CN110389152B - Dust explosion simulation testing device and operation method thereof - Google Patents
Dust explosion simulation testing device and operation method thereof Download PDFInfo
- Publication number
- CN110389152B CN110389152B CN201910687644.5A CN201910687644A CN110389152B CN 110389152 B CN110389152 B CN 110389152B CN 201910687644 A CN201910687644 A CN 201910687644A CN 110389152 B CN110389152 B CN 110389152B
- Authority
- CN
- China
- Prior art keywords
- section
- pipe section
- pressure sensor
- pipe
- flameproof
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000428 dust Substances 0.000 title claims abstract description 106
- 238000004880 explosion Methods 0.000 title claims abstract description 52
- 238000012360 testing method Methods 0.000 title claims abstract description 45
- 238000004088 simulation Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims description 19
- 239000000843 powder Substances 0.000 claims abstract description 102
- 238000004891 communication Methods 0.000 claims abstract description 40
- 238000012545 processing Methods 0.000 claims abstract description 23
- 238000005474 detonation Methods 0.000 claims abstract description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 26
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 13
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 5
- 238000005219 brazing Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000011017 operating method Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 238000012795 verification Methods 0.000 abstract description 4
- 238000011835 investigation Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 25
- 230000006872 improvement Effects 0.000 description 20
- 230000008569 process Effects 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/50—Investigating or analyzing materials by the use of thermal means by investigating flash-point; by investigating explosibility
- G01N25/54—Investigating or analyzing materials by the use of thermal means by investigating flash-point; by investigating explosibility by determining explosibility
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及粉体工业超压爆炸防护技术领域,具体涉及一种可模拟实际工况的粉体爆炸能量实时监测与标定装置的粉尘爆炸模拟测试装置及其操作方法。The invention relates to the technical field of powder industrial overpressure explosion protection, in particular to a dust explosion simulation test device and an operation method thereof, which can simulate actual working conditions for a real-time monitoring and calibration device for powder explosion energy.
背景技术Background technique
以粉体为主要操作介质的粉体工业广泛存在着具有高流速、高氧含量、高堆积压力性质的工艺物料及产品。通常情况下粉体工业设备均是带压操作,并使用压力容器或空压机械来储存或运输相关工艺物料。一旦受到外界环境的波动或者人为操作的失误,相关设备很容易出现静电或超温的安全隐患,严重会造成剧烈的爆炸。为保证生产过程的安全性与意外情况下的可控性,工业上通常采取超压泄放或主动喷淋装置作为防护技术手段。但由于粉尘行业中,粉体发生爆炸的影响因素太多,尤其是相应的气固两相流的流速与运输过程中的压差动力难以模拟,发生爆炸后无法确定实际的危害程度。因此安全装备的考核标准大多根据经验与理论值来推导,相关测试也只采用没有初始流速与压差的隔爆罐体来进行,造成行业内的评价标准难以统一。当事故发生后,也没有相应的技术手段再现粉尘爆炸的内在机理。In the powder industry with powder as the main operating medium, there are widespread process materials and products with high flow rate, high oxygen content and high accumulation pressure. Usually, powder industrial equipment is operated under pressure, and pressure vessels or air compressors are used to store or transport related process materials. Once subject to fluctuations in the external environment or human error, the related equipment is prone to potential safety hazards such as static electricity or overheating, which may seriously cause a violent explosion. In order to ensure the safety of the production process and the controllability in unexpected situations, the industry usually adopts overpressure relief or active spray devices as protective technical means. However, in the dust industry, there are too many factors that affect the explosion of powder, especially the flow velocity of the corresponding gas-solid two-phase flow and the pressure difference power during transportation are difficult to simulate, and the actual degree of harm cannot be determined after the explosion. Therefore, the assessment standards of safety equipment are mostly deduced based on experience and theoretical values, and the relevant tests are only carried out with explosion-proof tanks without initial flow rate and pressure difference, which makes it difficult to unify the evaluation standards in the industry. After the accident, there is no corresponding technical means to reproduce the internal mechanism of dust explosion.
我国研究人员在相关研究的基础上提出了一些理想条件下的测试方法,但是目前可以模拟出实际工况下粉体设备的流速与压力,并实现在线采集与记录的试验装置及方法的专利几乎处于空白状态。目前可以同该领域相联系的专利有:On the basis of relevant research, Chinese researchers have proposed some test methods under ideal conditions, but at present, the flow rate and pressure of powder equipment under actual working conditions can be simulated, and the patent of test device and method for online acquisition and recording is almost the same. in a blank state. The patents that can currently be associated with this field are:
一种粉尘爆炸参数试验测试装置(专利号:CN201620163426.3),其公开了一种使用耐压罐体在无流速与压差的理想条件下对粉尘爆炸特性参数进行采集的试验装置。一种组合式工业粉尘爆炸模拟演示系统(专利号:CN201710182029.X),其公开了一种使用可编程序逻辑控制器作为采集系统的组合式粉尘爆炸演示系统。粉尘爆炸火焰的传播行为观测实验系统(专利号:CN201710205389.7),其公开了一种使用风机扬尘的小型粉尘爆炸观测系统。但是上述专利公开的系统的采集系统架构均为普通采集频率的商业模块,并且对于现代工业中普遍采用的负压式除尘或供粉系统,缺乏流体力学上的比对与模拟效果。A dust explosion parameter test device (patent number: CN201620163426.3), which discloses a test device for collecting dust explosion characteristic parameters using a pressure-resistant tank under ideal conditions of no flow rate and pressure difference. A combined industrial dust explosion simulation demonstration system (patent number: CN201710182029.X), which discloses a combined dust explosion demonstration system using a programmable logic controller as an acquisition system. An experimental system for observing the propagation behavior of dust explosion flames (patent number: CN201710205389.7), which discloses a small dust explosion observation system using a fan to raise dust. However, the acquisition system architecture of the system disclosed in the above patent is a commercial module with common acquisition frequency, and the negative pressure dust removal or powder supply system commonly used in modern industry lacks the comparison and simulation effect of fluid mechanics.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于克服现有技术缺陷,提供一种可模拟实际工况的粉体爆炸能量实时监测与标定装置的粉尘爆炸模拟测试装置及其操作方法。The technical problem to be solved by the present invention is to overcome the defects of the prior art, and to provide a dust explosion simulation test device and an operation method thereof, which can simulate the actual working condition of the powder explosion energy real-time monitoring and calibration device.
为了解决上述技术问题,本发明提供的粉尘爆炸模拟测试装置,包括机械结构部分、电控采集部分。In order to solve the above technical problems, the dust explosion simulation test device provided by the present invention includes a mechanical structure part and an electric control acquisition part.
机械结构部分包括依次连接的入口隔爆管段、起爆管段、模拟管段及出口隔爆管段,上述依次连接顺序也是管段内部的气流流向顺序。起爆管段上设有供粉罐,模拟管段上设有加粉口。The mechanical structure part includes the inlet flameproof tube section, the detonator tube section, the simulated tube section and the outlet flameproof tube section, which are connected in sequence. A powder supply tank is arranged on the detonating tube section, and a powder feeding port is arranged on the simulated tube section.
电控采集部分包括通讯模块,以及分别与通讯模块连接的点火器、压力传感器A、压力传感器B、压力传感器C及数据处理服务器。The electronic control acquisition part includes a communication module, an igniter, a pressure sensor A, a pressure sensor B, a pressure sensor C and a data processing server respectively connected with the communication module.
起爆管段分别与点火器、压力传感器A连接,模拟管段与压力传感器B连接,出口隔爆管段与压力传感器C连接,供粉罐与通讯模块连接。The detonating pipe section is connected with the igniter and the pressure sensor A, the simulated pipe section is connected with the pressure sensor B, the outlet flameproof pipe section is connected with the pressure sensor C, and the powder supply tank is connected with the communication module.
作为改进,机械结构部分还包括依次连接的风管、除尘收集器及离心除尘风机;风管与出口隔爆管段连接。As an improvement, the mechanical structure part also includes an air duct, a dust collector and a centrifugal dedusting fan connected in sequence; the air duct is connected with the outlet flameproof pipe section.
作为改进,除尘收集器采用布袋除尘收集器,离心除尘风机的进气口处设置过滤网。As an improvement, the dust collector adopts a bag dust collector, and a filter screen is set at the air inlet of the centrifugal dust collector.
作为改进,压力传感器A、压力传感器B及压力传感器C均采用高频动态压力传感器。As an improvement, pressure sensor A, pressure sensor B and pressure sensor C all use high-frequency dynamic pressure sensors.
作为改进,模拟管段、出口隔爆管段之间设有透明观察管段。As an improvement, a transparent observation pipe section is provided between the simulated pipe section and the outlet flameproof pipe section.
作为改进,入口隔爆管段的气流入口处、出口隔爆管段的气流出口处分别安装有被动板式隔爆阀。As an improvement, passive plate-type flameproof valves are respectively installed at the airflow inlet of the inlet flameproof pipe section and the airflow outlet of the outlet flameproof pipe section.
作为改进,起爆管段的外壁开孔并设置外接管;供粉罐的出口设置快开电磁阀,快开电磁阀与外接管连接。As an improvement, the outer wall of the detonating pipe section is opened with an outer pipe; the outlet of the powder supply tank is provided with a quick-opening solenoid valve, which is connected to the outer pipe.
作为改进,所述起爆管段采用矩形管或圆形管;沿气流方向,为了防止大颗粒粉尘沉降速度过快,使得点火位置远离粉尘云的中心部分,起爆管段的外接管距离起爆管段的气流入口处的长度与圆形的起爆管段的截面内径或矩形的起爆管段的截面最小边长的比例不小于2:1,起爆管段的外接管距离起爆管段的气流出口处的长度与圆形的起爆管段的截面内径或矩形的起爆管段的截面最小边长的比例不大于3:1。As an improvement, the detonating tube section adopts a rectangular tube or a circular tube; along the air flow direction, in order to prevent the sedimentation speed of large particles of dust from being too fast, the ignition position is kept away from the central part of the dust cloud, and the outer nozzle of the detonating tube section is away from the air flow inlet of the detonating tube section. The ratio of the length of the detonator to the inner diameter of the section of the circular detonator section or the minimum side length of the section of the rectangular detonator section is not less than 2:1. The ratio of the inner diameter of the section or the minimum side length of the section of the rectangular detonator section is not greater than 3:1.
作为改进,点火器的点火端头安装在起爆管段的内壁,在气流流动方向上,点火器的点火端头相对于起爆管段的外接管距离与圆形的起爆管段的截面内径或矩形的起爆管段的截面最小边长的比例不大于1:1,用以保证点火端头位置尽量靠近粉尘云的中心位置。As an improvement, the ignition end of the igniter is installed on the inner wall of the detonator section. In the direction of airflow, the distance between the ignition end of the igniter relative to the outer nozzle of the detonator section and the inner diameter of the section of the circular detonator section or the rectangular detonator section The ratio of the minimum side length of the cross section is not more than 1:1, to ensure that the ignition end is as close to the center of the dust cloud as possible.
作为改进,点火器的点火端头处的开孔使用管螺纹或钎焊。As an improvement, pipe threads or brazing are used for the opening at the firing end of the igniter.
作为改进,点火器的电源部件采用本安防爆型。As an improvement, the power supply components of the igniter are of intrinsically safe explosion-proof type.
作为改进,为防止点火失败而造成的不利后果,并考虑到粉尘云扩散过程对点火能量的需求,点火器的点火能量不小于粉尘的理论最小点火能量的两倍。As an improvement, in order to prevent the unfavorable consequences caused by ignition failure, and taking into account the demand for ignition energy in the dust cloud diffusion process, the ignition energy of the igniter is not less than twice the theoretical minimum ignition energy of the dust.
作为改进,压力传感器A连接在起爆管段的侧壁上,压力传感器A的采集元件与起爆管段的内壁平齐;压力传感器B连接在模拟管段的侧壁上,压力传感器B的采集元件与模拟管段的内壁平齐;压力传感器C连接在出口隔爆管段的侧壁上,压力传感器C的采集元件与出口隔爆管段的内壁平齐。As an improvement, the pressure sensor A is connected to the side wall of the detonator section, and the acquisition element of the pressure sensor A is flush with the inner wall of the detonator section; the pressure sensor B is connected to the side wall of the simulated pipe section, and the acquisition element of the pressure sensor B is the same as the simulated pipe section. The inner wall of the pressure sensor C is connected to the side wall of the outlet flameproof pipe section, and the acquisition element of the pressure sensor C is flush with the inner wall of the outlet flameproof pipe section.
作为改进,模拟管段采用矩形管,其管体材料的抗拉强度σmin、矩形管的管壁厚δ、矩形管截面的最大边长Lr满足下式条件:As an improvement, a rectangular pipe is used for the simulated pipe section, and the tensile strength σ min of the pipe body material, the pipe wall thickness δ of the rectangular pipe, and the maximum side length L r of the rectangular pipe section satisfy the following conditions:
其中:Pmax为所选用的粉尘理论最大爆炸压力,单位为MPa。Among them: P max is the theoretical maximum explosion pressure of the selected dust, the unit is MPa.
作为改进,模拟管段采用圆形管,其管体材料的抗拉强度σmin、圆形管壁厚δ、圆形管外径Dr满足下列条件:As an improvement, a circular pipe is used for the simulated pipe section, and the tensile strength σ min of the pipe material, the wall thickness δ of the circular pipe, and the outer diameter D r of the circular pipe meet the following conditions:
其中:Pmax为所选用的粉尘理论最大爆炸压力,单位为MPa。Among them: P max is the theoretical maximum explosion pressure of the selected dust, the unit is MPa.
作为改进,加粉口数量≥1,为使在管段上的开孔无需另外进行补强,加粉口的开孔尺寸最大值不大于圆形的模拟管段的截面外径或矩形的模拟管段的截面最小边长的1/3,相邻的两个加粉口距离与圆形的模拟管段的截面内径或矩形的模拟管段的截面最小边长的比例不小于1:1。As an improvement, the number of powder feeding ports is greater than or equal to 1. In order to prevent the openings on the pipe section from needing to be reinforced, the maximum size of the openings of the powder feeding ports should not be greater than the cross-sectional outer diameter of the circular simulated pipe section or the size of the rectangular simulated pipe section. 1/3 of the minimum side length of the section, the ratio of the distance between two adjacent powder feeding ports and the inner diameter of the section of the circular simulated pipe segment or the minimum side length of the rectangular simulated pipe segment is not less than 1:1.
作为改进,通讯模块采用双绞线与数据处理服务器连接,通讯模块采用屏蔽线分别与供粉罐连接,通讯模块采用铜芯线与点火器连接。As an improvement, the communication module is connected to the data processing server by twisted pair wires, the communication module is connected to the powder supply tank by a shielded wire, and the communication module is connected to the igniter by a copper core wire.
上述粉尘爆炸模拟测试装置组装方法与校核方法包括以下步骤:The above-mentioned dust explosion simulation test device assembly method and verification method include the following steps:
1、将被动板式隔爆阀使用螺栓连接在入口隔爆管段的气流入口,被动板式隔爆阀的隔爆方向应当朝向入口隔爆管段的气流出口;入口隔爆管段的总长度必须大于所安装的被动板式隔爆阀的最小安全距离。1. Bolt the passive plate flameproof valve to the airflow inlet of the inlet flameproof pipe section. The flameproof direction of the passive plate flameproof valve should be towards the airflow outlet of the inlet flameproof pipe section; the total length of the inlet flameproof pipe section must be greater than the installed flameproof pipe section. The minimum safe distance of the passive plate flameproof valve.
2、入口隔爆管段的气流出口使用法兰连接在起爆管段的气流入口处,沿气流方向,在距离起爆管段的气流入口处的长度与圆形的起爆管段的截面内径或矩形的起爆管段的截面最小边长的比例不小于2:1的位置处开孔并设置外接管;起爆管段的气流出口处距离起爆管段的外接管距离与圆形的起爆管段的截面内径或矩形的起爆管段的截面最小边长的比例不应大于3:1。该外接管与供粉罐的粉体出口的快开电磁阀连接。2. The airflow outlet of the inlet detonator section is flanged to the airflow inlet of the detonator section. Along the airflow direction, the length from the airflow inlet of the detonator section is the same as the inner diameter of the section of the circular detonator section or the length of the rectangular detonator section. The ratio of the minimum side length of the section is not less than 2:1 and the outer nozzle is set; the distance between the air flow outlet of the detonator section and the outer nozzle of the detonator section and the inner diameter of the section of the circular detonator section or the section of the rectangular detonator section The ratio of the minimum side length should not be greater than 3:1. The outer pipe is connected with the quick-opening electromagnetic valve of the powder outlet of the powder supply tank.
3、起爆管段的气流流动方向上,相对于外接管距离与圆形的起爆管段的截面内径或矩形的起爆管段的截面最小边长的比例不大于1:1位置处开孔,用来设置点火器的点火端头。点火器的电源螺栓端子设置在起爆管段外壁,使用铜芯线与通讯模块的开关量出口连接,并确保点火器的电源部件为本安防爆型,点火器的点火端头处的开孔应当使用管螺纹或钎焊确保高压环境下不发生泄漏。3. In the air flow direction of the detonator section, the ratio of the distance from the outer nozzle to the inner diameter of the section of the circular detonator section or the minimum side length of the rectangular section of the detonator section is not greater than 1:1. The opening is used to set the ignition ignition terminal of the device. The power bolt terminal of the igniter is set on the outer wall of the detonating tube section, and the copper core wire is used to connect the switch output of the communication module, and ensure that the power supply part of the igniter is intrinsically safe and explosion-proof, and the opening at the ignition end of the igniter should be Pipe threads or brazing ensure no leakage in high pressure environments.
4、压力传感器A使用螺纹连接在起爆管段的侧壁上,具体位置可以根据需要和传感器耐受能力,在点火器的点火端头与起爆管段的气体出口之间自主选择。压力传感器A的采集元件应当与起爆管段的内壁平齐。4. The pressure sensor A is threaded on the side wall of the detonating tube section. The specific position can be independently selected between the ignition end of the igniter and the gas outlet of the detonating tube section according to the needs and the tolerance of the sensor. The acquisition element of pressure sensor A should be flush with the inner wall of the detonator section.
5、起爆管段的气体出口处使用法兰与模拟管段的气流入口处连接。模拟管段可以根据所需测试的管道形式、粉尘浓度、粉尘种类等参量的具体数值进行定制。5. The gas outlet of the detonating pipe section is connected with the gas inlet of the simulated pipe section using a flange. The simulated pipe section can be customized according to the specific values of the parameters such as the pipeline form, dust concentration, and dust type to be tested.
6、加粉口应当在模拟管段的外壁开孔并焊接安装,加粉口的个数可以不止一个,相邻的两个加粉口距离与圆形的模拟管段的截面内径或矩形的模拟管段的截面最小边长比例不小于1:1;加粉口的开孔尺寸最大值不能超过圆形的模拟管段的截面内径或矩形的模拟管段的截面最小边长的1/3;加粉口的粉体入口应当安装法兰边裙,并配置相应型号的法兰盖,进行实验时严格密封。6. The powder feeding port should be drilled on the outer wall of the simulated pipe section and installed by welding. The number of powder feeding ports can be more than one. The distance between the two adjacent powder feeding ports should be the same as the inner diameter of the section of the circular simulated pipe section or the rectangular simulated pipe section. The ratio of the minimum side length of the cross section shall not be less than 1:1; the maximum value of the opening size of the powder feeding port shall not exceed 1/3 of the inner diameter of the section of the circular simulated pipe section or the minimum side length of the rectangular simulated pipe section; The powder inlet should be installed with a flange skirt and equipped with a corresponding type of flange cover, which should be strictly sealed during the experiment.
7、压力传感器B使用螺纹连接在模拟管段的侧壁上,具体位置可以根据需要和传感器耐受能力,在模拟管段的气体入口与气体出口之间自主选择;压力传感器B的采集元件应当与模拟管段的内壁平齐。7. Pressure sensor B is threaded on the side wall of the simulated pipe section. The specific position can be independently selected between the gas inlet and gas outlet of the simulated pipe section according to the needs and sensor tolerance; The inner wall of the pipe segment is flush.
8、透明观察管段的气流入口通过法兰与粉尘环境模拟管段的气流出口连接。透明观察管段的气流出口通过法兰与出口隔爆管段的气流入口连接。8. The airflow inlet of the transparent observation pipe section is connected with the airflow outlet of the dust environment simulation pipe section through the flange. The air flow outlet of the transparent observation pipe section is connected to the air flow inlet of the outlet flameproof pipe section through a flange.
9、出口隔爆管段的气流出口使用螺栓安装被动板式隔爆阀,并且该隔爆阀的出口使用螺栓连接风管的气流入口;出口隔爆管段的总长度必须大于所安装的被动板式隔爆阀的最小安全距离。9. The airflow outlet of the outlet flameproof pipe section shall be bolted to install the passive plate type flameproof valve, and the outlet of the flameproof valve shall be bolted to the airflow inlet of the air duct; the total length of the outlet flameproof pipe section must be greater than the installed passive plate type flameproof valve The minimum safe distance for the valve.
10、压力传感器C使用螺纹连接在出口隔爆管段的侧壁上,具体位置可以根据需要和传感器耐受能力,在出口隔爆管段的气体入口与气体出口之间自主选择;压力传感器C的采集元件应当与出口隔爆管段的内壁平齐。10. The pressure sensor C is threaded on the side wall of the outlet flameproof pipe section. The specific position can be independently selected between the gas inlet and the gas outlet of the outlet flameproof pipe section according to the needs and the tolerance of the sensor; the acquisition of the pressure sensor C The element should be flush with the inner wall of the outlet flameproof pipe section.
11、风管的气流出口使用法兰与除尘收集器的气流入口连接;离心除尘风机与除尘收集器的气体出口连接。11. The airflow outlet of the air duct is connected with the airflow inlet of the dust collector by flange; the centrifugal dust collector is connected with the gas outlet of the dust collector.
12、通讯模块使用同轴电缆线与数据处理服务器连接;通讯模块与数据处理服务器采用同一套电源开关进行上电与断电。12. The communication module is connected to the data processing server using coaxial cables; the communication module and the data processing server use the same set of power switches for power-on and power-off.
本发明还提供上述粉尘爆炸模拟测试装置的操作方法,包括以下步骤:The present invention also provides an operation method of the above-mentioned dust explosion simulation test device, comprising the following steps:
步骤一:通过透明观察管段以及入口隔爆管段的气流入口确认粉尘爆炸模拟测试装置内部的洁净、干燥;确认入口隔爆管段气流入口处的被动板式隔爆阀与出口隔爆管段气流出口处的被动板式隔爆阀安装到位。Step 1: Confirm that the interior of the dust explosion simulation test device is clean and dry by transparently observing the pipe section and the airflow inlet of the inlet flameproof pipe section; confirm the passive plate flameproof valve at the airflow inlet of the inlet flameproof pipe section and the outlet of the outlet flameproof pipe section. The passive plate flameproof valve is installed in place.
步骤二:根据所要测量的粉体种类与理论质量浓度,通过加粉口向模拟管段内加入粉尘;所加入的粉尘质量应当不少于模拟管段的内腔体积与待测粉尘理论质量浓度的乘积;粉尘加完后密封加粉口。Step 2: According to the type of powder to be measured and the theoretical mass concentration, add dust into the simulated pipe section through the powder feeding port; the quality of the dust added should not be less than the product of the inner cavity volume of the simulated pipe section and the theoretical mass concentration of the dust to be measured ; Seal the powder port after adding the dust.
步骤三:打开通讯模块、数据处理服务器,对通讯模块设置压力信号采样频率与点火器相对于供粉罐供粉的点火延迟时间,并开始采集压力信号的变化。Step 3: Open the communication module and the data processing server, set the sampling frequency of the pressure signal and the ignition delay time of the igniter relative to the powder supply of the powder supply tank for the communication module, and start to collect the change of the pressure signal.
步骤四:打开供粉罐粉体出口处的快开电磁阀,在相应的点火延迟时间后点火器开始工作;压力传感器A、压力传感器B、压力传感器C将压力变化的情况传输至数据处理服务器实现数据的处理、记录、存储。Step 4: Open the quick-opening solenoid valve at the powder outlet of the powder supply tank, and the igniter starts to work after the corresponding ignition delay time; pressure sensor A, pressure sensor B, and pressure sensor C transmit the pressure change to the data processing server Realize data processing, recording and storage.
步骤五:当压力传感器A、压力传感器B、压力传感器C所测得的压力值恢复至测试前的压力值后,打开加粉口,向模拟管段内部加入碳酸氢钠粉体,碳酸氢钠粉体加入完毕后再次密封加粉口并静置半小时以上。Step 5: When the pressure values measured by pressure sensor A, pressure sensor B, and pressure sensor C return to the pressure value before the test, open the powder feeding port, and add sodium bicarbonate powder and sodium bicarbonate powder into the simulated pipe section. After the body is added, seal the powder filling port again and let it stand for more than half an hour.
步骤六:沿气流方向按管段拆解,清洁管体,将入口隔爆管段气流入口处的被动板式隔爆阀与出口隔爆管段气流出口处的被动板式隔爆阀归位。Step 6: Disassemble according to the pipe section along the air flow direction, clean the pipe body, and return the passive plate type flameproof valve at the airflow inlet of the inlet flameproof pipe section and the passive plate type flameproof valve at the airflow outlet of the outlet flameproof pipe section.
作为改进,在步骤二中,所加入的粉尘质量应当不少于模拟管段的内腔体积与待测粉尘理论质量浓度的乘积。As an improvement, in
作为改进,在步骤五中,为防止为发生爆炸的剩余粉尘发生二次危害,应当向完成实验并恢复至测试前的压力值的模拟管段内部加入碳酸氢钠粉体。碳酸氢钠在管道余温的作用下分解生成二氧化碳以保证模拟管道内部的安全性。为了使分解产生的二氧化碳充分过量,所加入的碳酸氢钠粉体的加入量应当少于测试所用粉尘质量的2/3;所加入的碳酸氢钠粉体应符合GB/T1606—2008《工业碳酸氢钠》标准所规定的碳酸氢钠粉体。As an improvement, in step 5, in order to prevent the secondary hazard of the remaining dust from explosion, sodium bicarbonate powder should be added to the simulated pipe section that has completed the experiment and returned to the pressure value before the test. Sodium bicarbonate is decomposed to generate carbon dioxide under the action of the residual temperature of the pipeline to ensure the safety inside the simulated pipeline. In order to make the carbon dioxide generated by decomposition sufficiently excessive, the amount of sodium bicarbonate powder added should be less than 2/3 of the quality of the dust used in the test; the added sodium bicarbonate powder should comply with GB/T1606-2008 "Industrial Carbonic Acid" Sodium bicarbonate powder specified in the standard of "Sodium Bicarbonate".
本发明的有益效果在于:(1)本发明通过流体力学的运动相似原理,在所发明的装置通过相应的设置与操作,实现多工况多机理广谱粉尘爆炸特性的高速在线监测与采集。(2)本发明根据发生粉尘爆炸事故的流程或区域的记录,通过调节本发明装置的工况并对事故过程进行复现,从而确定事故原因,实现事故调查结果的可靠性。(3)本发明对一些粉体或除尘行业的新工艺、新设备内部流场进行模拟并试爆,排除相关的安全隐患,实现工艺或设备安全性验收的可靠性。(4)本发明依据GB15577-2018《粉尘防爆安全规程》的相关规定,实现了事故复现、隐患排查、极值验证的工作目的,填补了我国相关领域的空白。The beneficial effects of the present invention are as follows: (1) The present invention realizes high-speed online monitoring and collection of broad-spectrum dust explosion characteristics with multiple operating conditions and multiple mechanisms through the corresponding setting and operation of the invented device through the motion similarity principle of fluid mechanics. (2) The present invention determines the cause of the accident and realizes the reliability of the accident investigation result by adjusting the working conditions of the device of the present invention and reproducing the accident process according to the records of the process or area of the dust explosion accident. (3) The present invention simulates and tests the internal flow field of some new processes and new equipment in the powder or dust removal industry, eliminates relevant safety hazards, and realizes the reliability of process or equipment safety acceptance. (4) According to the relevant provisions of GB15577-2018 "Dust Explosion-Proof Safety Regulations", the present invention achieves the working purposes of accident recurrence, hidden danger investigation, and extreme value verification, and fills the gaps in related fields in my country.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图中:1—入口隔爆管段,2—起爆管段,3—供粉罐,4—点火器,5—压力传感器A,6—加粉口,7—模拟管段,8—压力传感器B,9—透明观察管段,10—出口隔爆管段,11—压力传感器C,12—风管,13—除尘收集器,14—离心除尘风机,15—通讯模块,16—数据处理服务器。In the picture: 1—Inlet flameproof pipe section, 2—Initiation pipe section, 3—Powder supply tank, 4—Igniter, 5—Pressure sensor A, 6—Powder filling port, 7—Simulated pipe segment, 8—Pressure sensor B, 9 —transparent observation pipe section, 10—outlet flameproof pipe section, 11—pressure sensor C, 12—air duct, 13—dust collector, 14—centrifugal dust removal fan, 15—communication module, 16—data processing server.
具体实施方式Detailed ways
下面将结合附图对本发明作详细说明。The present invention will be described in detail below with reference to the accompanying drawings.
如图1所示:本发明提供的粉尘爆炸模拟测试装置,包括机械结构部分、电控采集部分。As shown in Figure 1, the dust explosion simulation test device provided by the present invention includes a mechanical structure part and an electric control acquisition part.
机械结构部分包括入口隔爆管段1、起爆管段2、模拟管段7、透明观察管段9、出口隔爆管段10、风管12、除尘收集器13及离心除尘风机14。The mechanical structure includes the inlet
入口隔爆管段1的气流入口处使用螺栓安装被动板式隔爆阀,入口隔爆管段1的气流出口使用法兰与起爆管段2的气流入口连接;入口隔爆管段1气流入口处的被动板式隔爆阀最小安全距离应当小于入口隔爆管段1的长度。The passive plate type flameproof valve is installed at the airflow inlet of the inlet
沿气流方向,以起爆管段2的气流入口处为起点,在大于横截面为圆形的起爆管段2两倍内径或横截面为矩形的起爆管段2两倍最小边长的位置开孔并设置外接管;起爆管段2的外接管距离起爆管段2的气流出口处的长度与横截面为圆形的起爆管段2内径或横截面为矩形的起爆管段2最小边长比例不大于3:1;起爆管段2上设有供粉罐3,供粉罐3的粉体出口设置快开电磁阀,并与起爆管段2的外接管连接;供粉罐3应当使用压缩空气将罐内的粉体推进起爆管段2中,压缩空气的公称压力不应小于4MPa,粉体量不能超过300g,粉体种类应当与模拟管段7内的粉体种类相同。起爆管段2的气体出口处使用法兰与模拟管段7的气流入口处连接。起爆管段2的作用在于产生足够的爆炸能量扬起模拟管段7当中的粉尘并顺利点燃,完成能量传递与爆炸特性的模拟。Along the airflow direction, starting from the airflow inlet of the
模拟管段7用以模拟粉尘环境,其设有加粉口6,加粉口6应当焊接在模拟管段7的外壁;加粉口6的粉体加入口应当管法兰盖与配套的管法兰口;加粉口6的开孔尺寸最大值不能超过圆形的模拟管段7外径或采用矩形管时矩形截面最小边长的1/3;加粉口6可以有多个,相邻的两个加粉口6距离不能小于横截面为圆形的模拟管段7的内径,或者横截面为矩形的模拟管段7最小边长;加粉口6可根据具体需要焊接在模拟管段7的不同位置,加粉口6的粉体入口在实验状态下应当使用法兰盖严格密封;透明观察管段9的气流入口通过法兰与粉尘环境模拟管段7的气流出口连接。The simulated pipe section 7 is used to simulate the dust environment, and it is provided with a
模拟管段7可以根据所需测试的管道形式、粉尘浓度、粉尘种类等参量的具体数值进行定制;本实施例的模拟管段7采用矩形管,其管体材料的抗拉强度σmin、矩形管的管壁厚δ、矩形管截面的最大边长Lr满足下式条件:The simulated pipe section 7 can be customized according to the specific values of the parameters such as the pipeline form, dust concentration, dust type, etc. to be tested; the simulated pipe section 7 in this embodiment adopts a rectangular pipe, and the tensile strength σ min of the pipe body material and the The tube wall thickness δ and the maximum side length L r of the rectangular tube section satisfy the following conditions:
其中:Pmax为所选用的粉尘理论最大爆炸压力,单位为MPa。Among them: P max is the theoretical maximum explosion pressure of the selected dust, the unit is MPa.
透明观察管段9的气流出口通过法兰与出口隔爆管段10的气流入口连接。The gas flow outlet of the transparent
出口隔爆管段10的气流出口使用螺栓安装被动板式隔爆阀,并在该隔爆阀的出口使用螺栓连接风管12的气流入口;出口隔爆管段10气流出口处的被动板式隔爆阀最小安全距离应当小于出口隔爆管段10的长度。The airflow outlet of the outlet
风管12的气流出口使用法兰与除尘收集器13的气流入口连接,除尘收集器13采用布袋除尘收集器。The airflow outlet of the
离心除尘风机14的进气口处设置过滤网,并与除尘收集器13的气体出口连接;离心除尘风机14在进行实验时的气体流量与所需模拟的粉尘环境的气体流量达到运动相似的条件。A filter screen is set at the air inlet of the centrifugal
电控采集部分包括点火器4、压力传感器A5、压力传感器B8、压力传感器C11、通讯模块15及数据处理服务器16。通讯模块15采用高速通讯模块。The electronic control acquisition part includes an igniter 4 , a pressure sensor A5 , a pressure sensor B8 , a pressure sensor C11 , a
点火器4的点火能量不应小于粉尘的理论最小点火能量的两倍;点火器4的电源部件为本安防爆型,点火器4的电源螺栓端子使用铜芯线与通讯模块15的开关量出口连接,点火器4的点火端头处的开孔使用管螺纹或钎焊,点火器4的点火端头安装在起爆管段2的内壁,在气流流动方向上,相对于起爆管段2的外接管距离与横截面为圆形的起爆管段2内径或横截面为矩形的起爆管段2最小边长比例不大于1:1。The ignition energy of the igniter 4 should not be less than twice the theoretical minimum ignition energy of the dust; the power supply components of the igniter 4 are intrinsically safe and explosion-proof, and the power bolt terminals of the igniter 4 use copper core wires and the switch output of the
压力传感器A5采用高频动态压力传感器,压力传感器A5使用螺纹连接在起爆管段2的侧壁上,压力传感器A5的采集元件应当与起爆管段2的内壁平齐,压力传感器A5的变送元件使用屏蔽线连接在通讯模块15的高速信号采集入口。The pressure sensor A5 adopts a high-frequency dynamic pressure sensor. The pressure sensor A5 is connected to the side wall of the detonating
压力传感器B8采用高频动态压力传感器,压力传感器B8使用螺纹连接在模拟管段7的侧壁上,压力传感器B8的采集元件应当与模拟管段7的内壁平齐,压力传感器B8的变送元件使用屏蔽线连接在通讯模块15的高速信号采集入口。The pressure sensor B8 adopts a high-frequency dynamic pressure sensor. The pressure sensor B8 is connected to the side wall of the simulated pipe section 7 using threads. The acquisition element of the pressure sensor B8 should be flush with the inner wall of the simulated pipe section 7. The transmission element of the pressure sensor B8 is shielded The line is connected to the high-speed signal acquisition inlet of the
压力传感器C11采用高频动态压力传感器,压力传感器C11使用螺纹连接在出口隔爆管段10的侧壁上,压力传感器C11的采集元件应当与出口隔爆管段10的内壁平齐,压力传感器11的变送元件使用屏蔽线连接在通讯模块15的高速信号采集入口。The pressure sensor C11 adopts a high-frequency dynamic pressure sensor. The pressure sensor C11 is connected to the side wall of the outlet
通讯模块15使用双绞线与数据处理服务器16连接;通讯模块15使用屏蔽线与供粉罐3连接。The
上述粉尘爆炸模拟测试装置组装方法与校核方法包括以下步骤:The above-mentioned dust explosion simulation test device assembly method and verification method include the following steps:
1、将被动板式隔爆阀使用螺栓连接在入口隔爆管段1的气流入口,被动板式隔爆阀的隔爆方向应当朝向入口隔爆管段1的气流出口;入口隔爆管段1的总长度必须大于所安装的被动板式隔爆阀的最小安全距离。1. Bolt the passive plate type flameproof valve to the airflow inlet of the inlet
2、入口隔爆管段1的气流出口使用法兰连接在起爆管段2的气流入口处,沿气流方向距离起爆管段2的气流入口处的长度与横截面为圆形的起爆管段2内径或横截面为矩形的起爆管段2最小边长的比例不小于2:1的位置处开孔并设置外接管;起爆管段2的气流出口处距离起爆管段2的外接管距离与横截面为圆形的起爆管段2内径或横截面为矩形的起爆管段2最小边长的比例不应大于3:1。该外接管与供粉罐3的粉体出口的快开电磁阀连接。2. The air outlet of the
3、起爆管段2的气流流动方向上,在相对于起爆管段2的外接管距离与横截面为圆形的起爆管段2内径或横截面为矩形的起爆管段2最小边长的比例不大于1:1位置处开孔,用来设置点火器4的点火端头。点火器4的电源螺栓端子设置在起爆管段2外壁,使用铜芯线与通讯模块15的开关量出口连接,并确保点火器4的电源部件为本安防爆型,点火器4的点火端头处的开孔应当使用管螺纹或钎焊确保高压环境下不发生泄漏。3. In the air flow direction of the
4、压力传感器A5使用螺纹连接在起爆管段2的侧壁上,具体位置可以根据需要和传感器耐受能力,在点火器4的点火端头与起爆管段2的气体出口之间自主选择。压力传感器A5的采集元件应当与起爆管段2的内壁平齐。4. The pressure sensor A5 is threadedly connected to the side wall of the
5、起爆管段2的气体出口处使用法兰与模拟管段7的气流入口处连接。模拟管段7可以根据所需测试的管道形式、粉尘浓度、粉尘种类等参量的具体数值进行定制。5. The gas outlet of the detonating
6、加粉口6应当在模拟管段7的外壁开孔并焊接安装,加粉口6的个数可以不止一个,相邻的两个加粉口6距离与圆形的模拟管段7的截面内径或矩形的模拟管段7的截面最小边长的比例不小于1:1;加粉口6的开孔尺寸最大值不能超过圆形的模拟管段7的截面外径或矩形的模拟管段7的截面最小边长的1/3;加粉口6的粉体入口应当安装法兰边裙,并配置相应型号的法兰盖,进行实验时严格密封。6. The
7、压力传感器B8使用螺纹连接在模拟管段7的侧壁上,具体位置可以根据需要和传感器耐受能力,在模拟管段7的气体入口与气体出口之间自主选择;压力传感器B8的采集元件应当与模拟管段7的内壁平齐。7. The pressure sensor B8 is threaded on the side wall of the simulated pipe section 7. The specific position can be independently selected between the gas inlet and the gas outlet of the simulated pipe section 7 according to the needs and the tolerance of the sensor; the acquisition element of the pressure sensor B8 should be Flush with the inner wall of the simulated pipe section 7.
8、透明观察管段9的气流入口通过法兰与粉尘环境模拟管段7的气流出口连接。透明观察管段9的气流出口通过法兰与出口隔爆管段10的气流入口连接。8. The airflow inlet of the transparent
9、出口隔爆管段10的气流出口使用螺栓安装被动板式隔爆阀,并且该隔爆阀的出口使用螺栓连接风管12的气流入口;出口隔爆管段10的总长度必须大于所安装的被动板式隔爆阀的最小安全距离。9. The airflow outlet of the outlet
10、压力传感器C11使用螺纹连接在出口隔爆管段10的侧壁上,具体位置可以根据需要和传感器耐受能力,在出口隔爆管段10的气体入口与气体出口之间自主选择;压力传感器C11的采集元件应当与出口隔爆管段10的内壁平齐。10. The pressure sensor C11 is threaded on the side wall of the outlet
11、风管12的气流出口使用法兰与除尘收集器13的气流入口连接;离心除尘风机14与除尘收集器13的气体出口连接。11. The airflow outlet of the
12、通讯模块15使用双绞线与数据处理服务器16连接;通讯模块15与数据处理服务器16采用同一套电源开关进行上电与断电。12. The
本实施例还提供上述粉尘爆炸模拟测试装置的操作方法,包括如下步骤:The present embodiment also provides an operation method of the above-mentioned dust explosion simulation test device, comprising the following steps:
步骤一:测试开始前,应当通过透明观察管段9以及入口隔爆管段1的气流入口等可视的窗口确认测试装置内部的洁净、干燥;装置内部没有肉眼可见的灰尘、水滴、油滴或其他杂物;确认入口隔爆管段1气流入口处的被动板式隔爆阀与出口隔爆管段10气流出口处的被动板式隔爆阀安装到位,动作可靠;方可进行测试步骤。Step 1: Before starting the test, it should be confirmed that the inside of the test device is clean and dry through the transparent
步骤二:安全措施确认完毕后,应当根据所要测量的粉体种类与理论质量浓度,通过加粉口6向模拟管段7内加入一定质量的粉尘;所加入的粉尘质量应当不少于模拟管段7的内腔体积与待测粉尘理论质量浓度的乘积;粉尘加完后应当使用法兰盖可靠密封加粉口6。Step 2: After the safety measures are confirmed, a certain quality of dust should be added to the simulated pipe section 7 through the
步骤三:加粉作业进行完毕后,打开通讯模块15与数据处理服务器16的上电开关,等待通讯模块15与数据处理服务器16启动完毕后,对高速通讯模块15设置压力信号采样频率与点火器4相对于供粉罐3供粉的点火延迟时间,并开始采集压力信号的变化。Step 3: After the powder adding operation is completed, turn on the power-on switches of the
步骤四:通讯模块15相关参试设置完毕后,打开供粉罐3粉体出口处的快开电磁阀,在相应的点火延迟时间后点火器开始工作;此时压力传感器A5、压力传感器B8、压力传感器C11将测试装置中压力变化的情况传输至通讯模块15中,并通过双绞线在数据处理服务器16实现数据的处理、记录、存储。Step 4: After the relevant test setting of the
步骤五:当压力传感器A5、压力传感器B8、压力传感器C11所测得的压力值恢复至测试前的压力值后,卸下加粉口6的法兰盖,向测试装置内部加入超细碳酸氢钠粉体,超细碳酸氢钠粉体的加入量不能少于测试所用粉尘质量的2/3;超细碳酸氢钠粉体加入完毕后再次使用法兰盖密封加粉口6并静置半小时。Step 5: When the pressure values measured by the pressure sensor A5, the pressure sensor B8 and the pressure sensor C11 return to the pressure value before the test, remove the flange cover of the
步骤六:加入超细碳酸氢钠粉体完毕的半小时之后,沿气流方向按管段将粉尘爆炸模拟测试装置拆解,使用潮湿的推杆将剩余的粉尘推出管段并使用含水的收集袋收集;使用湿布将管段内壁擦拭干净并晾干,将入口隔爆管段1气流入口处的被动板式隔爆阀与出口隔爆管段10气流出口处的被动板式隔爆阀归位,以等待下一次测试。Step 6: Half an hour after adding the superfine sodium bicarbonate powder, disassemble the dust explosion simulation test device according to the pipe section along the airflow direction, use a damp push rod to push the remaining dust out of the pipe section and collect it with a water-containing collection bag; Wipe the inner wall of the pipe section with a damp cloth and dry it, and return the passive plate flameproof valve at the airflow inlet of the inlet
实施例二:Embodiment 2:
与实施例一的粉尘爆炸模拟测试装置不同之处的在于:模拟管段7采用圆形管,其管体材料的抗拉强度σmin、圆管管壁厚δ、圆管外径Dr满足下列条件:The difference from the dust explosion simulation test device of the first embodiment is that the simulated pipe section 7 adopts a circular pipe, and the tensile strength σ min of the pipe body material, the pipe wall thickness δ of the circular pipe, and the outer diameter D r of the circular pipe satisfy the following: condition:
其中:Pmax为所选用的粉尘理论最大爆炸压力,单位为MPa。Among them: P max is the theoretical maximum explosion pressure of the selected dust, the unit is MPa.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以做出若干改进,这些改进也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, several improvements can be made without departing from the principles of the present invention, and these improvements should also be regarded as the present invention. scope of protection.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910687644.5A CN110389152B (en) | 2019-07-29 | 2019-07-29 | Dust explosion simulation testing device and operation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910687644.5A CN110389152B (en) | 2019-07-29 | 2019-07-29 | Dust explosion simulation testing device and operation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110389152A CN110389152A (en) | 2019-10-29 |
CN110389152B true CN110389152B (en) | 2020-09-04 |
Family
ID=68287793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910687644.5A Active CN110389152B (en) | 2019-07-29 | 2019-07-29 | Dust explosion simulation testing device and operation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110389152B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022204458A1 (en) * | 2021-03-25 | 2022-09-29 | Fike Corporation | System and method for detecting and suppressing dust explosions |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111624228B (en) * | 2020-05-20 | 2024-12-20 | 新疆工程学院 | A dust explosion experimental device |
CN113267531A (en) * | 2021-06-29 | 2021-08-17 | 北京石油化工学院 | Testing device and testing method for inducing dust cloud explosion by smoldering of dust layer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103604833A (en) * | 2013-11-07 | 2014-02-26 | 安徽理工大学 | Coal-dust explosion characteristic test system and coal-dust explosion characteristic test method |
CN208239439U (en) * | 2018-02-12 | 2018-12-14 | 北京石油化工学院 | A kind of quick-fried experimental provision of dust prevention and control |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101576521B (en) * | 2009-06-10 | 2011-06-15 | 西安科技大学 | Device for testing explosion, spreading and explosion suppression characteristics of inflammable gas and dust |
KR101268341B1 (en) * | 2011-11-08 | 2013-05-28 | 주식회사 포스코 | Apparatus for mearsuring cokes of blast furnace |
CN204228646U (en) * | 2014-10-20 | 2015-03-25 | 中国人民解放军总后勤部油料研究所 | A kind of block blast-proof materials explosion-proof performance Analytical system |
CN205426830U (en) * | 2016-03-23 | 2016-08-03 | 中国矿业大学 | Gas explosion causes coal dust explosion's analogue means |
CN205562533U (en) * | 2016-04-25 | 2016-09-07 | 河南工程学院 | Secondary explosion test device |
CN106841300B (en) * | 2017-03-24 | 2020-04-28 | 上海化工研究院有限公司 | A combined industrial dust explosion simulation demonstration system |
CN106979959B (en) * | 2017-03-31 | 2019-06-11 | 大连理工大学 | Observation Experiment System for Propagation Behavior of Dust Explosion Flame |
CN107290388A (en) * | 2017-07-31 | 2017-10-24 | 安徽理工大学 | A kind of ABC ultra-fine dry powders carry out datonation-inhibition experimental provision |
-
2019
- 2019-07-29 CN CN201910687644.5A patent/CN110389152B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103604833A (en) * | 2013-11-07 | 2014-02-26 | 安徽理工大学 | Coal-dust explosion characteristic test system and coal-dust explosion characteristic test method |
CN208239439U (en) * | 2018-02-12 | 2018-12-14 | 北京石油化工学院 | A kind of quick-fried experimental provision of dust prevention and control |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022204458A1 (en) * | 2021-03-25 | 2022-09-29 | Fike Corporation | System and method for detecting and suppressing dust explosions |
Also Published As
Publication number | Publication date |
---|---|
CN110389152A (en) | 2019-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110389152B (en) | Dust explosion simulation testing device and operation method thereof | |
CN108802100B (en) | A kind of combustible gas explosion experiment device with concentration gradient and using method | |
CN206177860U (en) | Full -scale multi -functional vary voltage of plane cargo space experiment test system | |
CN205719497U (en) | A kind of relief valve performance test and on-line testing instrument calibration equipment | |
CN203705174U (en) | An industrial building structure and part explosion-proof, pressure release and explosion suppression performance evaluating apparatus | |
CN104949831A (en) | Online checking device and methods for pilot valve and main valve of pilot operated safety valve | |
CN112345587B (en) | Device and method for testing explosion-proof performance of negative pressure environment explosion protection product | |
CN111624228A (en) | Dust explosion experimental device | |
CN112345588B (en) | Device and method for testing explosion-proof performance of positive pressure environment explosion protection product | |
CN206822988U (en) | A kind of automobile lithium battery case fire extinguishing system | |
CN107941568A (en) | The sampling system of gas in a kind of explosive atmosphere test case | |
CN2929693Y (en) | Pressure release valve tester with noise reducing and safety protective box | |
Zhang et al. | Influential factors of vented explosion position on maximum explosion overpressure of methane‐air mixture explosion in single spherical container and linked vessels | |
CN105547505B (en) | A kind of device for simulating the closed deck store temperature field of monitoring guided missile | |
CN112082728B (en) | A test device for the disturbance of mine ventilation state by dust explosion | |
CN206410701U (en) | A kind of gas-solid two-phase shock tube experimental provision | |
CN108760271A (en) | A kind of the safety valve engaging pressure test device and method of simulation actual condition | |
CN101776529B (en) | Equipment for small scale booster test | |
CN208311589U (en) | Negative pressure bidirectional detonation explosion isolation device | |
CN117723596A (en) | An explosion suppression testing device and method for hazardous chemical explosion suppression agents | |
CN218766734U (en) | A multi-functional and multi-purpose combustion and explosion experimental combination device | |
CN212110610U (en) | Flame arrester test system | |
CN204731018U (en) | Pilot valve and main valve on-line testing device in pilot operated safety valve | |
CN209280609U (en) | Testing device for testing influence of obstacles on release and spontaneous combustion of entrainment particle combustible gas | |
CN210571315U (en) | A test platform for flame arrester for liquid rockets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |