CN110364751A - 燃料电池系统及其控制方法 - Google Patents

燃料电池系统及其控制方法 Download PDF

Info

Publication number
CN110364751A
CN110364751A CN201810252908.XA CN201810252908A CN110364751A CN 110364751 A CN110364751 A CN 110364751A CN 201810252908 A CN201810252908 A CN 201810252908A CN 110364751 A CN110364751 A CN 110364751A
Authority
CN
China
Prior art keywords
fuel cell
air compressor
compressor machine
air
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810252908.XA
Other languages
English (en)
Other versions
CN110364751B (zh
Inventor
曹卓涛
王传秋
李维国
周鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yutong Bus Co Ltd
Original Assignee
Zhengzhou Yutong Bus Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Yutong Bus Co Ltd filed Critical Zhengzhou Yutong Bus Co Ltd
Priority to CN201810252908.XA priority Critical patent/CN110364751B/zh
Publication of CN110364751A publication Critical patent/CN110364751A/zh
Application granted granted Critical
Publication of CN110364751B publication Critical patent/CN110364751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04507Humidity; Ambient humidity; Water content of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及燃料电池空压机控制技术领域,特别是燃料电池系统及其控制方法。该系统包括燃料电池电堆、空压机、控制器和设置于燃料电池电堆出气管路上的节气门,空压机通过供气管路向燃料电池电堆中供给空气;控制器的输出端连接空压机和节气门,控制器的输入端采集相应的信号,燃料电池启机时,控制节气门全开且以第一设定转速启动空压机,当需要开机吹扫时,在第一设定时间后调整空压机转速为第二设定转速;当燃料电池关机时,若控制器判断需要关机吹扫,则控制节气门全开,并在第一设定时刻后调整空压机转速为第一设定转速值,保证了在启机和关机阶段中空压机转速和背压相匹配,解决了空压机在启机和关机阶段发生喘振的问题。

Description

燃料电池系统及其控制方法
技术领域
本发明涉及燃料电池空压机控制技术领域,特别是燃料电池系统及其控制方法。
背景技术
燃料电池是一种将储存在氢燃料和氧化剂中的化学能直接转化为电能的发电装置。由于其发电过程中不涉及氢氧燃烧,因而不受卡诺循环的限制,能量转化效率高、环境友好的优点,同时,燃料电池还具有可在室温快速启动、无电解液流失、比功率和比能量高等突出特点。基于以上优点,燃料电池作为新一代发电技术,将具有广泛的应用前景。
现有燃料电池的氧化剂多采用空气,在空气系统中,空气经过空压机压缩泵入空气管路,流经膜增湿器后湿度提高,进入电堆阴极参与反应,电堆阴极排出的气体通过排气管道排入大气。有中国专利公告号为CN101615686B公开了一种燃料电池系统中的自适应压缩机喘振控制,其是一种针对在保证空压机最大效率的过程中避免空压机出现喘振现象的方法。
然而,燃料电池系统在开机阶段和关机阶段状态切换的过程中空压机转速和系统目标压力会发生变化,且在燃料电池运行过程中,如果出现燃料电池单片电压低的情况,为排除阴极流道中聚集的液态水,空气系统将立即产生一个目标压力扰动和目标转速扰动,这种压力和转速的变化处理不好将导致空压机喘振现象,影响空压机的使用寿命。
发明内容
本发明的目的是提供燃料电池系统及其控制方法,用以解决燃料电池开关机阶段切换过程中空压机转速和系统目标压力变化处理不当导致空压机喘振的问题。
为了有效地保证在状态切换为正常运行的过程中空压机转速和背压相匹配,防止空压机在启机阶段发生喘振现象,本发明提供一种燃料电池系统,包括燃料电池电堆、空压机、控制器和设置于燃料电池电堆出气管路上的节气门,所述空压机通过供气管路向所述燃料电池电堆供给空气,所述控制器的输出端连接所述空压机和所述节气门,当燃料电池启机时,所述控制器控制所述节气门全开且以第一设定转速启动空压机;当所述控制器判断需要开机吹扫时,在第一设定时间后调整空压机转速为第二设定转速,在燃料电池启机时通过时序控制节气门和空压机,使燃料电池启机到正常运行切换过程中空压机转速和背压相匹配,保证了空压机不会发生喘振,提高空压机的使用寿命。
为了满足车辆对燃料电池系统的需求,进一步地,当控制器判断不需要开机吹扫时,在以第一设定转速启动空压机的第二设定时间后所述控制器根据整车需求控制空压机的转速。
为了既减少吹扫时间又防止空压机过载,进一步地,所述第二设定转速为空压机的额定转速。
为了使燃料电池在正常运行时不发生喘振,进一步地,在燃料电池正常运行时,所述控制器根据阴极流道中的液态水量判断需要进行吹扫时,控制所述空压机使目标压力小于目标压力限定值,所述目标压力限定值为根据当前目标转速和空压机的喘振曲线得到。
为了准确判断在燃料电池正常运行中是否需要吹扫,进一步地,所述阴极流道中的液态水量判断为根据燃料电池单片电压计算得出。
为了准确得到目标压力限定值,进一步地,所述目标压力限定值的计算方法如下:
1)根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力;
2)所述最高入堆空气压力减去设定安全压力得到的压力值即为所述目标压力限定值。
为了准确得到目标压力限定值,进一步地,所述目标压力限定值的计算方法如下:
1)根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力;
2)所述最高入堆空气压力乘以设定倍数得到的压力值即为所述目标压力限定值。
为了得到准确的目标压力限定值,进一步地,根据燃料电池运行中的实际状况,所述设定倍数为80%~92%。
为了有效地保证在状态切换为正常运行的过程中空压机转速和背压相匹配,防止空压机在启机阶段发生喘振现象,本发明还提供一种燃料电池系统控制方法,燃料电池启机时,包括以下步骤:
1)控制设置于燃料电池电堆出气管路上的节气门全开且以第一设定转速启动燃料电池电堆供气管路上的空压机;
2)判断是否需要开机吹扫,若是,则在第一设定时间后调整所述空压机转速为第二设定转速。
为了满足车辆对燃料电池系统的需求,作为燃料电池控制方法的改进,当不需要开机吹扫时,在以第一设定转速启动空压机的第二设定时间后根据整车需求控制空压机的转速。
为了既减少吹扫时间又防止空压机过载,作为燃料电池控制方法的改进,所述第二设定转速为空压机的额定转速。
为了使燃料电池在正常运行时不发生喘振,作为燃料电池控制方法的改进,燃料电池正常运行时,根据阴极流道中的液态水量判断需要进行吹扫时,控制燃料电池电堆供气管路上的空压机使目标压力小于目标压力限定值,所述目标压力限定值为根据当前目标转速和空压机的喘振曲线得到。
为了准确判断在燃料电池正常运行中是否需要吹扫,进一步地,所述阴极流道中的液态水量判断为根据燃料电池单片电压计算得出。
为了准确得到目标压力限定值,作为燃料电池控制方法的改进,所述目标压力限定值的计算方法如下:
1)根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力;
2)所述最高入堆空气压力减去设定安全压力得到的压力值即为所述目标压力限定值。
为了准确得到目标压力限定值,作为燃料电池控制方法的改进,所述目标压力限定值的计算方法如下:
1)根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力;
2)所述最高入堆空气压力乘以设定倍数得到的压力值即为所述目标压力限定值。
为了得到准确的目标压力限定值,作为燃料电池控制方法的改进,所述设定倍数为80%~92%。
为了有效地保证在状态从正常运行切换为关闭的过程中空压机转速和背压相匹配,防止空压机在关机阶段发生喘振现象,本发明还提供一种燃料电池系统,包括燃料电池电堆、空压机、控制器和设置于燃料电池电堆出气管路上的节气门,所述空压机通过供气管路向所述燃料电池电堆供给空气,所述控制器的输出端连接所述空压机和所述节气门,当燃料电池关机时,若所述控制器判断需要关机吹扫,则控制节气门全开,并在第一设定时刻后调整空压机转速为第一设定转速值。
为了在关机后尽快将燃料电池内剩余气体排出,进一步地,当不需要关机吹扫时,所述控制器控制所述节气门全开,并在第二设定时刻后调整空压机停转且关闭节气门。
为了在燃料电池关机后实现其内部气体的释放,防止气体在燃料电池的出气管路积压,进一步地,当吹扫结束时,所述控制器控制空压机断电且关闭所述节气门。
为了使燃料电池在正常运行时不发生喘振,进一步地,在燃料电池正常运行时,所述控制器根据阴极流道中的液态水量判断需要进行吹扫时,控制所述空压机使目标压力小于目标压力限定值,所述目标压力限定值为根据当前目标转速和空压机的喘振曲线得到。
为了准确判断在燃料电池正常运行中是否需要吹扫,进一步地,所述阴极流道中的液态水量判断为根据燃料电池单片电压计算得出。
为了准确得到目标压力限定值,进一步地,所述目标压力限定值的计算方法如下:
1)根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力;
2)所述最高入堆空气压力减去设定安全压力得到的压力值即为所述目标压力限定值。
为了准确得到目标压力限定值,进一步地,所述目标压力限定值的计算方法如下:
1)根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力;
2)所述最高入堆空气压力乘以设定倍数得到的压力值即为所述目标压力限定值。
为了得到准确的目标压力限定值,进一步地,根据燃料电池运行中的实际状况,所述设定倍数为80%~92%。
为了有效地保证在状态从正常运行切换为关闭的过程中空压机转速和背压相匹配,防止空压机在关机阶段发生喘振现象,本发明还提供一种燃料电池系统控制方法,其特征在于,燃料电池关机时,判断是否需要关机吹扫,若是,则控制设置于燃料电池电堆出气管路上的节气门全开,并在第一设定时刻后调整设置于燃料电池电堆供气管路上的空压机转速为第一设定转速值。
为了在关机后尽快将燃料电池内剩余气体排出,作为燃料电池控制方法的改进,当不需要关机吹扫时,控制所述节气门全开,并在第二设定时间后调整空压机停转且关闭节气门。
为了在燃料电池关机后实现其内部气体的释放,防止气体在燃料电池的出气管路积压,作为燃料电池控制方法的进一步改进,当吹扫结束时,控制空压机断电且关闭所述节气门。
为了使燃料电池在正常运行时不发生喘振,作为燃料电池控制方法的改进,燃料电池正常运行时,根据阴极流道中的液态水量判断需要进行吹扫时,控制燃料电池电堆供气管路上的空压机使目标压力小于目标压力限定值,所述目标压力限定值为根据当前目标转速和空压机的喘振曲线得到。
为了准确判断在燃料电池正常运行中是否需要吹扫,进一步地,所述阴极流道中的液态水量判断为根据燃料电池单片电压计算得出。
为了准确得到目标压力限定值,作为燃料电池控制方法的改进,所述目标压力限定值的计算方法如下:
1)根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力;
2)所述最高入堆空气压力减去设定安全压力得到的压力值即为所述目标压力限定值。
为了准确得到目标压力限定值,作为燃料电池控制方法的改进,所述目标压力限定值的计算方法如下:
1)根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力;
2)所述最高入堆空气压力乘以设定倍数得到的压力值即为所述目标压力限定值。
为了得到准确的目标压力限定值,作为燃料电池控制方法的改进,所述设定倍数为80%~92%。
附图说明
图1是一种燃料电池系统结构示意图;
图2是实施例1的一种燃料电池系统启机控制方法流程图;
图3是实施例2的一种燃料电池系统关机控制方法流程图;
图4是实施例3的一种燃料电池系统正常运行时控制方法流程图。
具体实施方式
下面结合附图对本发明做进一步详细的说明。
本发明的提供一种燃料电池系统,包括燃料电池启机阶段、正常运行阶段和关机阶段的全工况下防止空压机发生喘振,确保空压机的使用寿命。
上述控制系统,如图1所示,包括燃料电池电堆4、空压机1、节气门5和燃料电池控制器6,其中,空压机1通过供气管路向燃料电池电堆4中供给空气,该供气管路上设置有中冷器2和第一增湿器;燃料电池电堆4还连接有出气管路,该出气管路上设置有上述节气门5;该出气管路的节气门5和燃料电池电堆4出气口之间设置有第二增湿器,优选上述第一增湿器和第二增湿器为一个增湿器3。
上述节气门5的作用是控制背压,实际运行中燃料电池控制器6根据空压机和节气门动作时序需求协同控制空压机1的转速和节气门5的开度,使阴极空气流量和空气压力达到目标值。
上述燃料电池控制器6的输出端连接空压机1和节气门5,该燃料电池控制器6的输入端连接燃料电池单片电压信号输出端,通过相应的控制方法采样信号控制节气门5和空压机1的动作,实现在燃料电池单片电压出现异常时合理控制空压机的转速和节气门的开度,使不发生空压机喘振等问题,提高空压机的使用寿命。另外,由于燃料电池系统全工况运行包括三个阶段,为了实现空压机在各阶段切换过程中不发生喘振的现象,需要在相应的控制方法的帮助下完成空压机和节气门的时序控制,以下通过两种实施例分别对应不同工况下对节气门和空压机的控制方法,避免空压机喘振现象的发生。
实施例1
本实施例1提供一种燃料电池系统启机控制方法,如图2所示,为燃料电池系统在启机切换为正常工作运行过程中的空压机的控制方式,包括以下步骤:
S101、当燃料电池启机时,控制器控制节气门全开且以第一设定转速启动空压机。
燃料电池控制器控制节气门全开,同时控制空压机启动,且优选第一设定转速为0rmp。
S102、当控制器判断需要开机吹扫时,在第一设定时间后调整空压机转速为第二设定转速。
根据条件判断是否需要对阴极流道中聚集的液态水进行吹扫,当需要进行吹扫时,在空压机启动第一设定时间后将转速调为第二设定转速,优选第二设定转速为空压机的额定转速,以额定转速进行吹扫。优选第一设定时间为1s。
S103、当控制器判断不需要开机吹扫时,在第二设定时间后控制器根据整车需求控制空压机的转速。
当不需要进行吹扫时,在空压机启动第二设定时间后根据整车需求控制空压机的转速以满足燃料电池电堆的需求。优选第二设定时间为1s。
上述步骤S101的控制器控制节气门全开且以第一设定转速启动空压机与步骤S102中的判断是否开机吹扫没有先后顺序,两个过程可同时进行,也可先判断是否开机吹扫。
实施例2
为了防止燃料电池系统在正常运行到关机之间出现空压机喘震的现象,本实施例2提供一种燃料电池系统关机控制方法,如图3所示,为燃料电池系统在关机过程中的空压机和节气门的控制方式,包括以下步骤:
S201、判断是否需要关机吹扫。
根据条件判断是否需要对阴极流道中聚集的液态水进行吹扫,若是,则控制节气门全开,并在第一设定时刻后调整空压机转速为第一设定转速值。其中优选第一设定时刻为1s,第一设定转速值为额定转速,以达到最好的吹扫效果。
S202、若否,则控制节气门全开,并在第二设定时刻后调整空压机停转且关闭节气门。
燃料电池控制器控制节气门先全开,随后在第二设定时刻后控制空压机开始停转,优选第二设定时刻为1s,并且空压机停转并关闭1s后关闭节气门,进而关机完成。
上述步骤S202中若不需要关机吹扫,还采取别的控制方式,不局限于上述S202中的控制方式;在单独使用步骤S201时的基础上,当吹扫结束时,控制空压机断电且关闭节气门,另外在步骤S201与S202连用时的基础上,当吹扫结束时,控制空压机断电且关闭节气门。
通过燃料电池开关机阶段空压机和节气门动作时序的设计有效保证了状态切换的过程空压机不会发生喘振,实际运行过程中通过协同控制空压机的转速和节气门的开度有效保证了阴极空气流量和空气压力目标值的对应。
实施例3
本实施例3在实施例1或实施例2的基础上,提供一种燃料电池系统正常运行时控制方法,如图4所示,为燃料电池系统在正常工作运行过程中的空压机的控制方式,包括以下步骤:
S301、根据阴极流道中的液态水量判断是否需要进行吹扫。
该阴极流道中的液态水量的判断方式较多,可以通过判断燃料电池单片电压是否小于设定电压阈值来判定是否需要吹扫,此时燃料电池控制器通过输入端连接相应的燃料电池单片电压信号输出端,获取燃料电池单片电压。
S302、若需要进行吹扫。
在燃料电池运行过程中,如果出现燃料电池单片电压低的情况,为了排除阴极流道中聚集的液态水,燃料电池系统中的空气系统将立即产生一个目标压力扰动和目标转速扰动,此时为了防止空压机出现喘振,需对目标压力进行限制。
S303、控制空压机使目标压力小于目标压力限定值,目标压力限定值为根据当前目标转速和空压机的喘振曲线得到。
具体的,该目标压力限定值可以根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力,然后用该最高入堆空气压力减去一个设定安全压力值得到的对应的压力值即为该目标压力限定值。
该目标压力限定值还可以根据当前目标转速和空压机的喘振曲线得到的对应当前目标转速的最高入堆空气压力,然后用该最高入堆空气压力的设定倍数的压力值作为该目标压力限定值,其中的设定倍数小于1,由于安全压力设定的数值范围为2~4kpa,喘振曲线的压力值范围为10~52kpa,所以优选的设定倍数范围为80%~92%。
通过上述得到的目标压力限定值,燃料电池控制通过控制空压机使系统中压力值不超过该目标压力限定值。
以上给出了本发明涉及的具体实施方式,但本发明不局限于所描述的实施方式。在本发明给出的思路下,采用对本领域技术人员而言容易想到的方式对上述实施例中的技术手段进行变换、替换、修改,并且起到的作用与本发明中的相应技术手段基本相同、实现的发明目的也基本相同,这样形成的技术方案是对上述实施例进行微调形成的,这种技术方案仍落入本发明的保护范围内。

Claims (10)

1.一种燃料电池系统,其特征在于,包括燃料电池电堆、空压机、控制器和设置于燃料电池电堆出气管路上的节气门,所述空压机通过供气管路向所述燃料电池电堆供给空气,所述控制器的输出端连接所述空压机和所述节气门,当燃料电池启机时,所述控制器控制所述节气门全开且以第一设定转速启动空压机;当所述控制器判断需要开机吹扫时,在第一设定时间后调整空压机转速为第二设定转速。
2.根据权利要求1所述的燃料电池系统,其特征在于,当控制器判断不需要开机吹扫时,在以第一设定转速启动空压机的第二设定时间后所述控制器根据整车需求控制空压机的转速。
3.根据权利要求1或2所述的燃料电池系统,其特征在于,在燃料电池正常运行时,所述控制器根据阴极流道中的液态水量判断需要进行吹扫时,控制所述空压机使目标压力小于目标压力限定值,所述目标压力限定值为根据当前目标转速和空压机的喘振曲线得到。
4.一种燃料电池系统控制方法,其特征在于,燃料电池启机时,包括以下步骤:
1)控制设置于燃料电池电堆出气管路上的节气门全开且以第一设定转速启动燃料电池电堆供气管路上的空压机;
2)判断是否需要开机吹扫,若是,则在第一设定时间后调整所述空压机转速为第二设定转速。
5.根据权利要求4所述的燃料电池系统控制方法,其特征在于,当不需要开机吹扫时,在以第一设定转速启动空压机的第二设定时间后根据整车需求控制空压机的转速。
6.一种燃料电池系统,其特征在于,包括燃料电池电堆、空压机、控制器和设置于燃料电池电堆出气管路上的节气门,所述空压机通过供气管路向所述燃料电池电堆供给空气,所述控制器的输出端连接所述空压机和所述节气门,当燃料电池关机时,若所述控制器判断需要关机吹扫,则控制节气门全开,并在第一设定时刻后调整空压机转速为第一设定转速值。
7.根据权利要求6所述的燃料电池系统,其特征在于,当不需要关机吹扫时,所述控制器控制所述节气门全开,并在第二设定时刻后调整空压机停转且关闭节气门。
8.根据权利要求6或7所述的燃料电池系统,其特征在于,在燃料电池正常运行时,所述控制器根据阴极流道中的液态水量判断需要进行吹扫时,控制所述空压机使目标压力小于目标压力限定值,所述目标压力限定值为根据当前目标转速和空压机的喘振曲线得到。
9.一种燃料电池系统控制方法,其特征在于,燃料电池关机时,判断是否需要关机吹扫,若是,则控制设置于燃料电池电堆出气管路上的节气门全开,并在第一设定时刻后调整设置于燃料电池电堆供气管路上的空压机转速为第一设定转速值。
10.根据权利要求9所述的燃料电池系统控制方法,其特征在于,当不需要关机吹扫时,控制所述节气门全开,并在第二设定时刻后调整空压机停转且关闭节气门。
CN201810252908.XA 2018-03-26 2018-03-26 燃料电池系统及其控制方法 Active CN110364751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810252908.XA CN110364751B (zh) 2018-03-26 2018-03-26 燃料电池系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810252908.XA CN110364751B (zh) 2018-03-26 2018-03-26 燃料电池系统及其控制方法

Publications (2)

Publication Number Publication Date
CN110364751A true CN110364751A (zh) 2019-10-22
CN110364751B CN110364751B (zh) 2020-10-30

Family

ID=68212085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810252908.XA Active CN110364751B (zh) 2018-03-26 2018-03-26 燃料电池系统及其控制方法

Country Status (1)

Country Link
CN (1) CN110364751B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710888A (zh) * 2020-05-15 2020-09-25 山东华硕能源科技有限公司 车载燃料电池系统的启动控制方法
CN114497631A (zh) * 2022-04-14 2022-05-13 苏州氢澜科技有限公司 一种燃料电池空气系统及其控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301896A (ja) * 2008-06-13 2009-12-24 Honda Motor Co Ltd 燃料電池システム
CN101615686A (zh) * 2008-06-25 2009-12-30 通用汽车环球科技运作公司 燃料电池系统中的自适应压缩机喘振控制
CN103050723A (zh) * 2012-12-28 2013-04-17 清华大学 一种用于质子交换膜燃料电池的阴极排气再循环系统
CN202948632U (zh) * 2012-11-14 2013-05-22 新源动力股份有限公司 一种车用质子交换膜燃料电池发动机系统测试平台
CN203326037U (zh) * 2012-12-28 2013-12-04 清华大学 一种用于质子交换膜燃料电池的阴极排气再循环系统
CN203326036U (zh) * 2012-12-28 2013-12-04 清华大学 一种用于质子交换膜燃料电池的阴极排气再循环系统
CN104714186A (zh) * 2015-03-16 2015-06-17 上海新源动力有限公司 集成燃料电池零部件测试及系统测试的平台
CN106848352A (zh) * 2017-03-24 2017-06-13 同济大学 基于电堆模拟器的燃料电池空气供应子系统匹配测试方法
CN107195927A (zh) * 2017-06-02 2017-09-22 浙江瀚广新能源科技有限公司 一种气体压力控制系统及方法
CN109818011A (zh) * 2017-11-21 2019-05-28 成都九鼎科技(集团)有限公司 燃料电池系统空气供应内模解耦控制器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301896A (ja) * 2008-06-13 2009-12-24 Honda Motor Co Ltd 燃料電池システム
CN101615686A (zh) * 2008-06-25 2009-12-30 通用汽车环球科技运作公司 燃料电池系统中的自适应压缩机喘振控制
CN202948632U (zh) * 2012-11-14 2013-05-22 新源动力股份有限公司 一种车用质子交换膜燃料电池发动机系统测试平台
CN103050723A (zh) * 2012-12-28 2013-04-17 清华大学 一种用于质子交换膜燃料电池的阴极排气再循环系统
CN203326037U (zh) * 2012-12-28 2013-12-04 清华大学 一种用于质子交换膜燃料电池的阴极排气再循环系统
CN203326036U (zh) * 2012-12-28 2013-12-04 清华大学 一种用于质子交换膜燃料电池的阴极排气再循环系统
CN104714186A (zh) * 2015-03-16 2015-06-17 上海新源动力有限公司 集成燃料电池零部件测试及系统测试的平台
CN106848352A (zh) * 2017-03-24 2017-06-13 同济大学 基于电堆模拟器的燃料电池空气供应子系统匹配测试方法
CN107195927A (zh) * 2017-06-02 2017-09-22 浙江瀚广新能源科技有限公司 一种气体压力控制系统及方法
CN109818011A (zh) * 2017-11-21 2019-05-28 成都九鼎科技(集团)有限公司 燃料电池系统空气供应内模解耦控制器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710888A (zh) * 2020-05-15 2020-09-25 山东华硕能源科技有限公司 车载燃料电池系统的启动控制方法
CN114497631A (zh) * 2022-04-14 2022-05-13 苏州氢澜科技有限公司 一种燃料电池空气系统及其控制方法
CN114497631B (zh) * 2022-04-14 2022-07-01 苏州氢澜科技有限公司 一种燃料电池空气系统及其控制方法

Also Published As

Publication number Publication date
CN110364751B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN110364752A (zh) 一种燃料电池系统及其控制方法
CN110137539A (zh) 一种燃料电池系统及其关机吹扫方法
CN111092246A (zh) 一种燃料电池系统启动方法
CN110854416B (zh) 一种燃料电池系统的启动准备方法
CN111048806A (zh) 一种燃料电池系统快速低温启动方法
WO2012107977A1 (ja) 舶用発電システム
CN111668520A (zh) 燃料电池系统及其关机控制方法
KR101766558B1 (ko) 발전 시스템 및 발전 시스템에 있어서의 연료 전지의 기동 방법 및 운전 방법
CN113540512B (zh) 燃料电池空气系统和燃料电池空气系统控制方法
CN114883606A (zh) 一种燃料电池系统及其启动吹扫方法
CN112201806A (zh) 燃料电池的控制系统及方法、装置、存储介质及处理器
CN110364751A (zh) 燃料电池系统及其控制方法
CN109713336A (zh) 一种燃料电池的控制系统
US10196942B2 (en) Multi-shaft combined cycle plant, and control device and operation method thereof
KR101567644B1 (ko) 연료 전지 스택 및 그 제어 방법
KR20150058459A (ko) 발전 시스템 및 발전 시스템의 운전 방법
CN114188571A (zh) 一种车载燃料电池系统及其启动运行控制方法
WO2014069414A1 (ja) 発電システム及び発電システムの運転方法
US11901592B2 (en) SOFC cooling system, fuel cell and hybrid vehicle
JP2009266534A (ja) 燃料電池システム
JP2007280676A (ja) 燃料電池システム
CN115064728B (zh) 一种燃料电池用氢气循环装置
CN116259801A (zh) 一种燃料电池系统开机高效气体置换方法
CN115692782A (zh) 一种燃料电池发动机用氢气供气装置
EP2164125A1 (en) Fuel cell system and air supply method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 450061 Yudao Road, Guancheng District, Zhengzhou City, Henan Province

Patentee after: Yutong Bus Co., Ltd

Address before: 450016 Yutong Road, Guancheng District, Zhengzhou City, Henan Province

Patentee before: Zhengzhou Yutong Bus Co., Ltd

CP03 Change of name, title or address