CN110399969A - 一种蜂群无人机ai航站楼算法 - Google Patents

一种蜂群无人机ai航站楼算法 Download PDF

Info

Publication number
CN110399969A
CN110399969A CN201910570111.9A CN201910570111A CN110399969A CN 110399969 A CN110399969 A CN 110399969A CN 201910570111 A CN201910570111 A CN 201910570111A CN 110399969 A CN110399969 A CN 110399969A
Authority
CN
China
Prior art keywords
unmanned plane
path
point
coordinate
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910570111.9A
Other languages
English (en)
Other versions
CN110399969B (zh
Inventor
盛兴华
王志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wang Zhipeng
Original Assignee
WUHAN LIESUN TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN LIESUN TECHNOLOGY Co Ltd filed Critical WUHAN LIESUN TECHNOLOGY Co Ltd
Priority to CN201910570111.9A priority Critical patent/CN110399969B/zh
Publication of CN110399969A publication Critical patent/CN110399969A/zh
Application granted granted Critical
Publication of CN110399969B publication Critical patent/CN110399969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Biomedical Technology (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Operations Research (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种蜂群无人机AI航站楼算法,步骤一,取任务点中心经纬度坐标为P0,n个无人机经纬度坐标分别为P1…Pn,计算得出当前所有无人机距离中心点坐标最远距离为S;可让航空飞行器实时地更新绝对最优路径,从而方便用户使用、提高蜂群系统的环境适应性、且满足算法计算量小的要求。

Description

一种蜂群无人机AI航站楼算法
技术领域
本发明属于航空航天飞行器的相关技术领域,尤其涉及一种蜂群无人机AI航站楼算法。
背景技术
随着消费级无人机技术的不断成熟,不断完善的自动避障系统可以极大的减少因操作失误而带来的各项损失,目前避障能力正逐渐成为了无人机自动化或智能化的关键点所在。
然而在蜂群无人机系统中,首先无人机数量较多,少则十几架,多则上百架,其次无人机个体属于移动型障碍物,且运动频繁,轨迹不规则。如果在蜂群系统中使用障碍物感知设备,会导致成本高、运算量大,并且在蜂群系统运行时,无人机本身作为障碍物的比重相对固定障碍物比重大。所以,需要针对蜂群无人机系统研究一个航线管理避让的算法,以达到减少时间成本,增加安全性的目的。
发明内容
为了克服上述现有技术的不足之处,本发明提供一种蜂群无人机 AI航站楼算法,可让航空飞行器实时地更新绝对最优路径,从而方便用户使用、提高蜂群系统的环境适应性、且满足算法计算量小的要求。
为实现上述目的,本发明采用如下技术方案:一种蜂群无人机 AI航站楼算法,包括如下步骤:
步骤一,取任务点中心经纬度坐标为P0,n个无人机经纬度坐标分别为P1…Pn,计算得出当前所有无人机距离中心点坐标最远距离为 S;
步骤二,通过中心点坐标P0、距离S与高度Hmax得出三维立体四边形W,其中Hmax为允许无人机最高飞行高度;
步骤三,通过安全距离Sv与Sh生成三维坐标系W3d,同时计算出无人机对应的W3d系坐标xn、yn、zn,其中Sv为两架无人机水平允许最低安全距离为,Sh为两架无人机垂直允许最低安全距离;
步骤四,n个无人机中取第m个的当前位置为Pc m,目标点Pt m,标记无人机当前位置W3d[xm,ym,zm]为不可通过,记录当前处于 W3d[xm,ym,zm]的无人机编号m;
步骤五,寻找Pc m周边26方向是否可通过,将Pc m和可通过的坐标点加入到二叉堆T1中,并设置其父节点为Pc m,并且,将不可通过的坐标点加入到二叉堆T2中;
步骤六,从T1中删除Pc m并加入到T2中;
步骤七,寻找Pc m周边坐标点与Pt m的最小代价值的点P’,将该点从T1中删除并加入到T2中;
步骤八,跳至步骤五,以P’作为Pc m循环上述步骤,直到T1中存在Pt m时结束,通过Pt m父节点找到Pc m到目标点Pt m的路径T3;同时,如果T1中已经没有数据,说明不存在Pc m到Pt m的路径,则临时将所有不可通过的点标记为可通过,通过步骤五寻找到原始路径,将当前 Pt m与路径中不可通过的点的Pt m依次进行交替,再次循环步骤五;
步骤九,整合T3中的节点信息得到路径信息PT1…Tm,取Pc m与路径PT1…Tm的第一条直线节点作为路径P’T1…Tm,并将P’T1…Tm路径上的点标记为不可通过;
步骤十,找到无人机临时目标点P’T1…Tm路径终点,待无人机飞到该点后,并将P’T1…Tm路径除终点外的点标记为可通过,记当前P’T1…Tm路径终点为Pc m
步骤十一,重复步骤五,直到Pc m等于Pt m为止。
在上述技术方案中,无人机水平移动一单元格的代价为C,垂直移动一单元格的代价为2C,斜方向水平移动一单元格的代价为1.5C,斜方向上下移动一单元格的代价为2.5C。
在上述技术方案中,执行到步骤十后,无人机已完成单次路径移动,再次通过执行步骤五到步骤十一刷新无人机到达目标点的最佳路径,直到Pc m等于Pt m,这样,保证了无人机在每次都是以最优路径进行移动。
本发明的有益效果是:可让航空飞行器实时地更新绝对最优路径,从而方便用户使用、提高蜂群系统的环境适应性、且满足算法计算量小的要求。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
首先需做如下设定:
1.设无人机当前坐标经度为lng,纬度为lat,高度为alt,编号为1 到n。
2.设编号为1的无人机当前实时经纬度坐标为P1,依此类推,编号为n的无人机当前经纬度坐标为Pn
3.设无人机在W3d三维坐标系中的实时坐标为Pc m,需要到达的目标坐标为Pt m
4.设两架无人机水平允许最低安全距离为Sv米,垂直安全距离为Sh米。
5.设允许无人机最低飞行高度为Hmin米。
6.设允许无人机最高飞行高度为Hmax米。
一种蜂群无人机AI航站楼算法,包括如下步骤:步骤一,需要确定表演或作业的有限区域,按照实际的需求,得到编队的中心点位置坐标,取中心坐标为P0,编号1无人机坐标为P1,编号2的无人机坐标为P2,计算得出当前所有无人机距离中心点坐标最远距离为S;
步骤二,通过中心点坐标P0、距离S与高度Hmax得出三维立体四边形W,将该区域作为实际上的有限区域;
步骤三,通过安全距离Sv、Sh、S在有限区域W内生成三维坐标系W3d,坐标系包含主要内容x,y,z,lat,lng,alt,id,将无人机的当前经纬度坐标[lat,lng,alt]对应上W3d系坐标[xn、yn、zn];
步骤四,取无人机当前位置为Pc m,即对应W3d系的坐标[xm,ym,zm],目标点Pt n,记录当前处于W3dW3d[xm,ym,zm]的无人机编号m,标识当前id的无人机占领了该空域,并且置该点为不可通过,针对W3d坐标系优化,对于一定数量上的相邻且都不可通过的坐标点,将当前所有坐标点加入到大集合W3d-n中,如此反复,减少航站楼算法之后的运算;
步骤五,设定水平移动一单元格的代价为C,即东南西北方向移动;垂直移动代价为2C;斜方向水平移动代价为1.5C,即东北,东南,西北,西南四向;斜方向上下移动代价为2.5C;寻找路径,无人机需要从当前位置Pc n到达目标点Pt n,寻找Pc n周边26向是否有可通过的坐标点,将Pc n和可通过的坐标点加入到二叉堆T1中,并设置其父节点为Pc n,并且,将不可通过的坐标点加入到二叉堆T2中;
步骤六,从T1中删除Pc n并加入到T2中;
步骤七,从T1中寻找Pc n周边坐标点与Pt n的最小代价值的点P’- ,将该点从T1中删除并加入到T2中;
步骤八,跳至步骤五,以P’作为Pc m循环上述步骤,直到T1中存在Pt m时结束,通过Pt m父节点找到Pc m到目标点Pt m的路径T3;同时,如果T1中已经没有数据,说明不存在Pc m到Pt m的路径,则临时将所有不可通过的点标记为可通过,通过步骤五寻找到原始路径,将当前 Pt m与路径中不可通过的点所记录的对应无人机的Pt m依次进行交替,再次循环步骤五;
步骤九,整合T3中的节点信息得到路径信息PT1…Tm,取Pc m与路径PT1…Tm的第一条直线节点作为路径P’T1…Tm,并将P’T1…Tm路径上的点标记为不可通过;
步骤十,找到无人机临时目标点P’T1…Tm路径终点,待无人机飞到该点后,并将P’T1…Tm路径除终点外的点标记为可通过,记当前P’T1…Tm路径终点为Pc m
步骤十一,重复步骤五,直到Pc m等于Pt m,则无人机到达最终目标点。
通过以上流程不断循环,重复执行从Pc n到Pt n的寻路过程。待所有无人机到达对应的Pt点,即到达本次编队的飞行结果。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (3)

1.一种蜂群无人机AI航站楼算法,其特征是:包括如下步骤:
步骤一,取任务点中心经纬度坐标为P0,n个无人机经纬度坐标分别为P1…Pn,计算得出当前所有无人机距离中心点坐标最远距离为S;
步骤二,通过中心点坐标P0、距离S与高度Hmax得出三维立体四边形W,其中Hmax为允许无人机最高飞行高度;
步骤三,通过安全距离Sv与Sh生成三维坐标系W3d,同时计算出无人机对应的W3d系坐标xn、yn、zn,其中Sv为两架无人机水平允许最低安全距离为,Sh为两架无人机垂直允许最低安全距离;
步骤四,n个无人机中取第m个的当前位置为Pc m,目标点Pt m,标记无人机当前位置W3d[xm,ym,zm]为不可通过,记录当前处于W3d[xm,ym,zm]的无人机编号m;
步骤五,寻找Pc m周边26方向是否可通过,将Pc m和可通过的坐标点加入到二叉堆T1中,并设置其父节点为Pc m,并且,将不可通过的坐标点加入到二叉堆T2中;
步骤六,从T1中删除Pc m并加入到T2中;
步骤七,寻找Pc m周边坐标点与Pt m的最小代价值的点P’,将该点从T1中删除并加入到T2中;
步骤八,跳至步骤五,以P’作为Pc m循环上述步骤,直到T1中存在Pt m时结束,通过Pt m父节点找到Pc m到目标点Pt m的路径T3;同时,如果T1中已经没有数据,说明不存在Pc m到Pt m的路径,则临时将所有不可通过的点标记为可通过,通过步骤五寻找到原始路径,将当前Pt m与路径中不可通过的点的Pt m依次进行交替,再次循环步骤五;
步骤九,整合T3中的节点信息得到路径信息PT1…Tm,取Pc m与路径PT1…Tm的第一条直线节点作为路径P’T1…Tm,并将P’T1…Tm路径上的点标记为不可通过;
步骤十,找到无人机临时目标点P’T1…Tm路径终点,待无人机飞到该点后,并将P’T1…Tm路径除终点外的点标记为可通过,记当前P’T1…Tm路径终点为Pc m
步骤十一,重复步骤五,直到Pc m等于Pt m为止。
2.根据权利要求1所述的蜂群无人机AI航站楼算法,其特征是:无人机水平移动一单元格的代价为C,垂直移动一单元格的代价为2C,斜方向水平移动一单元格的代价为1.5C,斜方向上下移动一单元格的代价为2.5C。
3.根据权利要求1所述的蜂群无人机AI航站楼算法,其特征是:执行到步骤十后,无人机已完成单次路径移动,再次通过执行步骤五到步骤十一刷新无人机到达目标点的最佳路径,直到Pc m等于Pt m,这样,保证了无人机在每次都是以最优路径进行移动。
CN201910570111.9A 2019-06-27 2019-06-27 一种蜂群无人机ai航站楼算法 Active CN110399969B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910570111.9A CN110399969B (zh) 2019-06-27 2019-06-27 一种蜂群无人机ai航站楼算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910570111.9A CN110399969B (zh) 2019-06-27 2019-06-27 一种蜂群无人机ai航站楼算法

Publications (2)

Publication Number Publication Date
CN110399969A true CN110399969A (zh) 2019-11-01
CN110399969B CN110399969B (zh) 2022-09-09

Family

ID=68324324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910570111.9A Active CN110399969B (zh) 2019-06-27 2019-06-27 一种蜂群无人机ai航站楼算法

Country Status (1)

Country Link
CN (1) CN110399969B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075717A (zh) * 2014-01-21 2014-10-01 武汉吉嘉伟业科技发展有限公司 一种基于改进a*算法的无人机航线规划算法
CN107677273A (zh) * 2017-09-11 2018-02-09 哈尔滨工程大学 一种基于二维栅格划分的集群无人机多航迹规划方法
CN108459616A (zh) * 2018-03-07 2018-08-28 西安电子科技大学 基于人工蜂群算法的无人机群协同覆盖航路规划方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075717A (zh) * 2014-01-21 2014-10-01 武汉吉嘉伟业科技发展有限公司 一种基于改进a*算法的无人机航线规划算法
CN107677273A (zh) * 2017-09-11 2018-02-09 哈尔滨工程大学 一种基于二维栅格划分的集群无人机多航迹规划方法
CN108459616A (zh) * 2018-03-07 2018-08-28 西安电子科技大学 基于人工蜂群算法的无人机群协同覆盖航路规划方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.A.BORTOFF: "path planning for UAVs", 《AMERICAN CONTROL CONFERENCE(ACC)》 *
占伟伟 等: "一种利用改进A*算法的无人机航迹规划", 《武汉大学学报》 *

Also Published As

Publication number Publication date
CN110399969B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Zhen et al. Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization
CN108958285B (zh) 一种基于分解思想的高效多无人机协同航迹规划方法
CN108983823B (zh) 一种植保无人机集群协同控制方法
CN106873599A (zh) 基于蚁群算法和极坐标变换的无人自行车路径规划方法
CN110570694B (zh) 一种基于空域分裂的时空关联航路碰撞解决方法
CN115079705A (zh) 基于改进a星融合dwa优化算法的巡检机器人路径规划方法
CN107491087B (zh) 一种基于碰撞锥的无人机编队避障优先级在线配置方法
CN112379697B (zh) 轨迹规划方法、装置、轨迹规划器、无人机及存储介质
CN114217632B (zh) 自适应容错无人机跟踪巡航系统及方法
CN110471419A (zh) 一种基于差分进化烟花算法的多机器人协同路径规划方法
Wu et al. Vision-based target detection and tracking system for a quadcopter
Song et al. A survey of three-dimensional flight path planning for unmanned aerial vehicle
CN110823223A (zh) 一种无人机群的路径规划方法及装置
CN113375672B (zh) 一种无人飞行器的高实时航迹避让方法及系统
CN110399969A (zh) 一种蜂群无人机ai航站楼算法
CN116822362B (zh) 一种基于粒子群算法的无人机无冲突四维航迹规划方法
CN105865457B (zh) 一种基于文化算法的动态环境下航迹规划方法
Han et al. Research on UAV indoor path planning algorithm based on global subdivision grids
CN116880561A (zh) 基于改进粒子群无人机路径规划安全增强的优化方法及系统
CN116518982A (zh) 一种低空林业监测遥感无人机路径多目标规划方法
CN111121804A (zh) 一种具有安全性约束的智能车辆路径规划方法及系统
Du et al. Adaptive separation thresholds for self-separation of unmanned aircraft system in dynamic airspace
Chen et al. A Two‐Stage Method for UCAV TF/TA Path Planning Based on Approximate Dynamic Programming
Wang et al. UAV online path planning based on improved genetic algorithm with optimized search region
Sun et al. A novel A* method fusing bio-inspired algorithm for mobile robot path planning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220803

Address after: Between mountains and lakes, Huashan Country Garden Eco-city, Hongshan District, Wuhan City, Hubei Province 430070

Applicant after: Wang Zhipeng

Address before: 4th Floor, Production and Research Building, No. 2, No. 20, Daxueyuan Road, Donghu New Technology Development Zone, Wuhan City, Hubei Province, 430000

Applicant before: WUHAN LIESUN TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant