CN110372386B - 一种低温液相热压烧结制备致密碳化钽陶瓷的方法 - Google Patents

一种低温液相热压烧结制备致密碳化钽陶瓷的方法 Download PDF

Info

Publication number
CN110372386B
CN110372386B CN201910750884.5A CN201910750884A CN110372386B CN 110372386 B CN110372386 B CN 110372386B CN 201910750884 A CN201910750884 A CN 201910750884A CN 110372386 B CN110372386 B CN 110372386B
Authority
CN
China
Prior art keywords
tantalum carbide
powder
ceramic
tac
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910750884.5A
Other languages
English (en)
Other versions
CN110372386A (zh
Inventor
耿欣
温广武
李俐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201910750884.5A priority Critical patent/CN110372386B/zh
Publication of CN110372386A publication Critical patent/CN110372386A/zh
Application granted granted Critical
Publication of CN110372386B publication Critical patent/CN110372386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种低温液相热压烧结制备致密碳化钽陶瓷的方法,属于陶瓷致密化制备技术领域。其特征在于:以碳化钽粉体为原料,钯粉作为烧结助剂。将碳化钽粉与钯粉按照质量比(4~32.3):1(摩尔比(2.2~17.8):1)混合均匀,然后将混合粉体放于模具中预压成型,并连同模具放置于热压烧结炉中。然后升温至1750~2000℃,同时在陶瓷块体上加载压力至20~50MPa并保温保压0.05~2小时;待冷却至室温后,即可得到致密的碳化钽陶瓷块体。本发明制备工艺简单,周期短,不造成污染。所制备的碳化钽陶瓷的致密度高且烧结温度较低。

Description

一种低温液相热压烧结制备致密碳化钽陶瓷的方法
技术领域
本发明涉及一种碳化钽陶瓷的制备方法,属于陶瓷致密化制备技术领域。
背景技术
立方碳化钽(TaC)属于超高温陶瓷。首先具有高熔点、高沸点、优异的高温抗氧化性、耐烧蚀性和抗热震性;其中TaC的熔点约为3983℃,是已知第二高熔点的物质;还具有优异的力学性能:比如高弹性模量(537 GPa)、高硬度(15-19 GPa) 、高弯曲强度(300-970MPa)和高断裂韧性(4.0-9.0 MPam1/2);其次碳化钽陶瓷具有较高的热导率、良好的导电性以及适中的热膨胀系数(6.3×10−6 K−1);其化学稳定性极高,不和大多数化学物质发生反应。不溶于水,难溶于无机酸,微溶于硫酸和氢氟酸。
因此碳化钽陶瓷在超高温极端的环境中具有广阔的应用前景;比如(1)碳化钽可用于硬质耐磨合金刀具和耐磨耐蚀结构部件添加剂。(2)也可用于高超音速导弹、太空往返飞行器、航天飞机等飞行器的热防护系统。比如固体火箭发动机的喉衬材料和超高音速飞行器的关键部位(机翼前缘、尾翼前缘、鼻锥以及发动机的热端);因此碳化钽陶瓷被认为是难熔金属、C/C或C/SiC复合材料的最佳替代者。(3)还可用于金属熔炼系统中发热元件、坩埚等耐超高温部件。(4)可用做大功率发射管的中间层候选材料,因其能够抑制发射管中铂向钼丝扩散迁移,从而提高发射管栅极表面辐射率、降低栅极温度、能够提高发射管功率和寿命。
但是由于碳化钽陶瓷具有极强的Ta-C共价键以及低的自扩散系数;以及TaC原料粉体表面及晶格内部通常含有氧化物杂质;因此导致碳化钽陶瓷难于致密化且烧结温度极高。在不添加烧结助剂的前提下,即使烧结温度超过碳化钽熔点的0.6倍(2200℃),碳化钽陶瓷也不能达到全致密度。Zhang等人在“Hot pressing of tantalum carbide with andwithout sintering additives”中还发现即使采用热压烧结技术也很难提高碳化钽陶瓷的致密度;比如采用粒径分布在0.6~2.6 μm的TaC粉体经1900℃下加压30MPa保温45分钟后,所烧结TaC陶瓷块体致密度只有75%;而当烧结温度升高至2300℃和2400℃时,其致密度仅达到94%和96%。较高的烧结温度和低致密度将会限制碳化钽陶瓷在超高温极端环境下的应用。
因此研究者通过添加烧结助剂的方法促进碳化钽陶瓷致密化并降低其烧结温度。目前共发现三类碳化钽烧结助剂:第一类,如石墨、碳纳米管、B4C以及碳化物等还原剂,通过还原反应去除TaC粉体原料所含有的氧化物杂质从而促进碳化钽陶瓷致密化;比如Khaleghi等人的论文“Spark plasma sintering of tantalum carbide”中将0.77 wt.%的碳纳米管(摩尔百分比为11.01%)混入TaC粉末中,复合粉体经2300℃下加压30MPa保温20分钟后,所得TaC陶瓷块体致密度达到96%。此外论文“Hot pressing of tantalum carbidewith and without sintering additives”中还表明将0.36 wt.%的B4C粉末(摩尔百分比为1.23%)混入TaC粉末中,复合粉体在2200℃下加压30MPa并保温45分钟后,所得TaC陶瓷块体致密度达到98%。但是与无添加烧结助剂情况相比,烧结温度降低幅度较小(100-200℃)。第二类烧结助剂,如SiC、TaB2等第二相;它们不与TaC形成固溶体,但可以物理钉扎TaC晶粒生长,进而提升致密度。第三类烧结助剂为金属相,它们能大幅降低烧结温度(>400℃);这是由于烧结温度高于金属烧结助剂的熔点,熔融的金属在孔洞中流动并促使TaC粉末发生滑动、旋转、重新密排,利于碳化钽陶瓷致密化。此外熔融金属润湿并覆盖TaC陶瓷颗粒,能够降低氧的扩散,从而提高碳化钽陶瓷材料的抗氧化性。刘利盟等人在论文“Densification of tantalum carbide ceramics with 5 mol.% Al, Cu, Ag and Au”中将摩尔百分比为5%的Al、Cu、Ag和Au粉分别混入TaC粉末中,并在1700℃下加压30MPa保温保压5分钟后,所得TaC陶瓷块体致密度分别为88.4%、90.1%、93.9%、97.7%。刘利盟等人还在论文“Microstructure and mechanical properties of TaC ceramics with 1–7.5 mol%Si as sintering aid”中阐明加入摩尔百分比为7.5%的Si作为烧结助剂,TaC和Si混合粉体经1700℃下加压30MPa并保压保温5分钟后,TaC陶瓷能达到全致密度(99.91%)。但是以上几种金属熔点较低,残余金属相或生成的玻璃相(SiO2)将会影响TaC陶瓷高温力学性能。
综上,为促使碳化钽陶瓷能在超高温极端环境下得到应用。本发明提出以金属钯粉作为烧结助剂,通过热压烧结技术在较低温度下制备出高致密的碳化钽陶瓷。
发明内容
本发明的目的是解决原有TaC陶瓷难烧结致密化、烧结温度高等问题,提供一种较低温度热压烧结TaC陶瓷制备工艺,不造成污染。其技术方案为:以碳化钽粉体为原料,金属钯粉作为烧结助剂。将碳化钽粉与钯粉按照质量比为(4~32.3):1(摩尔比为(2.2~17.8):1)混合均匀,将混合粉体放于石墨模具中预压成型,移置于热压烧结炉中。然后升温至1750~2000℃,在预压陶瓷块体上加载压力至20~50MPa并保温保压0.05~2小时;待冷却至室温后,即可得到高致密的碳化钽陶瓷块体。
本发明的工作原理是:(a) 以钯粉作为烧结助剂可消除TaC粉体所含的氧化物杂质(Ta2O5)以促进TaC致密化并降低烧结温度。具体反应如下:
(1-x)·Pd(s)+ x·TaC(s)=Pd(1-x)Tax(s,l)+x·C(s) (1)
熔融的Pd与TaC粉体在高温下发生反应并生成熔融的Pd-Ta固溶合金和碳;其中x为熔融的Pd-Ta固溶合金中Ta的摩尔百分比;此外 l和s分别代表液态和固态。
实验结果表明在当热处理温度高于600℃时,反应(1)即可发生。而生成的碳在高温下可还原TaC粉体所含有的氧化物杂质(Ta2O5),反应方程式如下所示:
Ta2O5(s)+7C(s)=2TaC(s)+5CO(g) (2)
其中g代表气态;根据热力学计算,当热处理温度高于1135℃时,反应(2) 的标准吉布斯自由能小于0;该反应能自发进行。
(b) 所选的烧结温度高于已生成的Pd-Ta 固溶合金的熔点时,熔融的合金润湿TaC颗粒,添充孔洞。随着熔融液相的流动,导致TaC颗粒发生滑动、旋转、重排,因此促使碳化钽陶瓷致密化。此外,已形成的Pd-Ta液相合金也会改变TaC的物质传输机制,基于溶解-重结晶机制导致碳化钽晶粒长大并促使其陶瓷致密化。此外,Pd-Ta固溶合金的熔点较高,对TaC陶瓷的高温力学性能影响小。综上,钯粉是促进TaC陶结致密化的有效烧结助剂。
本发明具有如下优点:
(1)本发明制备的碳化钽陶瓷,步骤简单,安全可靠,不对环境造成污染;
(2)本发明所制备的碳化钽陶瓷致密度高且烧结温度低。
附图说明
图1是实施例1中所制备的TaC陶瓷的XRD谱图。
图2是实施例1中所制备的TaC陶瓷抛光表面和断口的SEM照片。
图3是实施例2中所制备的TaC陶瓷的XRD谱图。
图4是实施例2中所制备的TaC陶瓷抛光表面和断口的SEM照片。
图5是实施例3中所制备的TaC陶瓷的XRD谱图。
图6是实施例3中所制备的TaC陶瓷抛光表面的SEM照片。
具体实施方式
实施例1:
以碳化钽粉体为原料,金属钯粉作为烧结助剂。碳化钽粉与钯粉按照质量比32.3:1(摩尔比为17.8:1)混合均匀,然后将混合粉体放于模具中预压成型,并连同模具放置于热压烧结炉中;然后升温至1800℃,在陶瓷预制块体上加载压力至30MPa并保温保压1小时;冷却至室温后,即可得到致密的碳化钽陶瓷块体。
将制备得到的TaC陶瓷经切割、研磨并抛光至镜面。采用阿基米德方法测定所烧结的碳化钽陶瓷的密度,其结果为14.08 g/cm3;经计算其致密度达到97.7%。经测试其室温弯曲强度为358 MPa且维氏硬度为18.24 GPa。另外采用四探针法测定了该材料的室温电导率为0.971 kS/mm。
对所烧结的TaC陶瓷块体进行X-射线衍射物相分析(XRD),测试得到的XRD谱图如图1所示。主要衍射峰位于34.87 o、40.52 o、58.58 o、70.05 o和73.65 o。通过与TaC粉末衍射卡片PDF-01-076-2370相对比,这些衍射峰分别对应于立方TaC相的(111)、(200)、(220)、(311)和(222)晶面。TaC相是此XRD图谱所检测到的唯一结晶相,无其他的结晶相杂质;这说明经热压烧结后的陶瓷接近为碳化钽单相。
对所制备的TaC陶瓷抛光表面和断口进行扫描电子显微镜(SEM)测试,其微观形貌如图2所示。图2(a)和(b)为样品抛光表面的SEM图片,结果表明该材料含有衬度不同的两相,且该两相均匀分布在材料中:衬度亮的相为TaC而衬度暗的相对应于Ta-Pd固溶合金;其中TaC晶粒边缘比较圆滑,晶粒尺寸在5-50 µm;相比于TaC粉末原料,经高温热压工艺后,TaC晶粒快速生长,且晶粒生长期间有少量的封闭孔保留在TaC晶粒内。衬度较暗的相为Pd-Ta固溶合金,其具有不规则形状,主要沿晶界存在;具有非常低的二面角,这表明其在烧结温度下的延性行为。图2(c)和(d)为陶瓷样品断裂面的SEM图片;结果表明所烧结的TaC陶瓷显示出沿晶断裂模式;TaC晶粒内部存在少量直径约为2µm的孔隙。
实施例2:
以碳化钽粉体为原料,金属钯粉作为烧结助剂。碳化钽粉与钯粉按照质量比19:1(摩尔比为10.4:1)混合均匀,然后将混合粉体放于模具中预压成型,移置于热压烧结炉中;然后升温至1800℃,在陶瓷预制块体上加载压力至30MPa并保温保压1小时;待冷却至室温后,即可得到致密的碳化钽陶瓷块体。
所烧结的TaC陶瓷经切割、研磨并抛光至镜面。采用阿基米德方法测定所烧结的碳化钽陶瓷的密度,其结果为13.92 g/cm3;经计算其致密度达到97%。经测试其室温弯曲强度为446 MPa且维氏硬度为20.5 GPa。另外采用四探针法测定了其室温电导率,结果为0.932 kS/mm。
对所烧结的TaC陶瓷块体进行X-射线衍射物相分析(XRD),所得到的XRD谱图如图3所示。主要衍射峰位于34.71 o、40.40 o、58.47 o、69.91 o和73.44 o。通过与TaC粉末衍射卡片PDF-01-076-2370相对比,这些衍射峰分别对应于立方TaC相的(111)、(200)、(220)、(311)和(222)晶面。TaC相是此XRD图谱所检测到的唯一结晶相,无其他的结晶相杂质;这说明经热压烧结后的陶瓷接近为碳化钽单相。
对所制备的TaC陶瓷抛光表面和断口进行扫描电子显微镜(SEM)测试,其微观形貌如图4所示。图4(a)和(b)为样品抛光表面的SEM图片,结果表明该材料含有衬度不同的两相,且该两相均匀分布在材料中:衬度亮的相为TaC而衬度暗的相对应于Ta-Pd固溶合金;其中TaC晶粒尺寸在10-50 µm,且存在多种形貌:如方形、三角形和边缘光滑的形貌;相比于TaC粉末原料,经高温热压工艺后,TaC晶粒快速生长,且晶粒生长期间有极少量的封闭孔保留在TaC晶粒内。衬度较暗的Pd-Ta固溶合金具有不规则形状,主要沿晶界存在;具有非常低的二面角,这表明其在烧结温度下的延性行为。图4(c)和(d)为陶瓷样品断裂表面的SEM图片;结果表明所烧结的TaC陶瓷显示出穿晶断裂模式,这也能解释该工艺制备的TaC陶瓷具有优异的力学性能能(其室温弯曲强度为446 MPa且维氏硬度为20.5 GPa)。
实施例3:
以碳化钽粉体为原料,金属钯粉作为烧结助剂。碳化钽粉与钯粉按照质量比4:1(摩尔比为2.2:1)混合均匀,然后将混合粉体放于模具中预压成型,移置于热压烧结炉中。然后升温至1800℃,在陶瓷预制块体上加载压力至30MPa并保温保压1小时;待冷却至室温后,即可得到致密的碳化钽陶瓷块体。
所烧结的TaC陶瓷经切割、研磨并抛光至镜面。采用阿基米德方法测定所烧结的碳化钽陶瓷的密度,结果为13.14 g/cm3;经计算其致密度达到94.4%。另外采用四探针法测定了所烧结的TaC陶瓷的室温电导率,其值为3.861 kS/mm。
对所烧结的TaC陶瓷块体进行X-射线衍射物相分析(XRD),测试得到的XRD谱图如图5所示。通过与TaC相衍射卡片PDF-01-076-2370和Pd相衍射卡片PDF-00-035-0801对比,其中衍射峰位于35.06 o、40.70 o、58.78 o、70.22 o和73.82 o分别对应于立方TaC相的(111)、(200)、(220)、(311)和(222)晶面。而位于39.92 o、46.29 o和67.59 o的衍射峰分别对应于立方Pd相的(111)、(200)和(220)晶面;且这三个峰相较于标准Pd的衍射峰均向低角度偏移,这说明TaC与Pd在高温烧结过程中形成Ta-Pd固溶体(Pd(1-x)Tax),晶格发生膨胀,导致衍生峰向低角度偏移。其中此图谱的三强峰对应于TaC相(111)、(200)和(311)晶面,这说明所烧结的陶瓷中的主相为TaC。
对所制备的TaC陶瓷抛光表面进行扫描电子显微镜(SEM)测试,其微观形貌如图6所示。结果表明该材料含有衬度不同的两相,且该两相均匀分布在材料中:衬度亮的相为TaC而衬度暗的相对应于Ta-Pd(Pd(1-x)Tax)固溶合金; 其中TaC晶粒具有方形和三角形形貌,其晶粒尺寸在5-30 µm。相比于TaC粉末原料,经高温热压工艺后,TaC晶粒快速生长,且晶粒生长期间有极少量的封闭孔保留在TaC晶粒内。衬度较暗的Pd-Ta固溶合金具有不规则形状,具有非常低的二面角,这表明其在烧结温度下的延性行为。
实施例4:
以碳化钽粉体为原料,金属钯粉作为烧结助剂。碳化钽粉与钯粉按照质量比32.3:1(摩尔比为17.8:1)混合均匀,然后将混合粉体放于模具中预压成型,移置于热压烧结炉中。然后升温至2000℃,在陶瓷预制块体上加载压力至50MPa并保温保压0.05小时;待冷却至室温后,即可得到致密的碳化钽陶瓷块体。
实施例5:
以碳化钽粉体为原料,金属钯粉作为烧结助剂。碳化钽粉与钯粉按照质量比4:1(摩尔比为2.2:1)混合均匀,然后将混合粉体放于模具中预压成型,连同模具放置于热压烧结炉中。然后升温至1750℃,在陶瓷块体上加载压力至20MPa并保温保压2小时;待冷却至室温后,即可得到致密的碳化钽陶瓷块体。

Claims (1)

1.一种低温液相热压烧结制备致密碳化钽陶瓷的方法,其特征在于:以碳化钽粉体为原料,钯粉作为烧结助剂;碳化钽粉与钯粉按照质量比(4~32.3):1(摩尔比为(2.2~17.8):1)混合均匀,然后将混合粉体放于模具中预压成型,并移置于热压烧结炉中;然后升温至1750~2000℃,当达到烧结温度时,在陶瓷预制块体上加载压力至20~50MPa并保温保压0.05~2小时;待冷却至室温后,即可得到致密的碳化钽陶瓷块体。
CN201910750884.5A 2019-08-14 2019-08-14 一种低温液相热压烧结制备致密碳化钽陶瓷的方法 Active CN110372386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910750884.5A CN110372386B (zh) 2019-08-14 2019-08-14 一种低温液相热压烧结制备致密碳化钽陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910750884.5A CN110372386B (zh) 2019-08-14 2019-08-14 一种低温液相热压烧结制备致密碳化钽陶瓷的方法

Publications (2)

Publication Number Publication Date
CN110372386A CN110372386A (zh) 2019-10-25
CN110372386B true CN110372386B (zh) 2022-05-06

Family

ID=68259253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910750884.5A Active CN110372386B (zh) 2019-08-14 2019-08-14 一种低温液相热压烧结制备致密碳化钽陶瓷的方法

Country Status (1)

Country Link
CN (1) CN110372386B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387974B (zh) * 2020-11-16 2023-03-17 哈尔滨科友半导体产业装备与技术研究院有限公司 一种pvt法氮化铝晶体生长用坩埚材料的制备方法
CN113788689A (zh) * 2021-09-24 2021-12-14 常州大学 一种含钽型高炉陶瓷杯用耐火材料及其制备方法
CN114907125A (zh) * 2022-06-20 2022-08-16 北方民族大学 一种碳化钽陶瓷复合材料的制备方法
CN115536395A (zh) * 2022-10-08 2022-12-30 山东理工大学 一种碳化钛铌钽连续固溶体的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734917A (zh) * 2009-12-14 2010-06-16 哈尔滨工业大学 氮化硼基陶瓷复合材料及其制备方法
CN104671789A (zh) * 2015-01-28 2015-06-03 安徽省和翰光电科技有限公司 一种防护构件用碳化硅陶瓷基复合材料及其制备方法
CN108706974A (zh) * 2018-06-05 2018-10-26 中国科学院上海硅酸盐研究所 一种常压固相烧结致密铪固溶的碳化钽超高温陶瓷及其制备方法
CN109678511A (zh) * 2018-12-23 2019-04-26 上海交通大学 一种致密HfC(Si)-HfB2复相陶瓷的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226577A (ja) * 1997-02-10 1998-08-25 Agency Of Ind Science & Technol 高靱性窒化ケイ素焼結体およびその製造方法
US9896384B2 (en) * 2014-06-17 2018-02-20 University Of Utah Research Foundation Methods of sintering dense zeta-phase tantalum carbide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734917A (zh) * 2009-12-14 2010-06-16 哈尔滨工业大学 氮化硼基陶瓷复合材料及其制备方法
CN104671789A (zh) * 2015-01-28 2015-06-03 安徽省和翰光电科技有限公司 一种防护构件用碳化硅陶瓷基复合材料及其制备方法
CN108706974A (zh) * 2018-06-05 2018-10-26 中国科学院上海硅酸盐研究所 一种常压固相烧结致密铪固溶的碳化钽超高温陶瓷及其制备方法
CN109678511A (zh) * 2018-12-23 2019-04-26 上海交通大学 一种致密HfC(Si)-HfB2复相陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Densification of tantalum carbide ceramics with 5 mol.% Al, Cu, Ag and Au";Limeng Liu et al.;《Scripta Materialia》;20130629;第69卷;第574-577页 *
"Microstructure and mechanical properties of TaC ceramics with 1–7.5 mol% Si as sintering aid";Guihong Geng et al.;《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》;20170630;第100卷;第2461-2470页 *

Also Published As

Publication number Publication date
CN110372386A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN110372386B (zh) 一种低温液相热压烧结制备致密碳化钽陶瓷的方法
Zhao et al. High-entropy (Y0. 2Nd0. 2Sm0. 2Eu0. 2Er0. 2) AlO3: A promising thermal/environmental barrier material for oxide/oxide composites
Zhao et al. Microstructure and mechanical properties of TiB2–SiC ceramic composites by reactive hot pressing
Wang et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics
Neuman et al. Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air
Monteverde et al. Processing and properties of zirconium diboride-based composites
Etter et al. Strength and fracture toughness of interpenetrating graphite/aluminium composites produced by the indirect squeeze casting process
Ghasali et al. Microwave sintering of aluminum-ZrB 2 composite: focusing on microstructure and mechanical properties
Sun et al. Synthesis and characterization of a metallic ceramic material–Ti3SiC2
Wu et al. Microstructure and high-temperature strength of textured and non-textured ZrB2 ceramics
Golla et al. Titanium diboride
CN112374892B (zh) 一种可控碳化铌-碳化钽固溶体微米立方体及其制备方法
WO2006005267A1 (fr) Materiau composite ceramique en ti2aln renforce a durcissement par phase dispersee de al2o3
JP6908248B2 (ja) 被覆SiCナノ粒子を用いたSiCセラミックス及びその製造方法
Tan et al. Effects of heat treatment on phase contents and mechanical properties of infiltrated B4C/2024Al composites
Guo Effects of VC additives on densification and elastic and mechanical properties of hot-pressed ZrB2–SiC composites
Sha et al. Microstructure and mechanical properties of hot-pressed ZrC–Ti–CNTs composites
Zhao et al. Microstructure and mechanical properties of ZrCW matrix composite prepared by reactive infiltration at 1300° C
Shi et al. Microstructure and properties of nano-laminated Y3Si2C2 ceramics fabricated via in situ reaction by spark plasma sintering
CN102173802A (zh) 一种原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料及其制备方法
Solodkyi et al. Low-temperature synthesis of boron carbide ceramics
Doty et al. Reactive hot compaction of NiAl with in situ alumina reinforcement
Sakvand et al. Effect of graphite addition on the microstructure, mechanical properties and oxidation resistance of HfB2-SiC composites prepared by the SPS method
Rangaraj et al. Reactive hot pressing of titanium nitride–titanium diboride composites at moderate pressures and temperatures
Yang et al. Developing nacre-inspired laminate-reticular 2024Al/B4C composites with high damage resistance by adjusting compositional wettability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant