CN110390249A - 利用卷积神经网络提取关于场景的动态信息的装置和方法 - Google Patents
利用卷积神经网络提取关于场景的动态信息的装置和方法 Download PDFInfo
- Publication number
- CN110390249A CN110390249A CN201910312450.7A CN201910312450A CN110390249A CN 110390249 A CN110390249 A CN 110390249A CN 201910312450 A CN201910312450 A CN 201910312450A CN 110390249 A CN110390249 A CN 110390249A
- Authority
- CN
- China
- Prior art keywords
- data
- scene
- sequence
- module
- multidate information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 114
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000004044 response Effects 0.000 claims abstract description 6
- 230000011218 segmentation Effects 0.000 claims description 31
- 238000013528 artificial neural network Methods 0.000 claims description 15
- 230000033001 locomotion Effects 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 8
- 230000000306 recurrent effect Effects 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 description 34
- 238000005070 sampling Methods 0.000 description 26
- 238000012545 processing Methods 0.000 description 19
- 230000002123 temporal effect Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000284 extract Substances 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241001269238 Data Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- XGVXKJKTISMIOW-ZDUSSCGKSA-N simurosertib Chemical compound N1N=CC(C=2SC=3C(=O)NC(=NC=3C=2)[C@H]2N3CCC(CC3)C2)=C1C XGVXKJKTISMIOW-ZDUSSCGKSA-N 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/94—Hardware or software architectures specially adapted for image or video understanding
- G06V10/95—Hardware or software architectures specially adapted for image or video understanding structured as a network, e.g. client-server architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
- G06V20/42—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items of sport video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18168786.4 | 2018-04-23 | ||
EP18168786.4A EP3561727A1 (en) | 2018-04-23 | 2018-04-23 | A device and a method for extracting dynamic information on a scene using a convolutional neural network |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110390249A true CN110390249A (zh) | 2019-10-29 |
Family
ID=62046765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910312450.7A Pending CN110390249A (zh) | 2018-04-23 | 2019-04-18 | 利用卷积神经网络提取关于场景的动态信息的装置和方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11195038B2 (zh) |
EP (1) | EP3561727A1 (zh) |
CN (1) | CN110390249A (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10678240B2 (en) * | 2016-09-08 | 2020-06-09 | Mentor Graphics Corporation | Sensor modification based on an annotated environmental model |
US11615285B2 (en) | 2017-01-06 | 2023-03-28 | Ecole Polytechnique Federale De Lausanne (Epfl) | Generating and identifying functional subnetworks within structural networks |
EP3495988A1 (en) | 2017-12-05 | 2019-06-12 | Aptiv Technologies Limited | Method of processing image data in a connectionist network |
EP3561726A1 (en) | 2018-04-23 | 2019-10-30 | Aptiv Technologies Limited | A device and a method for processing data sequences using a convolutional neural network |
US11972343B2 (en) | 2018-06-11 | 2024-04-30 | Inait Sa | Encoding and decoding information |
US11663478B2 (en) | 2018-06-11 | 2023-05-30 | Inait Sa | Characterizing activity in a recurrent artificial neural network |
US11893471B2 (en) | 2018-06-11 | 2024-02-06 | Inait Sa | Encoding and decoding information and artificial neural networks |
US11521009B2 (en) | 2018-09-04 | 2022-12-06 | Luminar, Llc | Automatically generating training data for a lidar using simulated vehicles in virtual space |
US11569978B2 (en) | 2019-03-18 | 2023-01-31 | Inait Sa | Encrypting and decrypting information |
US11652603B2 (en) | 2019-03-18 | 2023-05-16 | Inait Sa | Homomorphic encryption |
DE102019218349A1 (de) * | 2019-11-27 | 2021-05-27 | Robert Bosch Gmbh | Verfahren zum Klassifizieren von zumindest einem Ultraschallecho aus Echosignalen |
US11651210B2 (en) | 2019-12-11 | 2023-05-16 | Inait Sa | Interpreting and improving the processing results of recurrent neural networks |
US11580401B2 (en) | 2019-12-11 | 2023-02-14 | Inait Sa | Distance metrics and clustering in recurrent neural networks |
US11816553B2 (en) | 2019-12-11 | 2023-11-14 | Inait Sa | Output from a recurrent neural network |
US11797827B2 (en) * | 2019-12-11 | 2023-10-24 | Inait Sa | Input into a neural network |
KR20210106864A (ko) | 2020-02-20 | 2021-08-31 | 삼성전자주식회사 | 레이더 신호에 기초한 오브젝트 검출 방법 및 장치 |
US11508147B2 (en) * | 2020-03-06 | 2022-11-22 | Google Llc | Streaming object detection within sensor data |
US20210282033A1 (en) * | 2020-03-09 | 2021-09-09 | Psj International Ltd. | Positioning system for integrating machine learning positioning models and positioning method for the same |
CN113177733B (zh) * | 2021-05-20 | 2023-05-02 | 北京信息科技大学 | 基于卷积神经网络的中小微企业数据建模方法及系统 |
CN115019038B (zh) * | 2022-05-23 | 2024-04-30 | 杭州海马体摄影有限公司 | 一种相似图像像素级语义匹配方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107341452A (zh) * | 2017-06-20 | 2017-11-10 | 东北电力大学 | 基于四元数时空卷积神经网络的人体行为识别方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9902115D0 (en) * | 1999-02-01 | 1999-03-24 | Axeon Limited | Neural networks |
US20160283864A1 (en) | 2015-03-27 | 2016-09-29 | Qualcomm Incorporated | Sequential image sampling and storage of fine-tuned features |
CN105628951B (zh) * | 2015-12-31 | 2019-11-19 | 北京迈格威科技有限公司 | 用于测量对象的速度的方法和装置 |
US10242266B2 (en) * | 2016-03-02 | 2019-03-26 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for detecting actions in videos |
US9760806B1 (en) * | 2016-05-11 | 2017-09-12 | TCL Research America Inc. | Method and system for vision-centric deep-learning-based road situation analysis |
US10902343B2 (en) * | 2016-09-30 | 2021-01-26 | Disney Enterprises, Inc. | Deep-learning motion priors for full-body performance capture in real-time |
CN108073933B (zh) * | 2016-11-08 | 2021-05-25 | 杭州海康威视数字技术股份有限公司 | 一种目标检测方法及装置 |
US10701394B1 (en) * | 2016-11-10 | 2020-06-30 | Twitter, Inc. | Real-time video super-resolution with spatio-temporal networks and motion compensation |
US20180211403A1 (en) * | 2017-01-20 | 2018-07-26 | Ford Global Technologies, Llc | Recurrent Deep Convolutional Neural Network For Object Detection |
US10445928B2 (en) * | 2017-02-11 | 2019-10-15 | Vayavision Ltd. | Method and system for generating multidimensional maps of a scene using a plurality of sensors of various types |
US11049018B2 (en) * | 2017-06-23 | 2021-06-29 | Nvidia Corporation | Transforming convolutional neural networks for visual sequence learning |
US10210391B1 (en) * | 2017-08-07 | 2019-02-19 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for detecting actions in videos using contour sequences |
US10705531B2 (en) * | 2017-09-28 | 2020-07-07 | Nec Corporation | Generative adversarial inverse trajectory optimization for probabilistic vehicle forecasting |
US10924755B2 (en) * | 2017-10-19 | 2021-02-16 | Arizona Board Of Regents On Behalf Of Arizona State University | Real time end-to-end learning system for a high frame rate video compressive sensing network |
EP3495988A1 (en) | 2017-12-05 | 2019-06-12 | Aptiv Technologies Limited | Method of processing image data in a connectionist network |
EP3525000B1 (en) * | 2018-02-09 | 2021-07-21 | Bayerische Motoren Werke Aktiengesellschaft | Methods and apparatuses for object detection in a scene based on lidar data and radar data of the scene |
EP3561726A1 (en) | 2018-04-23 | 2019-10-30 | Aptiv Technologies Limited | A device and a method for processing data sequences using a convolutional neural network |
DE112018007721T5 (de) * | 2018-06-14 | 2021-04-01 | Intel Corporation | Aufnehmen und modifizieren von 3D-Gesichtern unter Verwendung neuronaler Bild-und Zeitverfolgungsnetze |
-
2018
- 2018-04-23 EP EP18168786.4A patent/EP3561727A1/en active Pending
-
2019
- 2019-04-03 US US16/374,138 patent/US11195038B2/en active Active
- 2019-04-18 CN CN201910312450.7A patent/CN110390249A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107341452A (zh) * | 2017-06-20 | 2017-11-10 | 东北电力大学 | 基于四元数时空卷积神经网络的人体行为识别方法 |
Non-Patent Citations (3)
Title |
---|
JULIE DEQUAIRE: "Deep tracking in the wild: End-to-end tracking using recurrent neural networks", 《 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH》 * |
JULIE DEQUAIRE: "Deep tracking in the wild: End-to-end tracking using recurrent neural networks", 《THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH》 * |
OKMAKOV: "teaming Video Object Segmentation with Visual Memory", 《2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION》 * |
Also Published As
Publication number | Publication date |
---|---|
US11195038B2 (en) | 2021-12-07 |
EP3561727A1 (en) | 2019-10-30 |
US20190325241A1 (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110390249A (zh) | 利用卷积神经网络提取关于场景的动态信息的装置和方法 | |
Gallego et al. | Event-based vision: A survey | |
Dabral et al. | Learning 3d human pose from structure and motion | |
CN107305635A (zh) | 对象识别方法、对象识别装置和分类器训练方法 | |
CN115082855B (zh) | 基于改进yolox算法的行人遮挡检测方法 | |
JP2021061573A (ja) | 撮像システム、撮像に関する方法、標的を撮像するための撮像システム、およびテンプレートを用いて取得された動的情景の強度画像、及び非同期的に取得されたイベントデータを処理する方法 | |
Bashirov et al. | Real-time rgbd-based extended body pose estimation | |
CN103295221B (zh) | 模拟复眼视觉机制和偏振成像的水面目标运动检测方法 | |
CN103984955B (zh) | 基于显著性特征和迁移增量学习的多摄像机目标识别方法 | |
CN107680116A (zh) | 一种监测视频图像中运动目标的方法 | |
US11804026B2 (en) | Device and a method for processing data sequences using a convolutional neural network | |
Wang et al. | MCF3D: Multi-stage complementary fusion for multi-sensor 3D object detection | |
CN113807183A (zh) | 模型训练方法及相关设备 | |
Zhang et al. | Joint motion information extraction and human behavior recognition in video based on deep learning | |
CN113065575A (zh) | 一种图像处理方法及相关装置 | |
Cao et al. | Learning spatial-temporal representation for smoke vehicle detection | |
Wang et al. | Paul: Procrustean autoencoder for unsupervised lifting | |
Baisware et al. | Review on recent advances in human action recognition in video data | |
CN114494594B (zh) | 基于深度学习的航天员操作设备状态识别方法 | |
Zhang et al. | EventMD: High-speed moving object detection based on event-based video frames | |
Andersen et al. | Event-based navigation for autonomous drone racing with sparse gated recurrent network | |
Khow et al. | Improved YOLOv8 Model for a comprehensive approach to object detection and distance estimation | |
Wu et al. | Joint feature embedding learning and correlation filters for aircraft tracking with infrared imagery | |
Patel et al. | A survey on Pose Estimation using Deep Convolutional Neural Networks | |
CN116883961A (zh) | 一种目标感知方法以及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: Luxembourg Address after: Luxembourg Applicant after: Aptiv Technology (2) Co. Address before: Babado J San Michael Applicant before: Aptiv Technologies Ltd. Country or region before: Barbados |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240227 Address after: Luxembourg Applicant after: Aptiv Manufacturing Management Services Co. Country or region after: Luxembourg Address before: Luxembourg Applicant before: Aptiv Technology (2) Co. Country or region before: Luxembourg |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240321 Address after: Schaffhausen Applicant after: APTIV Technology Co.,Ltd. Country or region after: Switzerland Address before: Luxembourg Applicant before: Aptiv Manufacturing Management Services Co. Country or region before: Luxembourg |