CN110398734A - Distributed SAR Formation Configuration Autonomous maintenance control method - Google Patents
Distributed SAR Formation Configuration Autonomous maintenance control method Download PDFInfo
- Publication number
- CN110398734A CN110398734A CN201910590873.5A CN201910590873A CN110398734A CN 110398734 A CN110398734 A CN 110398734A CN 201910590873 A CN201910590873 A CN 201910590873A CN 110398734 A CN110398734 A CN 110398734A
- Authority
- CN
- China
- Prior art keywords
- configuration
- star
- plane
- formula
- control method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9021—SAR image post-processing techniques
- G01S13/9023—SAR image post-processing techniques combined with interferometric techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
- G01S13/9058—Bistatic or multistatic SAR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910590873.5A CN110398734B (en) | 2019-07-02 | 2019-07-02 | Distributed SAR formation configuration autonomous maintenance control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910590873.5A CN110398734B (en) | 2019-07-02 | 2019-07-02 | Distributed SAR formation configuration autonomous maintenance control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110398734A true CN110398734A (en) | 2019-11-01 |
CN110398734B CN110398734B (en) | 2021-04-06 |
Family
ID=68323703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910590873.5A Active CN110398734B (en) | 2019-07-02 | 2019-07-02 | Distributed SAR formation configuration autonomous maintenance control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110398734B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114229038A (en) * | 2021-12-13 | 2022-03-25 | 中山大学 | Formation configuration reconstruction control method based on J2 perturbation active utilization |
CN114933028A (en) * | 2022-07-21 | 2022-08-23 | 北京航天驭星科技有限公司 | Dual-star-orbit control strategy control method and device, electronic equipment and storage medium |
CN115129075A (en) * | 2022-06-28 | 2022-09-30 | 上海交通大学 | Three-dimensional imaging satellite formation control starting and controlling method based on time-space combination mechanism |
CN115292805A (en) * | 2022-07-04 | 2022-11-04 | 上海交通大学 | SAR imaging multi-satellite formation step-by-step decoupling design method with uniformly distributed baselines |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101520511A (en) * | 2009-03-13 | 2009-09-02 | 北京航空航天大学 | Method for formation configuration of distributed satellites with synthetic aperture radars |
CN103257653A (en) * | 2013-05-22 | 2013-08-21 | 上海新跃仪表厂 | Satellite team configuring control method based on fuel consumption optimization |
CN103676955A (en) * | 2013-12-19 | 2014-03-26 | 北京航空航天大学 | Satellite autonomous orbit control system for achieving distributed formation flight |
CN104142686A (en) * | 2014-07-16 | 2014-11-12 | 北京控制工程研究所 | Autonomous formation flight control method for satellites |
CN107168372A (en) * | 2017-06-30 | 2017-09-15 | 清华大学 | Satellite based on in-orbit parameter identification and biasing is with flying secular perturbation compensation method |
CN107193290A (en) * | 2017-08-03 | 2017-09-22 | 上海航天控制技术研究所 | The satellites formation payload relative position control method exchanged based on linear momentum |
-
2019
- 2019-07-02 CN CN201910590873.5A patent/CN110398734B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101520511A (en) * | 2009-03-13 | 2009-09-02 | 北京航空航天大学 | Method for formation configuration of distributed satellites with synthetic aperture radars |
CN103257653A (en) * | 2013-05-22 | 2013-08-21 | 上海新跃仪表厂 | Satellite team configuring control method based on fuel consumption optimization |
CN103676955A (en) * | 2013-12-19 | 2014-03-26 | 北京航空航天大学 | Satellite autonomous orbit control system for achieving distributed formation flight |
CN104142686A (en) * | 2014-07-16 | 2014-11-12 | 北京控制工程研究所 | Autonomous formation flight control method for satellites |
CN107168372A (en) * | 2017-06-30 | 2017-09-15 | 清华大学 | Satellite based on in-orbit parameter identification and biasing is with flying secular perturbation compensation method |
CN107193290A (en) * | 2017-08-03 | 2017-09-22 | 上海航天控制技术研究所 | The satellites formation payload relative position control method exchanged based on linear momentum |
Non-Patent Citations (3)
Title |
---|
张锦绣 等: "基于平均轨道要素的干涉SAR编队构形设计方法研究", 《宇航学报》 * |
杜耀珂 等: "InSAR卫星编队构型的e/i矢量设计方法", 《上海航天》 * |
王有亮 等: "微小卫星编队飞行解析构型维持控制方法", 《空间科学学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114229038A (en) * | 2021-12-13 | 2022-03-25 | 中山大学 | Formation configuration reconstruction control method based on J2 perturbation active utilization |
CN114229038B (en) * | 2021-12-13 | 2023-05-12 | 中山大学 | Formation configuration reconstruction control method based on J2 perturbation active utilization |
CN115129075A (en) * | 2022-06-28 | 2022-09-30 | 上海交通大学 | Three-dimensional imaging satellite formation control starting and controlling method based on time-space combination mechanism |
CN115292805A (en) * | 2022-07-04 | 2022-11-04 | 上海交通大学 | SAR imaging multi-satellite formation step-by-step decoupling design method with uniformly distributed baselines |
CN115292805B (en) * | 2022-07-04 | 2023-06-02 | 上海交通大学 | SAR imaging multi-star formation step-by-step decoupling design method with uniform baseline distribution |
CN114933028A (en) * | 2022-07-21 | 2022-08-23 | 北京航天驭星科技有限公司 | Dual-star-orbit control strategy control method and device, electronic equipment and storage medium |
CN114933028B (en) * | 2022-07-21 | 2022-11-11 | 北京航天驭星科技有限公司 | Dual-star-orbit control strategy control method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN110398734B (en) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110398734A (en) | Distributed SAR Formation Configuration Autonomous maintenance control method | |
RU2199803C2 (en) | Improvement of remote-probing or remote- communication space vehicles | |
Wolf et al. | Performance trades for Mars pinpoint landing | |
Dwyer-Cianciolo et al. | Defining navigation requirements for future missions | |
Buckreuss et al. | TerraSAR-X and TanDEM-X mission status | |
Carson et al. | Flight testing alhat precision landing technologies integrated onboard the morpheus rocket vehicle | |
Kos et al. | Altair descent and ascent reference trajectory design and initial dispersion analyses | |
Sostaric | Powered descent trajectory guidance and some considerations for human lunar landing | |
Brady et al. | ALHAT system architecture and operational concept | |
Lee et al. | Preliminary design of the guidance, navigation, and control system of the Altair Lunar lander | |
Adams et al. | Passive optical terrain relative navigation using APLNav | |
Wood | The evolution of deep space navigation: 1999–2004 | |
Lockwood et al. | Entry system design considerations for Mars landers | |
Wood | The Evolution of Deep Space Navigation: 2004–2006 | |
Balogh et al. | Missions to Mercury | |
Cacciatore et al. | The Design of the GNC of the Re-entry Module of Space Rider | |
Utama et al. | A green propulsion system requirement for LAPAN-A4 | |
Mimasu et al. | Hayabusa2 operation for MASCOT delivery to Ryugu surface | |
Wood | The Evolution of Deep Space Navigation: 1989-1999 | |
Sun et al. | Skip re-entry trajectory detection in aero-assisted orbit transfer | |
Gay et al. | Historical Retrospective on Orion GNC Design | |
Huang et al. | Tianwen-1 Entry, Descent, and Landing Guidance, Navigation, and Control System Design and Validation | |
Zimmermann et al. | Comparison of guidance concepts for a semi-ballistic reentry capsule | |
Nazarov | Control of the tandem configuration geometry in the bistatic interferometric survey | |
Bucchioni et al. | Realistic Guidance Performances during Lunar Rendezvous with the Third Body Perturbation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Shao Xiaowei Inventor after: Chen Li Inventor after: Zhang Dexin Inventor after: Sun Ran Inventor after: Chen Zhonghua Inventor after: Li Pengyu Inventor after: Chen Xiaoping Inventor after: Zhao Di Inventor before: Shao Xiaowei Inventor before: Zhang Dexin Inventor before: Sun Ran Inventor before: Chen Zhonghua Inventor before: Li Pengyu Inventor before: Chen Xiaoping Inventor before: Zhao Di |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |