CN110378421B - 一种基于卷积神经网络的煤矿火灾识别方法 - Google Patents
一种基于卷积神经网络的煤矿火灾识别方法 Download PDFInfo
- Publication number
- CN110378421B CN110378421B CN201910657551.8A CN201910657551A CN110378421B CN 110378421 B CN110378421 B CN 110378421B CN 201910657551 A CN201910657551 A CN 201910657551A CN 110378421 B CN110378421 B CN 110378421B
- Authority
- CN
- China
- Prior art keywords
- image
- layer
- pooling
- neural network
- convolutional neural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 56
- 239000003245 coal Substances 0.000 title claims abstract description 48
- 238000013528 artificial neural network Methods 0.000 claims abstract 2
- 238000011176 pooling Methods 0.000 claims description 91
- 238000012549 training Methods 0.000 claims description 24
- 238000000605 extraction Methods 0.000 claims description 20
- 210000002569 neuron Anatomy 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 15
- 230000003044 adaptive effect Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 abstract description 10
- 238000012544 monitoring process Methods 0.000 abstract description 7
- 230000001186 cumulative effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 22
- 230000006870 function Effects 0.000 description 12
- 238000004590 computer program Methods 0.000 description 7
- 238000013507 mapping Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910657551.8A CN110378421B (zh) | 2019-07-19 | 2019-07-19 | 一种基于卷积神经网络的煤矿火灾识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910657551.8A CN110378421B (zh) | 2019-07-19 | 2019-07-19 | 一种基于卷积神经网络的煤矿火灾识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110378421A CN110378421A (zh) | 2019-10-25 |
CN110378421B true CN110378421B (zh) | 2021-06-25 |
Family
ID=68254338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910657551.8A Active CN110378421B (zh) | 2019-07-19 | 2019-07-19 | 一种基于卷积神经网络的煤矿火灾识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110378421B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111553298B (zh) * | 2020-05-07 | 2021-02-05 | 卓源信息科技股份有限公司 | 一种基于区块链的火灾识别方法及系统 |
CN111931817A (zh) * | 2020-07-10 | 2020-11-13 | 首钢集团有限公司 | 一种球团矿矿相识别方法和装置 |
CN115730641A (zh) * | 2022-05-23 | 2023-03-03 | 海纳云物联科技有限公司 | 卷积神经网络池化层的运算方法、火灾检测方法 |
CN116271667B (zh) * | 2023-05-12 | 2023-08-04 | 陕西开来机电设备制造有限公司 | 一种矿用皮带机电控防灭火系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106250845A (zh) * | 2016-07-28 | 2016-12-21 | 北京智芯原动科技有限公司 | 基于卷积神经网络的火焰检测方法及装置 |
KR101942182B1 (ko) * | 2017-05-15 | 2019-04-11 | 이화여자대학교 산학협력단 | 화재 피해를 입은 구조물의 잔존 강도 평가 방법 |
CN108052865A (zh) * | 2017-07-06 | 2018-05-18 | 同济大学 | 一种基于卷积神经网络和支持向量机的火焰检测方法 |
CN107657619B (zh) * | 2017-10-13 | 2019-03-01 | 西安科技大学 | 一种低照度林火图像分割方法 |
CN109272496B (zh) * | 2018-09-04 | 2022-05-03 | 西安科技大学 | 一种煤矿火灾视频监控用火灾图像识别方法 |
CN109409224B (zh) * | 2018-09-21 | 2023-09-05 | 河海大学 | 一种自然场景火焰检测的方法 |
CN109522819B (zh) * | 2018-10-29 | 2020-08-18 | 西安交通大学 | 一种基于深度学习的火灾图像识别方法 |
CN109635814B (zh) * | 2018-12-21 | 2022-11-04 | 河南理工大学 | 基于深度神经网络的森林火灾自动检测方法和装置 |
CN109815904B (zh) * | 2019-01-25 | 2022-05-13 | 吉林大学 | 一种基于卷积神经网络的火灾识别方法 |
-
2019
- 2019-07-19 CN CN201910657551.8A patent/CN110378421B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110378421A (zh) | 2019-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110378421B (zh) | 一种基于卷积神经网络的煤矿火灾识别方法 | |
CN111507370B (zh) | 获得自动标注图像中检查标签的样本图像的方法和装置 | |
CN112183667B (zh) | 一种协同深度学习的绝缘子故障检测方法 | |
WO2020073714A1 (zh) | 训练样本获取方法,账户预测方法及对应装置 | |
CN108734210B (zh) | 一种基于跨模态多尺度特征融合的对象检测方法 | |
CN111753290B (zh) | 软件类型的检测方法及相关设备 | |
CN115719460A (zh) | 一种基于深度学习的气体泄露检测方法、系统及终端设备 | |
CN114140669B (zh) | 焊接缺陷识别模型训练方法、装置和计算机终端 | |
CN110909125B (zh) | 推文级社会媒体谣言检测方法 | |
CN111815576B (zh) | 金属部件腐蚀状况检测方法、装置、设备和存储介质 | |
CN112784781B (zh) | 基于差异感知元学习的伪造人脸检测方法和装置 | |
Li et al. | Attention‐guided multiscale neural network for defect detection in sewer pipelines | |
CN113361420B (zh) | 基于机器人的矿井火灾监测方法、装置、设备及存储介质 | |
CN111310690A (zh) | 基于cn和三通道胶囊网络的森林火灾识别方法及装置 | |
CN117346079A (zh) | 一种燃气泄漏浓度监测预警方法及系统 | |
CN116682030A (zh) | 一种电力巡检图像识别模型的训练方法及存储介质 | |
CN114743151B (zh) | 一种基于改进YOLOv4-tiny的轻量化抗干扰火焰检测方法 | |
CN112233105A (zh) | 一种基于改进fcn的道路裂缝检测方法 | |
CN108596121A (zh) | 一种基于上下文和结构建模的人脸关键点检测方法 | |
CN117523345B (zh) | 一种目标检测数据平衡方法及装置 | |
CN112559759A (zh) | 一种识别知识图谱中错误关系的方法和设备 | |
Xu et al. | Application of deep convolution neural network in crack identification | |
CN114757945B (zh) | 一种金属基体腐蚀和涂层老化的原位识别方法及装置 | |
CN117173759A (zh) | 一种基于多尺度特征融合的人脸检测方法 | |
CN112257768B (zh) | 一种非法金融图片的识别方法、装置、计算机存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Wang Yuanbin Inventor after: Wang Yujing Inventor after: Han Jian Inventor after: Ren Jieying Inventor after: Zhou Chong Inventor after: Huang Hailong Inventor before: Wang Yuanbin Inventor before: Huang Hailong Inventor before: Wang Yujing Inventor before: Han Jian Inventor before: Ren Jieying Inventor before: Zhou Chong |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |