CN110365415B - 一种基于光纤光栅传感器阵列的调频解调装置 - Google Patents

一种基于光纤光栅传感器阵列的调频解调装置 Download PDF

Info

Publication number
CN110365415B
CN110365415B CN201910708418.0A CN201910708418A CN110365415B CN 110365415 B CN110365415 B CN 110365415B CN 201910708418 A CN201910708418 A CN 201910708418A CN 110365415 B CN110365415 B CN 110365415B
Authority
CN
China
Prior art keywords
signal
optical
pulse
signals
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910708418.0A
Other languages
English (en)
Other versions
CN110365415A (zh
Inventor
金晓峰
程志威
欧坚海
金向东
杜一杰
谢银芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910708418.0A priority Critical patent/CN110365415B/zh
Publication of CN110365415A publication Critical patent/CN110365415A/zh
Priority to US16/945,838 priority patent/US11193818B2/en
Application granted granted Critical
Publication of CN110365415B publication Critical patent/CN110365415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35393Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using frequency division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/508Pulse generation, e.g. generation of solitons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Transform (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于光纤光栅传感器阵列的调频解调装置,包括激光器、射频信号源、声光调制器、延迟光纤对、马赫增德尔调制器、光滤波器、光放大器、光隔离器、环形器、光纤光栅传感器阵列、光电探测器以及数据采样卡。本发明通过延迟光纤对与光纤光栅的配合使用,使前后两个光栅的反射光脉冲在时域上重合从而形成干涉,实现多点阵列式的干涉解调。本发明装置结构简单,解调算法易于实现,具有解调精度高、实现简单等特点。

Description

一种基于光纤光栅传感器阵列的调频解调装置
技术领域
本发明属于光通信技术领域,具体涉及一种基于光纤光栅传感器阵列的调频解调装置。
背景技术
声波是在海洋中唯一能够远距离传播的能量形式,而水听器则是海洋中检测声波信号的基本器件;光纤传感器作为水听器使用,具有灵敏度高、抗电磁干扰能力强、耐水下恶劣环境等特点。随着海洋科学的发展,大规模和小型化已成为光纤水听器阵列发展的重要方向;然而随着应用的深入,传统的光纤水听器阵列体现出了它的局限性,其主要体现在传统的水听器阵列结构复杂、可检测的动态范围小、解调算法比较复杂等,所以寻求一种简单易行、可靠性高的系统结构已成为大规模小型化光纤水听器阵列发展必须解决的问题。
光纤水听器一般的解调方案有3×3耦合器法、PGC(相位产生载波技术)法和外差法等。其中PGC解调方法系统结构简单,但相应的会引入频率啁啾以及附加的光源调制,从而提高了相对强度噪声。为了解决光源调制所带来的问题,公开号为CN109450531A的中国专利申请提出了一种基于单边带调频的光纤干涉仪传感器扰动信号解调装置,通过强度调制和单边带滤波的方式实现了相位解调,降低了解调系统的相对强度噪声。
然而上述方案只针对单个水听传感器进行设计,实际应用当中光纤传感器通常以传感器阵列的形式布置以实现多路复用,因此需要重新设计一种采用单边带调频方式实现的光纤传感器传感阵列及其解调系统。
通过光载射频信号可以将光纤传感器应用到微波领域上,其结合了光波与微波信号的优势;低频率的微波信号无法鉴别光的偏振色散,这使其对光波导材料不敏感,可以在在单模光纤、多模光纤和蓝宝石光纤等不同的波导上实现;微波信号的相位信息可以准确的提取出来,所以它可以应用于分布式传感器的测量,具有高的信噪比以及对极化不敏感的特性。
发明内容
鉴于上述,本发明提供了一种基于光纤光栅传感器阵列的调频解调装置,通过延迟光纤对与光纤光栅的配合使用,使前后两个光栅的反射光脉冲在时域上重合从而形成干涉,实现多点阵列式的干涉解调。
一种基于光纤光栅传感器阵列的调频解调装置,包括:激光器、射频信号源、声光调制器、延迟光纤对、马赫增德尔调制器、光滤波器、光放大器、光隔离器、环形器、光纤光栅传感器阵列、光电探测器以及数据采样卡,其中:
所述激光器用于发射连续的窄线宽光信号;
所述射频信号源用于产生移频信号、频率为f1的强度调制信号以及时钟同步信号;
所述声光调制器用于根据移频信号对激光器发射出的光信号同时进行移频以及强度调制,从而输出脉冲光信号;
所述延迟光纤对用于将声光调制器输出的脉冲光信号分成两路,两路光信号经不同延迟后合成为一路光脉冲对信号;
所述马赫增德尔调制器用于根据强度调制信号对延迟光纤对生成的光脉冲对信号进行强度调制后输出;
所述光滤波器用于对马赫增德尔调制器输出的光脉冲对信号进行滤波后输出,以滤除其一侧的光边带;光滤波器输出的光脉冲对信号依次经过光放大器、光隔离器、环形器后进入光纤光栅传感器阵列;
所述光纤光栅传感器阵列用于感应不同位置上的外部传感信号(温度、压力、振动等),这些外部传感信号会引起输入光脉冲对信号的相位变化,并返回一连串带有外部传感信息的干涉光脉冲信号,然后经环形器输出至光电探测器;
所述光电探测器用于将干涉光脉冲信号转换为电信号;
所述数据采样卡基于时钟同步信号对电信号进行同步采样得到对应的数字信号,进而利用内部的数字信号处理单元对数字信号进行解调,得到外部传感信号。
进一步地,所述激光器采用窄线宽DFB光源,所述射频信号源采用模拟信号源且内部集成了调频模块和同步模块。
进一步地,所述激光器、声光调制器、延迟光纤对均为保偏器件。
进一步地,所述延迟光纤对包括第一耦合器、第二耦合器、第一光纤和第二光纤,其中:第一耦合器将声光调制器输出的脉冲光信号一分为二,两路光信号分别经过第一光纤和第二光纤后由第二耦合器合成为一路光脉冲对信号,第一光纤长度大于第二光纤长度。
进一步地,所述光纤光栅传感器阵列包括多个光纤布拉格光栅和多个感应线圈,其中:多个光纤布拉格光栅依次排列,相邻两个光栅构成一个法布里-珀罗腔,多个感应线圈中对应嵌设于每一个法布里-珀罗腔中。
进一步地,所述光纤光栅传感器阵列的调制方式为:外部传感信号通过感应线圈作用于法布里-珀罗腔并引起腔长变化,腔长变化进而引起输入光脉冲对信号的相位变化,对于任一法布里-珀罗腔,腔内后一个光栅反射的带有相位变化信息的光脉冲对的前一个脉冲与腔内前一个光栅反射的不带相位变化信息的光脉冲对的后一个脉冲在时域上重合,从而相互干涉形成带有外部传感信息的干涉光脉冲信号。
进一步地,所述延迟光纤对中两路光纤的臂长差所对应时延为法布里-珀罗腔的腔长所对应时延的一半。
进一步地,所述声光调制器输出脉冲光信号的重复周期为光纤延迟对中两路光纤的臂长差所对应时延的2(M+1)倍,其中M为光纤光栅传感器阵列中的光栅数量。
进一步地,所述干涉光脉冲信号的脉冲宽度大于等于1/f1
进一步地,所述数据采集卡同步采样后得到对应的数字信号,进而通过特征点采样解调算法对数字信号按时序进行解调得到各个位置点的外部传感信号,所述特征点采样解调算法具体过程为:首先使光电探测器输出的电信号通过同步操作确定第一个采样点P0的位置,在每一个调频周期1/f1内,电信号被采样12个数据点(P0,...,P11);所述电信号被扩展为直流项A与偶信号I1和奇信号I2的叠加,所述偶信号I1和奇信号I2的最大值和最小值则通过其内部时间变量按1/12f1间隔取值得到;在偶信号I1中每时间间隔为1/2f1对应的值相同,在奇信号I2中每时间间隔为1/2f1对应的值相反;偶信号I1的峰峰值则通过对电信号I相加两组时间间隔为1/2f1的数据点(P0,P6)和(P3,P9)来获取得到,即P0+P6的和值与P3+P9的和值相减即可抵消电信号中直流项A的影响;奇信号I2的峰峰值则通过对电信号相减两组时间间隔为1/2f1的数据点(P1,P7)和(P5,P11)来获取得到,即P7-P1的差值与P11-P5的差值相加即可抵消电信号中直流项A的影响;偶信号I1的峰峰值与奇信号I2的峰峰值相互正交,两组正交信号相除后再进行反正切运算即得到所需解调的外部传感信号。
基于上述技术方案,本发明具有以下有益技术效果:
(1)本发明采用了声光调制器的方式对光源进行移频以形成阵列解调所需的脉冲光,减少了光源直接调制所引起的啁啾效应。
(2)本发明通过延迟光纤对与光纤光栅的配合使用,使前后两个光栅的反射光脉冲在时域上重合,实现了多点阵列式的脉冲干涉解调,该方法消除了非同步脉冲对解调结果造成的干扰且解调结构简单、易于实现。
(3)本发明装置还结合了干涉光脉冲信号的特征从而采用特征点采样算法进行解调,解调算法简单,解调精度高。
附图说明
图1为本发明调频解调装置的结构示意图。
图2为本发明光纤光栅传感阵列的干涉光脉冲时序图。
图3为本发明一个调频周期采样12个数据点的示意图。
图4为12点采样正交解调算法示意图。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。
如图1所示,本发明基于光纤光栅传感器阵列的调频解调装置,包括依次连接的激光器101、声光调制器102、延迟光纤对116、马赫增德尔调制器107、光带通滤波器108、光放大器110、光隔离器111、环形器112、光纤光栅传感器阵列113、光电探测器114、数据采样卡115以及射频信号源109;其中:
窄线宽光源101产生连续的窄线宽光信号并发射至声光调制器102,声光调制器102既是移频器将光源移频f(f=2π/ω1),同时也是脉冲调制器将连续光调制成脉冲光,经声光调制器102调制后的光脉冲可表示为:
Figure GDA0002493954840000051
NT1<t<T2+(N+1)T1,N为整数其中:A为光波的振幅,ω0为光源101发射角频率,ω1为声光调制器102的移频角频率,T1为光脉冲重复周期,T2为光脉冲脉宽;本发明采用声光调制器形成光脉冲信号,相比较传统的直接光源调制,能够减少啁啾效应的影响,取得了提高解调精度的技术效果。
声光调制器102的输出光脉冲进入延迟光纤对116,其中延迟光纤对116由第一耦合器103,第一光纤104,第二光纤105,第二耦合器106所组成;光脉冲进入第一耦合器103后分成两路,一路经过长度为L1的第一光纤104,另一路经过长度为L2的第二光纤105,最后两路经不同时延的光脉冲在第二耦合器106输出端形成一组脉冲对,脉冲对前后两个光脉冲可分别表示为:
Figure GDA0002493954840000052
其中:τ为延迟光纤对116的时延差,且T2<τ<T1
延迟光纤对116输出的光脉冲对进入到马赫增德尔调制器(MZM)107进行光强调制,然后再经过光带通滤波器108进行滤波从而保留其一阶边带。脉冲对在经光强度调制以及带通滤波后输出的前后两个光脉冲可分别表示为:
Figure GDA0002493954840000053
其中:ωc为马赫增德尔调制器107未调制射频信号的中心角频率,β为马赫增德尔调制器107的调频指数,ω2为马赫增德尔调制器107的频率调制角频率(ω2=2πf1)。为了严格保证解调信号之间的同步关系,驱动声光调制器102和马赫增德尔调制器107的信号可以来自于同一个射频信号源109,并且为了保证光传播过程中偏振状态不变,马赫增德尔调制器之前的器件均采用保偏器件。
光带通滤波器108输出的单边带调频脉冲对经过光放大器110和光隔离器111后进入环形器112的a口,并由环形器112的b口输出至光纤光栅传感器阵列113。
光纤光栅传感器阵列113由多个波长与光源波长匹配的宽带光纤布拉格光栅(FBG)113a,113b,113c……构成,并且各光栅中心波长一致以防止从FBG返回的光强减弱、干涉条纹可见度降低;阵列中的光栅两两组合构成了光纤布拉格光栅-法布里珀罗(FBG-FP)腔,外界扰动信号通过感应线圈作用于FP腔,并由于腔长的变化引起光相位的变化。光脉冲对在光纤光栅传感器阵列113调制上外界扰动信号后返回环形器112的b口再从环形器112的c口输出,输出信号最后进入光电探测器114转换为电信号后并由数字采样系统115进行数字采样,最后按时分顺序分别提取解调出各个位置点的扰动。
如图2所示为光脉冲对经光纤光栅传感阵列113后的返回的一连串干涉光脉冲时序图;结合图1的解调装置,在时序波形201当中,脉冲A为光脉冲对前一个脉冲波形,脉冲B为光脉冲对的后一个脉冲波形。在时序波形202当中,脉冲a1为脉冲A经光栅113a反射后的波形,脉冲a2为脉冲B经光栅113a反射后的波形;脉冲b1为脉冲A经光栅113b反射后的波形,脉冲b2为脉冲B经光栅113b反射后的波形……如此类推。其中,T1为光脉冲重复周期,T2为光脉冲脉宽,τ为延迟光纤对116的时延差,T3为相邻两光栅反射所引起的时延差(即两倍FP腔长所对应的时延差)。当τ与T3相等时(即光纤光栅传感器阵列113中两光栅间的腔长为光纤延迟对116臂长差的一半),从后前一个光栅113a反射回的后一个脉冲a2与后一个光栅113b反射回的前一个脉冲b1在时域上重合,从而能够在光电探测器114中产生干涉;同理脉冲b2与脉冲c1重合,脉冲c2与d1重合……同时,为了能够解调得到光栅阵列中多个FB腔上的扰动信号不受多次光栅反射的干扰,应设置光脉冲重复周期T1足够长,并且设置为相邻两光栅反射所引起的时延差T3的整数倍。具体的,如图2中干涉信号的形成,若光纤光栅阵列中包含有M个光栅并形成M-1个FB腔,为保证第一个脉冲对的最后一个反射脉冲与第二个脉冲对的第一个反射脉冲不重叠,应当设置T1>(M+1)T3,同时为了使前一个脉冲预留的多次光栅反射信号不至于下一个脉冲的扰动测量,设置T1=2(M+1)T3为宜。
其中,在干涉前,光脉冲b1可表示为:
Figure GDA0002493954840000071
光脉冲a2可表示为:
Figure GDA0002493954840000072
其中:R为光栅反射率,τ既是延迟光纤对116的时延差同时也是两倍FP腔长所对应的时延差,p(t)为外部扰动信号作用于FP腔所引起的相位变化。
时域上重合的两个光脉冲b1和a2干涉后经光电探测器114转换后的电信号可表示为:
Figure GDA0002493954840000073
上述输出电信号可进一步简化为:
I=A+B cos[M sin(ωFMt+φ0)+p(t)+φ1(t)]
如上式所示,数据采样卡115采样得到的干涉信号包含了直流分量以及具有扰动信息的余弦波信号,该采样结果可采用特征点采样的方式进行解调。
图3为数字采样系统115对光电探测器114输出干涉电脉冲信号的一个调频周期内12个数据点进行采样的示意图,一个调频周期每隔π/6rad采集一个数据点,从这我们可以得出:I1(t)=I1(t+6),I2(t)=-I2(t+6),因此信号I1的峰峰值可以被测量通过对信号I每隔πrad相加两个数据点如P6和P0来实现,信号I2的峰峰值可以被测量通过对信号I隔πrad相减两个数据点如P7和P1来实现,并且通过调整射频源调频信号输出的相位,监测采样干涉信号的峰值远离信号I的最大点π/12rad时,即可以实现数据采样的同步,并且为了保证能够在一个脉宽内所采样得到解调所需的至少12个采样点信号,我们设置脉宽T2大于等于一个调频周期1/f1
图4展示了12点采样正交解调算法,在数据采集的条件下,本发明提出一种每调频周期采样12个数据点的外扰动信号正交解调方法,取其中的8个点经过配对处理得到如下式:
OS=(P7-P1)+(P11-P5)=4B sin[p(t)]
ES=(P0+P6)-(P3+P9)=4Bcos[p(t)]
可以看出,差值对P7-P1和P11-P5分别抵消了干涉信号I中直流项A的影响,和值对P0+P6和P3+P9相减也抵消了干涉信号I中直流项A的影响,外部扰动信号可以被解调通过对两路正交信号进行反正切运算:
p(t)=arctan(OS/ES)
上述对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对上述实例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (5)

1.一种基于光纤光栅传感器阵列的调频解调装置,其特征在于,包括:激光器、射频信号源、声光调制器、延迟光纤对、马赫增德尔调制器、光滤波器、光放大器、光隔离器、环形器、光纤光栅传感器阵列、光电探测器以及数据采样卡,其中:
所述激光器用于发射连续的窄线宽光信号;
所述射频信号源用于产生移频信号、频率为f1的强度调制信号以及时钟同步信号;
所述声光调制器用于根据移频信号对激光器发射出的光信号同时进行移频以及强度调制,从而输出脉冲光信号;
所述延迟光纤对用于将声光调制器输出的脉冲光信号分成两路,两路光信号经不同延迟后合成为一路光脉冲对信号;
所述马赫增德尔调制器用于根据强度调制信号对延迟光纤对生成的光脉冲对信号进行强度调制后输出;
所述光滤波器用于对马赫增德尔调制器输出的光脉冲对信号进行滤波后输出,以滤除其一侧的光边带;光滤波器输出的光脉冲对信号依次经过光放大器、光隔离器、环形器后进入光纤光栅传感器阵列;
所述光纤光栅传感器阵列用于感应不同位置上的外部传感信号,这些外部传感信号会引起输入光脉冲对信号的相位变化,并返回一连串带有外部传感信息的干涉光脉冲信号,然后经环形器输出至光电探测器;
所述光电探测器用于将干涉光脉冲信号转换为电信号;
所述数据采样卡基于时钟同步信号对电信号进行同步采样得到对应的数字信号,进而利用内部的数字信号处理单元对数字信号进行解调,得到外部传感信号;
所述延迟光纤对包括第一耦合器、第二耦合器、第一光纤和第二光纤,其中:第一耦合器将声光调制器输出的脉冲光信号一分为二,两路光信号分别经过第一光纤和第二光纤后由第二耦合器合成为一路光脉冲对信号,第一光纤长度大于第二光纤长度;
所述光纤光栅传感器阵列包括多个光纤布拉格光栅和多个感应线圈,其中:多个光纤布拉格光栅依次排列,相邻两个光栅构成一个法布里-珀罗腔,多个感应线圈中对应嵌设于每一个法布里-珀罗腔中;
所述光纤光栅传感器阵列的调制方式为:外部传感信号通过感应线圈作用于法布里-珀罗腔并引起腔长变化,腔长变化进而引起输入光脉冲对信号的相位变化,对于任一法布里-珀罗腔,腔内后一个光栅反射的带有相位变化信息的光脉冲对的前一个脉冲与腔内前一个光栅反射的不带相位变化信息的光脉冲对的后一个脉冲在时域上重合,从而相互干涉形成带有外部传感信息的干涉光脉冲信号;
所述延迟光纤对中两路光纤的臂长差所对应时延为法布里-珀罗腔的腔长所对应时延的一半;所述声光调制器输出脉冲光信号的重复周期为光纤延迟对中两路光纤的臂长差所对应时延的2(M+1)倍,其中M为光纤光栅传感器阵列中的光栅数量。
2.根据权利要求1所述的调频解调装置,其特征在于:所述激光器采用窄线宽DFB光源,所述射频信号源采用模拟信号源且内部集成了调频模块和同步模块。
3.根据权利要求1所述的调频解调装置,其特征在于:所述激光器、声光调制器、延迟光纤对均为保偏器件。
4.根据权利要求1所述的调频解调装置,其特征在于:所述干涉光脉冲信号的脉冲宽度大于等于1/f1
5.根据权利要求1所述的调频解调装置,其特征在于:所述数据采集卡同步采样后得到对应的数字信号,进而通过特征点采样解调算法对数字信号按时序进行解调得到各个位置点的外部传感信号,所述特征点采样解调算法具体过程为:首先使光电探测器输出的电信号通过同步操作确定第一个采样点P0的位置,在每一个调频周期1/f1内,电信号被采样12个数据点(P0,...,P11);所述电信号被扩展为直流项A与偶信号I1和奇信号I2的叠加,所述偶信号I1和奇信号I2的最大值和最小值则通过其内部时间变量按1/12f1间隔取值得到;在偶信号I1中每时间间隔为1/2f1对应的值相同,在奇信号I2中每时间间隔为1/2f1对应的值相反;偶信号I1的峰峰值则通过对电信号I相加两组时间间隔为1/2f1的数据点(P0,P6)和(P3,P9)来获取得到,即P0+P6的和值与P3+P9的和值相减即可抵消电信号中直流项A的影响;奇信号I2的峰峰值则通过对电信号相减两组时间间隔为1/2f1的数据点(P1,P7)和(P5,P11)来获取得到,即P7-P1的差值与P11-P5的差值相加即可抵消电信号中直流项A的影响;偶信号I1的峰峰值与奇信号I2的峰峰值相互正交,两组正交信号相除后再进行反正切运算即得到所需解调的外部传感信号。
CN201910708418.0A 2019-08-01 2019-08-01 一种基于光纤光栅传感器阵列的调频解调装置 Active CN110365415B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910708418.0A CN110365415B (zh) 2019-08-01 2019-08-01 一种基于光纤光栅传感器阵列的调频解调装置
US16/945,838 US11193818B2 (en) 2019-08-01 2020-08-01 Frequency modulation demodulator based on fiber grating sensor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910708418.0A CN110365415B (zh) 2019-08-01 2019-08-01 一种基于光纤光栅传感器阵列的调频解调装置

Publications (2)

Publication Number Publication Date
CN110365415A CN110365415A (zh) 2019-10-22
CN110365415B true CN110365415B (zh) 2020-10-20

Family

ID=68221689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910708418.0A Active CN110365415B (zh) 2019-08-01 2019-08-01 一种基于光纤光栅传感器阵列的调频解调装置

Country Status (2)

Country Link
US (1) US11193818B2 (zh)
CN (1) CN110365415B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617875B (zh) * 2019-10-29 2021-05-18 大连理工大学 一种波长移相式光纤声传感阵列解调系统和方法
CN110864797B (zh) * 2019-11-13 2023-10-31 天津大学 异构双边带啁啾脉冲的差分cotdr分布式声传感装置及方法
CN111579047A (zh) * 2020-05-09 2020-08-25 中国电子科技集团公司第七研究所 一种光纤矢量水听器的信号解调方法
CN111780853B (zh) * 2020-07-10 2024-07-16 上海交通大学 基于正交频分复用的光纤水听器阵列高频率响应探测方法
CN112325911B (zh) * 2020-10-19 2021-09-17 上海交通大学 硅基微环脉冲编码时分复用动态波长解调方法
CN113219258A (zh) * 2021-02-08 2021-08-06 电子科技大学 一种基于光学移频环路的实时射频相关器及其实现方法
KR102461021B1 (ko) * 2021-03-08 2022-11-01 한국원자력연구원 진동 측정 장치 및 이를 이용한 진동 측정 방법
CN113219205B (zh) * 2021-03-24 2023-04-25 西北大学 一种光纤光栅分布式加速度监测装置及方法
CN113390335B (zh) * 2021-04-22 2023-03-24 中交天和机械设备制造有限公司 盾尾刷磨损实时监测系统、盾构机及制造方法
CN113155165B (zh) * 2021-05-14 2022-07-05 武汉理工大学 大容量光纤光栅传感网络的干涉型解调系统及方法
CN113375702B (zh) * 2021-05-28 2024-07-23 武汉理工大学 一种高密度多通道光栅阵列传感器的波长信号解调系统
CN113340421B (zh) * 2021-07-05 2023-02-28 西安交通大学 一种基于光纤端面Fizeau干涉的全光纤微型光谱仪
CN113691321B (zh) * 2021-08-25 2022-06-07 湖南工学院 低功率微波信号一体化处理方法与一体化接收机
CN113654478B (zh) * 2021-09-01 2022-06-17 哈尔滨工程大学 一种基于时间门控的多通道光纤应变解调方法
CN114111860B (zh) * 2021-12-03 2022-08-30 北京科技大学 基于多频脉冲编码的分布式φ-otdr传感方法及系统
CN114485742B (zh) * 2021-12-29 2023-09-12 武汉烽理光电技术有限公司 一种具有光栅位置修正功能的光栅阵列传感系统及方法
CN114440948B (zh) * 2022-01-26 2023-02-21 西安交通大学 一种法布里珀罗传感器的量程拓宽方法及系统
CN114623920B (zh) * 2022-03-15 2023-01-10 北京航空航天大学 一种φ-otdr型分布式光纤声波传感系统及信号解调方法
CN114485907B (zh) * 2022-03-21 2022-08-23 中国人民解放军国防科技大学 消除光纤光栅水听器阵列中寄生干涉信号的装置及方法
CN114726442B (zh) * 2022-06-02 2022-08-23 高勘(广州)技术有限公司 基于光纤传感的分布式通信方法、系统、装置及存储介质
CN115993141B (zh) * 2022-11-21 2024-06-07 武汉理工大学 长距离光纤光栅传感网络的双端解调系统及方法
CN117109721B (zh) * 2023-10-25 2024-01-30 之江实验室 Das系统中散射点位置查找装置、查找方法及解调方法
CN117232639B (zh) * 2023-11-15 2024-03-19 国网山西省电力公司超高压变电分公司 特高压交流变压器广域声纹采集装置
CN117606528B (zh) * 2024-01-23 2024-05-17 山东中芯光电科技有限公司 一种基于dbr激光器的f-p传感器解调方法及系统
CN117723144B (zh) * 2024-02-07 2024-04-23 青岛哈尔滨工程大学创新发展中心 一种偏振调制式水声检测装置、方法及水听器
CN118392363B (zh) * 2024-06-27 2024-09-13 安徽至博光电科技股份有限公司 一种压力传感器及其测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102216737A (zh) * 2008-08-27 2011-10-12 秦内蒂克有限公司 基于相位的感测
CN108020314A (zh) * 2016-11-01 2018-05-11 北京大学 光纤水听器阵列系统和加速度传感器阵列系统及测量方法
CN109163748A (zh) * 2018-09-17 2019-01-08 哈尔滨工业大学 基于捷变频技术的单端动态分布式布里渊反射装置及方法
CN109450531A (zh) * 2019-01-14 2019-03-08 浙江大学 一种基于单边带调频的光纤干涉仪传感器扰动信号解调装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466706B1 (en) * 2000-10-11 2002-10-15 The United States Of America As Represented By The Secretary Of The Navy Pulsed system and method for fiber optic sensor
US7327462B2 (en) * 2005-08-17 2008-02-05 Litton Systems, Inc. Method and apparatus for direct detection of signals from a differential delay heterodyne interferometric system
CN103954310B (zh) * 2014-05-22 2016-05-25 中国人民解放军国防科学技术大学 一种干涉型光纤传感器的大动态信号解调装置及解调方法
CN105547453B (zh) * 2015-11-30 2018-09-18 威海北洋电气集团股份有限公司 一种时分复用光纤水听器阵列的光路结构
GB2560522B (en) * 2017-03-13 2022-03-16 Aiq Dienstleistungen Ug Haftungsbeschraenkt Dynamic sensitivity distributed acoustic sensing
GB2570144A (en) * 2018-01-12 2019-07-17 Ap Sensing Gmbh High rate fibre optical distributed acoustic sensing
CN109596205B (zh) * 2018-12-21 2021-05-28 电子科技大学 一种基于延时光纤的双脉冲光纤振动传感方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102216737A (zh) * 2008-08-27 2011-10-12 秦内蒂克有限公司 基于相位的感测
CN108020314A (zh) * 2016-11-01 2018-05-11 北京大学 光纤水听器阵列系统和加速度传感器阵列系统及测量方法
CN109163748A (zh) * 2018-09-17 2019-01-08 哈尔滨工业大学 基于捷变频技术的单端动态分布式布里渊反射装置及方法
CN109450531A (zh) * 2019-01-14 2019-03-08 浙江大学 一种基于单边带调频的光纤干涉仪传感器扰动信号解调装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Jiawei Mei;Xiaosheng Xiao;Changxi Yang.Delay Compensated FBG Demodulation System Based on Fourier Domain Mode-Locked Lasers.《 IEEE Photonics Technology Letters》.2015,全文. *
大规模光纤水听器阵列光学外差及时分复用技术研究;张楠;《中国优秀硕士学位论文全文数据库(工程科技Ⅱ辑)》;20090715;全文 *

Also Published As

Publication number Publication date
CN110365415A (zh) 2019-10-22
US11193818B2 (en) 2021-12-07
US20210033452A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN110365415B (zh) 一种基于光纤光栅传感器阵列的调频解调装置
US7336365B2 (en) Method and apparatus for suppression of crosstalk and noise in time-division multiplexed interferometric sensor systems
CN107655561B (zh) 一种基于光纤光栅水听器阵列的相位调制解调装置
JP6698164B2 (ja) 周波数合成に基づいた光周波数領域反射方法及びシステム
JP3667132B2 (ja) ブリルアンゲインスペクトル測定方法および装置
CN110455324B (zh) 一种基于cp-φotdr的高重复率准分布式传感系统及其实现方法
US8248589B2 (en) Phase based sensing
CN110470327A (zh) 一种光时域分析仪和分析方法
CN108873007B (zh) 一种抑制振动效应的调频连续波激光测距装置
GB2406907A (en) Active coherence reduction for interferometer interrogation
CN112129491B (zh) 基于单光频梳干涉的光纤时延测量方法及装置
CN109450531B (zh) 一种基于单边带调频的光纤干涉仪传感器扰动信号解调装置
CN102281107A (zh) 一种光纤光学器件色散测量装置与方法
CN110672137B (zh) 基于波分复用和微波光子技术的干涉型光纤振动传感系统
CN102997945A (zh) 光纤分布式扰动传感器的多点扰动定位方法
CN109724685A (zh) 基于Fizeau干涉的光纤光栅水声传感阵列解调方法及系统
CN105806379B (zh) 弱反射光纤布拉格光栅-珐泊腔传感器的解调系统
Li et al. Pulse coding in distributed optical fiber vibration sensor: A review
JP3842551B2 (ja) 時分割マルチプレックス処理された光ファイバセンサアレイのノイズ抑制装置および方法
CN111912516A (zh) 一种相位同步的光纤分布式振动测量装置、驱动器及方法
CN105352446A (zh) 亚纳应变级多点复用光纤光栅准静态应变传感系统
CN103438915A (zh) 一种基于频移干涉的f-p传感器复用方法及系统
CN205192442U (zh) 亚纳应变级多点复用光纤光栅准静态应变传感系统
CN114777901A (zh) 干涉式光纤水听器系统及其线性调频方法
CN112816180A (zh) 光纤色散测量方法及测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant