05-18 | 安徽绿舟科技有限公司 | 一种基于声纹和震动检测泵机故障的方法 |
CN114120974A (zh) * | 2021-11-24 | 2022-03-01 | 江苏华电灌云风力发电有限公司 | 一种基于深度学习的风机叶片故障诊断方法 |
CN114675547A (zh) * | 2022-05-30 | 2022-06-28 | 华中科技大学 | 具有深度学习自动诊断机制的mimo主动降振控制方法及系统 |
CN114972350A (zh) * | 2022-08-01 | 2022-08-30 | 深圳市信润富联数字科技有限公司 | 模具异常检测方法、装置、设备及存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01216749A (ja) * | 1988-02-25 | 1989-08-30 | Okuma Mach Works Ltd | 工作機械の加工負荷監視装置 |
CN102521088A (zh) * | 2011-11-15 | 2012-06-27 | 浪潮电子信息产业股份有限公司 | 一种基于声学探测的服务器风扇状态检测方法 |
TW201226101A (en) * | 2010-12-28 | 2012-07-01 | Nat Univ Chung Hsing | Method and device to detect the state of cutting tool in machine tool with multiple sensors |
CN205129520U (zh) * | 2015-11-23 | 2016-04-06 | 四川文理学院 | 机床主轴故障智能诊断系统 |
CN107052903A (zh) * | 2017-04-20 | 2017-08-18 | 南通国盛智能科技集团股份有限公司 | 一种保证加工恒负载输出的控制方法 |
CN108108516A (zh) * | 2016-11-24 | 2018-06-01 | 发那科株式会社 | 伸缩罩的异常发生推定装置以及异常发生推定方法 |
CN108830127A (zh) * | 2018-03-22 | 2018-11-16 | 南京航空航天大学 | 一种基于深度卷积神经网络结构的旋转机械故障特征智能诊断方法 |
CN109562500A (zh) * | 2016-08-10 | 2019-04-02 | 三菱重工工作机械株式会社 | 机床的工具的异常检测装置及方法 |
-
2019
- 2019-07-17 CN CN201910645915.0A patent/CN110405537B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01216749A (ja) * | 1988-02-25 | 1989-08-30 | Okuma Mach Works Ltd | 工作機械の加工負荷監視装置 |
TW201226101A (en) * | 2010-12-28 | 2012-07-01 | Nat Univ Chung Hsing | Method and device to detect the state of cutting tool in machine tool with multiple sensors |
CN102521088A (zh) * | 2011-11-15 | 2012-06-27 | 浪潮电子信息产业股份有限公司 | 一种基于声学探测的服务器风扇状态检测方法 |
CN205129520U (zh) * | 2015-11-23 | 2016-04-06 | 四川文理学院 | 机床主轴故障智能诊断系统 |
CN109562500A (zh) * | 2016-08-10 | 2019-04-02 | 三菱重工工作机械株式会社 | 机床的工具的异常检测装置及方法 |
CN108108516A (zh) * | 2016-11-24 | 2018-06-01 | 发那科株式会社 | 伸缩罩的异常发生推定装置以及异常发生推定方法 |
CN107052903A (zh) * | 2017-04-20 | 2017-08-18 | 南通国盛智能科技集团股份有限公司 | 一种保证加工恒负载输出的控制方法 |
CN108830127A (zh) * | 2018-03-22 | 2018-11-16 | 南京航空航天大学 | 一种基于深度卷积神经网络结构的旋转机械故障特征智能诊断方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110378045A (zh) * | 2019-07-24 | 2019-10-25 | 湘潭大学 | 一种基于深度学习的导轨精度预维护方法 |
CN111274989A (zh) * | 2020-02-11 | 2020-06-12 | 中国科学院上海微系统与信息技术研究所 | 一种基于深度学习的野外车辆识别方法 |
CN111581425A (zh) * | 2020-04-28 | 2020-08-25 | 上海鼎经自动化科技股份有限公司 | 一种基于深度学习的设备声音分类方法 |
CN112607555A (zh) * | 2020-11-23 | 2021-04-06 | 西人马联合测控(泉州)科技有限公司 | 用于电梯导轨状态检测的模型的训练方法、检测方法 |
CN112814890A (zh) * | 2021-02-05 | 2021-05-18 | 安徽绿舟科技有限公司 | 一种基于声纹和震动检测泵机故障的方法 |
CN114120974A (zh) * | 2021-11-24 | 2022-03-01 | 江苏华电灌云风力发电有限公司 | 一种基于深度学习的风机叶片故障诊断方法 |
CN114675547A (zh) * | 2022-05-30 | 2022-06-28 | 华中科技大学 | 具有深度学习自动诊断机制的mimo主动降振控制方法及系统 |
CN114972350A (zh) * | 2022-08-01 | 2022-08-30 | 深圳市信润富联数字科技有限公司 | 模具异常检测方法、装置、设备及存储介质 |
CN114972350B (zh) * | 2022-08-01 | 2022-11-15 | 深圳市信润富联数字科技有限公司 | 模具异常检测方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN110405537B (zh) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110405537A (zh) | 一种基于深度学习的导轨精度预测模型的建立方法 | |
Kankar et al. | Rolling element bearing fault diagnosis using wavelet transform | |
CN113505655B (zh) | 面向数字孪生系统的轴承故障智能诊断方法 | |
CN113255848B (zh) | 基于大数据学习的水轮机空化声信号辨识方法 | |
CN112660745B (zh) | 托辊故障智能诊断方法、系统及可读存储介质 | |
CN113657221B (zh) | 一种基于智能感知技术的电厂设备状态监测方法 | |
CN112504673B (zh) | 基于机器学习的托辊故障诊断方法、系统及存储介质 | |
CN110737976B (zh) | 一种基于多维度信息融合的机械设备健康评估方法 | |
CN107844067A (zh) | 一种水电站闸门在线状态监测控制方法及监测系统 | |
CN114201374B (zh) | 基于混合机器学习的运维时序数据异常检测方法及系统 | |
CN109262368A (zh) | 一种刀具失效判定方法 | |
CN108304567B (zh) | 高压变压器工况模式识别与数据分类方法及系统 | |
CN107480731A (zh) | 一种火电厂汽动给水泵组故障特征的早期识别方法 | |
CN115424635B (zh) | 一种基于声音特征的水泥厂设备故障诊断方法 | |
CN109141625B (zh) | 一种滚珠丝杠副的在线状态监测方法 | |
CN114004059B (zh) | 一种水轮发电机组健康画像方法 | |
CN114462475A (zh) | 一种基于单分类算法的无监督机器异常声检测方法和装置 | |
CN116625683A (zh) | 一种风电机组轴承故障识别方法、系统、装置及电子设备 | |
CN116204825A (zh) | 一种基于数据驱动的生产线设备故障检测方法 | |
CN207992717U (zh) | 一种水电站闸门在线状态监测系统 | |
CN117993562A (zh) | 基于人工智能大数据分析的风电机组故障预测方法及系统 | |
CN117423345A (zh) | 一种电力设备声纹识别监测系统 | |
CN110378045A (zh) | 一种基于深度学习的导轨精度预维护方法 | |
CN116401545A (zh) | 一种多模型融合的水轮机振摆分析方法 | |
CN114741876B (zh) | 一种塔式起重机智能检验的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20191105 Assignee: Chongqing Fangding Technology Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980002285 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240228 Application publication date: 20191105 Assignee: Chongqing Qiluo Machinery Manufacturing Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980002283 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240228 Application publication date: 20191105 Assignee: CHONGQING QILUO FLUID EQUIPMENT Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980002282 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240228 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20191105 Assignee: Chongqing Yiquan Small and Medium Enterprise Service Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980002570 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240307 Application publication date: 20191105 Assignee: Youzhengyun (Chongqing) Technology Development Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980002569 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240307 Application publication date: 20191105 Assignee: Yuao Holdings Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980002568 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240307 Application publication date: 20191105 Assignee: Chongqing Qinlang Technology Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980002576 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240307 Application publication date: 20191105 Assignee: Chongqing Shuaicheng Network Technology Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980002572 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240307 Application publication date: 20191105 Assignee: Bainuo Zhongcheng (Chongqing) Electronic Technology Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980002571 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240307 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20191105 Assignee: Chongqing Baiyi medical supplies Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980003000 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240319 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20191105 Assignee: Chongqing Luqian Technology Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980003374 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240325 Application publication date: 20191105 Assignee: Chongqing Difeida Technology Co.,Ltd. Assignor: XIANGTAN University Contract record no.: X2024980003371 Denomination of invention: A method for establishing a guide rail accuracy prediction model based on deep learning Granted publication date: 20220208 License type: Common License Record date: 20240325 |
|
EE01 | Entry into force of recordation of patent licensing contract |