CN110400288A - 一种融合双眼特征的糖网病识别方法及装置 - Google Patents
一种融合双眼特征的糖网病识别方法及装置 Download PDFInfo
- Publication number
- CN110400288A CN110400288A CN201910526271.3A CN201910526271A CN110400288A CN 110400288 A CN110400288 A CN 110400288A CN 201910526271 A CN201910526271 A CN 201910526271A CN 110400288 A CN110400288 A CN 110400288A
- Authority
- CN
- China
- Prior art keywords
- feature
- picture
- sugar
- left eye
- fusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000004927 fusion Effects 0.000 title claims abstract description 34
- 238000000605 extraction Methods 0.000 claims abstract description 20
- 239000003814 drug Substances 0.000 claims abstract description 19
- 201000010099 disease Diseases 0.000 claims abstract description 15
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 15
- 230000003902 lesion Effects 0.000 claims description 22
- 238000012549 training Methods 0.000 claims description 10
- 230000002708 enhancing effect Effects 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000011478 gradient descent method Methods 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000002062 proliferating effect Effects 0.000 claims description 3
- 230000000452 restraining effect Effects 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 2
- 238000013527 convolutional neural network Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/193—Preprocessing; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/197—Matching; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30041—Eye; Retina; Ophthalmic
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- Ophthalmology & Optometry (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910526271.3A CN110400288B (zh) | 2019-06-18 | 2019-06-18 | 一种融合双眼特征的糖网病识别方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910526271.3A CN110400288B (zh) | 2019-06-18 | 2019-06-18 | 一种融合双眼特征的糖网病识别方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110400288A true CN110400288A (zh) | 2019-11-01 |
CN110400288B CN110400288B (zh) | 2021-08-10 |
Family
ID=68323236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910526271.3A Expired - Fee Related CN110400288B (zh) | 2019-06-18 | 2019-06-18 | 一种融合双眼特征的糖网病识别方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110400288B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110826470A (zh) * | 2019-11-01 | 2020-02-21 | 复旦大学 | 基于深度主动学习的眼底图像左右眼识别方法 |
CN111402246A (zh) * | 2020-03-20 | 2020-07-10 | 北京工业大学 | 一种基于联合网络的眼底图像分类方法 |
CN111563884A (zh) * | 2020-04-26 | 2020-08-21 | 北京小白世纪网络科技有限公司 | 基于神经网络的眼底疾病识别方法、计算机设备及介质 |
CN112101438A (zh) * | 2020-09-08 | 2020-12-18 | 南方科技大学 | 一种左右眼分类方法、装置、服务器和存储介质 |
CN112580530A (zh) * | 2020-12-22 | 2021-03-30 | 泉州装备制造研究所 | 一种基于眼底图像的身份识别方法 |
CN113158863A (zh) * | 2021-04-13 | 2021-07-23 | 同济大学 | 一种异常眼底照片识别方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016069950A2 (en) * | 2014-10-29 | 2016-05-06 | University Of Utah Research Foundation | Methods of treating hypoxia-associated optical conditions with cartilage oligo matrix protein-angiopoietin 1 (comp-ang1) |
CN106408564A (zh) * | 2016-10-10 | 2017-02-15 | 北京新皓然软件技术有限责任公司 | 一种基于深度学习的眼底图像处理方法、装置及系统 |
CN107045720A (zh) * | 2017-05-04 | 2017-08-15 | 深圳硅基智能科技有限公司 | 用于识别眼底图像病变的人工神经网络及系统 |
CN107679525A (zh) * | 2017-11-01 | 2018-02-09 | 腾讯科技(深圳)有限公司 | 图像分类方法、装置及计算机可读存储介质 |
CN109800789A (zh) * | 2018-12-18 | 2019-05-24 | 中国科学院深圳先进技术研究院 | 基于图网络的糖尿病视网膜病变分类方法及装置 |
-
2019
- 2019-06-18 CN CN201910526271.3A patent/CN110400288B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016069950A2 (en) * | 2014-10-29 | 2016-05-06 | University Of Utah Research Foundation | Methods of treating hypoxia-associated optical conditions with cartilage oligo matrix protein-angiopoietin 1 (comp-ang1) |
CN106408564A (zh) * | 2016-10-10 | 2017-02-15 | 北京新皓然软件技术有限责任公司 | 一种基于深度学习的眼底图像处理方法、装置及系统 |
CN107045720A (zh) * | 2017-05-04 | 2017-08-15 | 深圳硅基智能科技有限公司 | 用于识别眼底图像病变的人工神经网络及系统 |
CN107679525A (zh) * | 2017-11-01 | 2018-02-09 | 腾讯科技(深圳)有限公司 | 图像分类方法、装置及计算机可读存储介质 |
CN109800789A (zh) * | 2018-12-18 | 2019-05-24 | 中国科学院深圳先进技术研究院 | 基于图网络的糖尿病视网膜病变分类方法及装置 |
Non-Patent Citations (1)
Title |
---|
蔺素珍,韩泽: "基于深度堆叠卷积神经网络的图像融合", 《计算机学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110826470A (zh) * | 2019-11-01 | 2020-02-21 | 复旦大学 | 基于深度主动学习的眼底图像左右眼识别方法 |
CN111402246A (zh) * | 2020-03-20 | 2020-07-10 | 北京工业大学 | 一种基于联合网络的眼底图像分类方法 |
CN111563884A (zh) * | 2020-04-26 | 2020-08-21 | 北京小白世纪网络科技有限公司 | 基于神经网络的眼底疾病识别方法、计算机设备及介质 |
CN112101438A (zh) * | 2020-09-08 | 2020-12-18 | 南方科技大学 | 一种左右眼分类方法、装置、服务器和存储介质 |
CN112101438B (zh) * | 2020-09-08 | 2024-04-16 | 南方科技大学 | 一种左右眼分类方法、装置、服务器和存储介质 |
CN112580530A (zh) * | 2020-12-22 | 2021-03-30 | 泉州装备制造研究所 | 一种基于眼底图像的身份识别方法 |
CN113158863A (zh) * | 2021-04-13 | 2021-07-23 | 同济大学 | 一种异常眼底照片识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110400288B (zh) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110400288A (zh) | 一种融合双眼特征的糖网病识别方法及装置 | |
CN107742107B (zh) | 人脸图像分类方法、装置及服务器 | |
CN103514456B (zh) | 基于压缩感知多核学习的图像分类方法及其装置 | |
CN105488536B (zh) | 一种基于多特征深度学习技术的农田害虫图像识别方法 | |
CN105184309B (zh) | 基于cnn和svm的极化sar图像分类 | |
Lim et al. | Transformed representations for convolutional neural networks in diabetic retinopathy screening | |
CN110298338A (zh) | 一种文档图像分类方法及装置 | |
CN108776774A (zh) | 一种基于复杂度感知分类算法的面部表情识别方法 | |
CN106127164A (zh) | 基于显著性检测和卷积神经网络的行人检测方法及装置 | |
CN109190643A (zh) | 基于卷积神经网络中药识别方法及电子设备 | |
CN108717524A (zh) | 一种基于双摄手机和人工智能系统的手势识别系统及方法 | |
Nguyen et al. | Flower species identification using deep convolutional neural networks | |
CN104376326A (zh) | 一种用于图像场景识别的特征提取方法 | |
CN103544504B (zh) | 一种基于多尺度图匹配核的场景字符识别方法 | |
CN109522924A (zh) | 一种基于单张照片的阔叶林树种识别方法 | |
Choudhary et al. | Iris anti-spoofing through score-level fusion of handcrafted and data-driven features | |
CN106570521A (zh) | 多语言场景字符识别方法及识别系统 | |
Li et al. | Multi-scale sparse network with cross-attention mechanism for image-based butterflies fine-grained classification | |
CN109886153A (zh) | 一种基于深度卷积神经网络的实时人脸检测方法 | |
CN113221655A (zh) | 基于特征空间约束的人脸欺骗检测方法 | |
CN109816030A (zh) | 一种基于受限玻尔兹曼机的图像分类方法及装置 | |
Park et al. | Insect classification using Squeeze-and-Excitation and attention modules-a benchmark study | |
Cortes | Plant disease classification using convolutional networks and generative adverserial networks | |
CN115049814A (zh) | 采用神经网络模型的护眼灯智能调节方法 | |
Gavhale et al. | Identification of medicinal plant using Machine learning approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Tang Qiling Inventor after: Luo Fen Inventor after: Fang Quan Inventor after: Zhang Huihui Inventor after: Respond before you dare Inventor after: Wang Jiao Inventor before: Tang Qiling Inventor before: Fang Quan Inventor before: Zhang Huihui Inventor before: Respond before you dare Inventor before: Wang Jiao |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210810 |