CN110363355B - 一种氧化铝生产指标的云-边协同预报系统及方法 - Google Patents

一种氧化铝生产指标的云-边协同预报系统及方法 Download PDF

Info

Publication number
CN110363355B
CN110363355B CN201910640654.3A CN201910640654A CN110363355B CN 110363355 B CN110363355 B CN 110363355B CN 201910640654 A CN201910640654 A CN 201910640654A CN 110363355 B CN110363355 B CN 110363355B
Authority
CN
China
Prior art keywords
model
forecasting
alumina production
data
training
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910640654.3A
Other languages
English (en)
Other versions
CN110363355A (zh
Inventor
刘长鑫
袁宁
丁进良
柴天佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910640654.3A priority Critical patent/CN110363355B/zh
Priority to US17/597,189 priority patent/US20220309393A1/en
Priority to PCT/CN2019/096512 priority patent/WO2021007845A1/zh
Publication of CN110363355A publication Critical patent/CN110363355A/zh
Application granted granted Critical
Publication of CN110363355B publication Critical patent/CN110363355B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Abstract

本发明提供一种氧化铝生产指标的云‑边协同预报系统及方法,涉及工业云计算与边缘端协同预报技术领域;本发明的系统及方法通过在云端模型训练服务器对氧化铝生产过程指标与变量的预报算法选择、参数配置及模型训练,并对训练好的模型进行评估及参数校正,得到最优的训练模型;同时在边缘端的氧化铝生产指标预报计算机上对氧化铝生产过程数据进行预处理,并通过从云端导入训练好的模型参数,进而使用训练好的预报模型针对不同生产过程对氧化铝生产指标进行预报。本发明提供的系统及方法通过云端服务器为氧化铝生产指标预报模型训练提供强大的计算资源,通过边缘端的计算机提供实时便捷的氧化铝生产指标预报。

Description

一种氧化铝生产指标的云-边协同预报系统及方法
技术领域
本发明涉及工业云计算与边缘端协同预报技术领域,尤其涉及一种氧化铝生产指标的云-边协同预报系统及方法。
背景技术
由于氧化铝生产全流程工艺复杂,涉及各个工序与大量生产数据,由于安全等原因,企业不允许工作人员在工业现场随意进行变量与指标等数据的获取、修改、验证与测试,因此对于提高产品质量以及降低能耗等要求相对困难,并且现有的氧化铝生产指标预报过程主要是通过将传感器等采集到的工业过程数据与实验室化验分析数据进行单独处理,人为将处理后的结果进行再次处理以保证数据维度等的一致,并以此数据进行模型训练,但这个过程难以满足预报过程的实时性要求,因此无法向工作人员进行实时反馈,工作人员无法对产品变量等进行实时性调整。所以非常需要建立一个高效、便捷的预报系统,以便更好的对氧化铝生产过程的生产指标进行预报。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,提供一种氧化铝生产指标的云-边协同预报系统及方法,实现对氧化铝生产过程生产指标进行预报。
为解决上述技术问题,本发明所采取的技术方案是:一方面,本发明提供一种氧化铝生产指标的云-边协同预报系统,包括数据采集装置、硬件平台和设置在硬件平台上的软件系统;所述数据采集装置用于采集氧化铝生产过程的全流程实际数据,并将采集到的数据以固定时间间隔传输给云端服务器和边缘端的氧化铝生产指标预报计算机上;所述硬件平台包括云端模型训练服务器与边缘端的氧化铝生产指标预报计算机;所述软件系统包括设置在云端模型训练服务器的软件和设置在边缘端的氧化铝生产指标预报计算机的软件;所述设置在云端模型训练服务器的软件实现对氧化铝生产指标预报算法的选择管理,并将通过数据采集装置采集到的氧化铝生产过程的全流程实际数据对氧化铝生产指标预报模型进行训练、评估,并将采集到的数据运用到生产指标预报模型中,将模型预报结果与实际生产指标数据进行大数据分析,进而对预报模型参数进行校正;所述设置在边缘端的氧化铝生产指标预报计算机的软件能够实现从云端模型训练服务器导入云端预报模型训练服务器校正后的预报模型参数,或者直接进行校正参数的远程更新,进而将数据采集装置采集到的氧化铝生产过程的全流程实际数据传入边缘端,在边缘端使用训练好的预报模型针对不同生产过程对氧化铝生产指标进行预报。
优选地,所述设置在云端模型训练服务器的软件包括预报模型训练方案管理单元、算法与模型库管理单元、大数据分析单元、模型训练单元、预报模型参数校正单元、预报模型分析单元和模型校正参数下载单元;
所述预报模型训练方案管理单元用于管理训练预报模型时使用的训练样本数据和存储模型参数,以便在分析预报模型性能时进行对比;
所述算法与模型库管理单元用于管理得到的氧化铝生产指标预报模型及模型训练过程所采用的预报算法和系统内置的常用数据处理算法,并提供预报算法的新建、更新与删除功能;
所述模型训练单元用于根据一定时间内数据采集装置采集的氧化铝实际运行所产生的数据及选择的预报算法进行模型训练,并将模型训练结果下传给模型训练评估单元;所述模型训练过程包括数据选择、数据划分、数据预处理和算法选择四步;
所述大数据分析单元根据采集到的氧化铝生产运行数据运用训练好的模型进行氧化铝生产指标预报结果与实际值之间的相关性系数计算,并根据相关性系数判断是否需要进行模型参数校正;
所述预报模型参数校正单元根据最近的生产工况数据,按照模型训练参数配置继续训练预报模型,从而得到适应新工况的校正后的预报模型参数;
所述预报模型分析单元采用校正后的预报模型参数与当前预报模型参数对预报模型训练方案管理模块中存储的氧化铝生产指标数据进行预报分析;如果采用校正后的模型参数预报氧化铝生产指标的结果比当前参数的预报模型准确性好,则选择校正后的预报模型参数,否则维持当前预报模型参数不变;
所述模型校正参数下载单元提供校正后的预报模型参数的导出功能,以便下载到边缘端的氧化铝生产指标预报计算机的预报模型管理单元中;同时还提供了边缘端的氧化铝生产指标预报计算机中软件可以自动远程更新校正后的模型参数的在线下载接口。
优选地,所述云端模型训练服务器上还包括模型训练评估单元用于对训练得到的预报模型进行性能评估;所述性能评估采用均方误差、平均绝对值误差、平均绝对百分误差及预报值与实际值相关性系数这些指标进行对比分析。
优选地,所述模型训练单元还内置参数配置模块,用于对模型训练过程采用的具体训练算法进行预报算法的参数配置。
优选地,所述设置在边缘端的氧化铝生产指标预报计算机的软件包括预报模型管理单元和智能预报单元;
所述预报模型管理单元实现对本地边缘端模型训练方案的管理,包括模型选择模块与模型参数校正模块;模型选择模块根据氧化铝生产过程的判断结果,选择对应生产过程的氧化铝生产指标预报模型进行预报,边缘端与云端均有相同的多种氧化铝生产指标预报模型训练方案;模型参数校正模块导入云端预报模型训练服务器校正后的预报模型参数,或者直接进行校正参数的远程更新,以便在新的工况下仍然能够保证模型预报结果的准确性;
所述智能预报单元在边缘端使用训练好的预报模型运用传入边缘端的氧化铝生产全流程实际数据针对不同生产过程对氧化铝生产指标进行预报。
另一方面,本发明还提供一种氧化铝生产指标的云-边协同预报方法,包括氧化铝生产指标数据的采集、云端训练服务器的运行和边缘端氧化铝生产指标预报计算机的运行三部分;
所述氧化铝生产指标数据采集通过数据采集装置采集氧化铝生产所产生的实际运行数据,并将采集到的数据传输给云端训练服务器的模型训练单元和边缘端的氧化铝生产指标预报计算机智能预报单元;
所述云端训练服务器的运行包括模型训练过程与模型参数校正过程;
所述模型训练过程为:
步骤1:云端训练服务器的模型训练单元根据一定时间内数据采集装置采集的氧化铝实际运行所产生的数据及选择的预报算法进行模型训练,并将模型训练结果下传给模型训练评估单元;所述模型训练过程包括以下过程:
数据选择:根据训练目的对数据采集装置采集到的氧化铝生产全流程数据将进行区间划分;
数据划分:选用数据划分方法将选择的数据划分为训练集与测试集;
数据预处理:根据不同目标及数据形式选用不同数据预处理算法;
算法选择:从算法与模型库管理单元选择进行模型训练的算法;
步骤2:模型训练评估单元对模型训练单元训练得到的预报模型进行性能评估;性能评估指标包括均方误差、平均绝对值误差、平均绝对百分误差及预报值与实际值的相关性系数;
所述模型参数校正过程为:
步骤C1:大数据分析单元根据采集到的氧化铝生产运行数据运用训练好的模型进行氧化铝生产指标预报结果与实际值之间的相关性系数计算,并根据相关性系数判断是否需要进行模型参数校正,如果氧化铝生产指标预报结果与实际值之间的相关性系数小于根据具体生产指标要求设定的相关性系数阈值,则执行步骤2进行模型参数校正,否则不进行模型参数校正;
步骤C2:预报模型参数校正单元根据大数据分析单元得到的大数据分析结果,按照模型训练单元设置的预报模型参数配置继续训练预报模型,从而得到适应大数据分析结果的校正后的预报模型参数;
步骤C3:预报模型分析单元采用校正后的预报模型参数与当前预报模型参数对预报模型训练方案管理模块中存储的氧化铝生产指标数据进行预报分析;如果采用校正后的模型参数预报氧化铝生产指标的结果比当前参数的预报模型准确性好,则选择校正后的预报模型参数,否则维持当前预报模型参数不变;
所述边缘端的氧化铝产品指标预报计算机的运行过程为:
步骤S1:模型选择模块根据氧化铝生产过程选择所要预测的氧化铝生产指标预报模型;
步骤S2:模型参数校正模块通过模型校正参数下载单元导入在云端预报模型训练服务器校正后的预报模型参数,或者在云端直接进行校正参数的远程更新;
步骤S3:智能预报单元在边缘端使用训练好的预报模型针对不同生产过程的氧化铝生产指标进行预报。
采用上述技术方案所产生的有益效果在于:本发明提供的一种氧化铝生产指标的云-边协同预报系统及方法,基于现有的氧化铝全流程生产要求,在云端服务器进行氧化铝生产指标预报算法的选择,训练模型的参数配置及模型训练、评估校正过程,为氧化铝生产指标预报模型训练提供强大的计算资源;在边缘端使用云端训练好的模型进行氧化铝生产指标的实时预测,节省了边缘端资源,便于及时查看氧化铝生产指标的预报结果。
附图说明
图1为本发明实施例提供的一种氧化铝生产指标的云-边协同预报系统的结构框图;
图2为本发明实施例提供的一种氧化铝生产指标的云-边协同预报方法的流程图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例中,一种氧化铝生产指标的云-边协同预报系统,如图1所示,包括数据采集装置、硬件平台和设置在硬件平台上的软件系统;所述数据采集装置用于采集氧化铝生产过程的全流程实际数据,并将采集到的数据以固定时间间隔传输给云端服务器和边缘端的氧化铝生产指标预报计算机上;所述硬件平台包括云端模型训练服务器与边缘端的氧化铝生产指标预报计算机;所述软件系统包括设置在云端模型训练服务器的软件和设置在边缘端的氧化铝生产指标预报计算机的软件;所述设置在云端模型训练服务器的软件实现对氧化铝生产指标预报算法的选择管理,并通过数据采集装置采集到的氧化铝生产过程的全流程实际数据对氧化铝生产指标预报模型进行训练、评估,并将采集到的数据运用到生产指标预报模型中,将模型预报结果与实际实际生产指标数据进行大数据分析,进而对预报模型参数进行校正;所述设置在边缘端的氧化铝生产指标预报计算机的软件能够实现从云端模型训练服务器导入云端预报模型训练服务器校正后的预报模型参数,或者直接进行校正参数的远程更新,进而将数据采集装置采集到的氧化铝生产过程的全流程实际数据传入边缘端,在边缘端使用训练好的预报模型针对不同生产过程对氧化铝生产指标进行预报。
所述设置在云端模型训练服务器的软件包括预报模型训练方案管理单元、算法与模型库管理单元、大数据分析单元、模型训练单元、预报模型参数校正单元、预报模型分析单元和模型校正参数下载单元;
所述预报模型训练方案管理单元用于管理训练预报模型时使用的训练样本数据和存储模型参数,以便在分析预报模型性能时进行对比;
所述算法与模型库管理单元用于管理得到的氧化铝生产指标预报模型及模型训练过程所采用的预报算法和系统内置的常用数据处理算法,并提供预报算法的新建、更新与删除功能;
所述模型训练单元用于根据一定时间内数据采集装置采集的氧化铝实际运行所产生的数据及选择的预报算法进行模型训练,并将模型训练结果下传给模型训练评估单元;所述模型训练过程包括数据选择、数据划分、数据预处理和算法选择四步;同时,模型训练单元还包括参数配置模块,用于对模型训练过程采用的具体训练算法进行预报算法的参数配置;
所述大数据分析单元根据采集到的氧化铝生产运行数据运用训练好的模型进行氧化铝生产指标预报结果与实际值之间的相关性系数计算,并根据相关性系数判断是否需要进行模型参数校正;
所述预报模型参数校正单元根据最近的生产工况数据,按照模型训练参数配置继续训练预报模型,从而得到适应新工况的校正后的预报模型参数;
所述预报模型分析单元采用校正后的预报模型参数与当前预报模型参数对预报模型训练方案管理模块中存储的氧化铝生产指标数据进行预报分析;如果采用校正后的模型参数预报氧化铝生产指标的结果比当前参数的预报模型准确性好,则选择校正后的预报模型参数,否则维持当前预报模型参数不变;
所述模型校正参数下载单元提供校正后的预报模型参数的导出功能,以便下载到边缘端的氧化铝生产指标预报计算机的预报模型管理单元中;同时还提供了边缘端的氧化铝生产指标预报计算机中软件的自动远程更新校正后的模型参数的在线下载接口。
所述云端模型训练服务器上还包括模型训练评估单元用于对训练得到的预报模型进行性能评估;所述性能评估采用均方误差、平均绝对值误差、平均绝对百分误差及预报值与实际值相关性系数这些指标进行对比分析。
所述设置在边缘端的氧化铝生产指标预报计算机的软件包括预报模型管理单元和智能预报单元;
所述预报模型管理单元实现对本地边缘端模型训练方案的管理,包括模型选择模块与模型参数校正模块;模型选择模块根据氧化铝生产过程的判断结果,选择对应生产过程的氧化铝生产指标预报模型进行预报,边缘端与云端均有相同的多种氧化铝生产指标预报模型训练方案;模型参数校正模块导入云端预报模型训练服务器校正后的预报模型参数,或者直接进行校正参数的远程更新,以便在新的工况下仍然能够保证模型预报结果的准确性;
所述智能预报单元在边缘端使用训练好的预报模型运用传入边缘端的氧化铝生产全流程实际数据针对不同生产过程对氧化铝生产指标进行预报。
一种氧化铝生产指标的云-边协同预报方法,如图2所示,包括氧化铝生产指标数据的采集、云端训练服务器的运行和边缘端氧化铝生产指标预报计算机的运行三部分;
所述氧化铝生产指标数据采集通过数据采集装置采集氧化铝生产所产生的实际运行数据,并将采集到的数据传输给云端训练服务器的预报模型训练方案管理单元和边缘端的氧化铝生产指标预报计算机的数据预处理单元;
所述云端训练服务器的运行包括模型训练过程与模型参数校正过程;
所述模型训练过程为:
步骤1云端训练服务器的模型训练单元根据一定时间内数据采集装置采集的氧化铝实际运行所产生的数据及选择的预报算法进行模型训练,并将模型训练结果下传给模型训练评估单元;所述模型训练过程包括以下过程:
数据选择:根据训练目的对数据采集装置采集到的氧化铝生产全流程数据将进行区间划分;
本实施例中,选取某段时间内500个氧化铝溶出过程样本数据进行模型训练,选取预报的生产指标为溶出率,选取的数据如表1所示;
表1某段时间内500个氧化铝溶出过程运行样本数据
Figure BDA0002131739290000061
Figure BDA0002131739290000071
数据划分:选用数据划分方法将选择的数据划分为训练集与测试集;
本实施例中,选用80%数据为训练集,20%数据为测试集,并选用随机划分方式;
数据预处理:根据不同目标及数据形式选用不同数据预处理算法;
本实施例选用标准化算法进行数据预处理,数据预处理算法可自行在算法管理模块进行新建、更新等操作;
算法选择:从算法与模型库管理单元选择进行模型训练的算法;
本实施例选用ε支持向量机算法进行模型训练,该算法需要配置的参数分别为惩罚因子C,误差精度要求ε和核函数,本实施例中的核函数选择RBF函数,参数C和ε分别为C=52,ε=1.9。
步骤2模型训练评估单元对模型训练单元训练得到的预报模型进行性能评估;性能评估指标包括均方误差、平均绝对值误差、平均绝对百分误差及预报值与实际值的相关性系数;
本实施例中,选用平均绝对误差对模型性能进行评估,平均绝对误差值为0.2,小于设定的阈值0.5,表明该模型训练效果很好,可以作为溶出率预报模型存入预报模型训练方案管理单元;
所述模型参数校正过程为:
步骤C1:大数据分析单元根据采集到的新的氧化铝生产运行数据运用训练好的模型进行氧化铝生产指标预报结果与实际值之间的相关性系数计算,并根据相关性系数判断是否需要进行模型参数校正,如果氧化铝生产指标预报结果与实际值之间的相关性系数小于根据具体生产指标要求设定的相关性系数阈值,则执行步骤2进行模型参数校正,否则不进行模型参数校正;
步骤C2:预报模型参数校正单元根据大数据分析单元得到的大数据分析结果,按照模型训练单元设置的预报模型参数配置继续训练预报模型,从而得到适应大数据分析结果的校正后的预报模型参数;
步骤C3:预报模型分析单元采用校正后的预报模型参数与当前预报模型参数对预报模型训练方案管理模块中存储的氧化铝生产指标数据进行预报分析;如果采用校正后的模型参数预报氧化铝生产指标的结果比当前参数的预报模型准确性好,则选择校正后的预报模型参数,否则维持当前预报模型参数不变;
所述边缘端的氧化铝产品指标预报计算机的运行过程为:
步骤S1:模型选择模块根据氧化铝生产过程选择所要预测的氧化铝生产指标预报模型;
步骤S2:模型参数校正模块通过模型校正参数下载单元导入在云端预报模型训练服务器校正后的预报模型参数,或者在云端直接进行校正参数的远程更新;
步骤S3:智能预报单元在边缘端使用训练好的预报模型针对不同生产过程的氧化铝生产指标进行预报。
本实例中,给出4组运用云端训练好的预报模型在边缘端对生产指标溶出率进行智能预报,得到的预报结果如表2所示;
表2生产指标溶出率的智能预报结果
Figure BDA0002131739290000081
Figure BDA0002131739290000091
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (7)

1.一种氧化铝生产指标的云-边协同预报系统,其特征在于:包括数据采集装置、硬件平台和设置在硬件平台上的软件系统;所述数据采集装置用于采集氧化铝生产过程的全流程实际数据,并将采集到的数据以固定时间间隔传输给云端服务器和边缘端的氧化铝生产指标预报计算机上;所述硬件平台包括云端模型训练服务器与边缘端的氧化铝生产指标预报计算机;所述软件系统包括设置在云端模型训练服务器的软件和设置在边缘端的氧化铝生产指标预报计算机的软件;所述设置在云端模型训练服务器的软件实现对氧化铝生产指标预报算法的选择管理,并将通过数据采集装置采集到的氧化铝生产过程的全流程实际数据对氧化铝生产指标预报模型进行训练、评估,并将采集到的数据运用到生产指标预报模型中,将模型预报结果与实际生产指标数据进行大数据分析,进而对预报模型参数进行校正;所述设置在边缘端的氧化铝生产指标预报计算机的软件能够实现从云端模型训练服务器导入云端预报模型训练服务器校正后的预报模型参数,或者直接进行校正参数的远程更新,进而将数据采集装置采集到的氧化铝生产过程的全流程实际数据传入边缘端,在边缘端使用训练好的预报模型针对不同生产过程对氧化铝生产指标进行预报。
2.根据权利要求1所述的一种氧化铝生产指标的云-边协同预报系统,其特征在于:所述设置在云端模型训练服务器的软件包括预报模型训练方案管理单元、算法与模型库管理单元、大数据分析单元、模型训练单元、预报模型参数校正单元、预报模型分析单元和模型校正参数下载单元;
所述预报模型训练方案管理单元用于管理训练预报模型时使用的训练样本数据和存储模型参数,以便在分析预报模型性能时进行对比;
所述算法与模型库管理单元用于管理得到的氧化铝生产指标预报模型及模型训练过程所采用的预报算法和系统内置的常用数据处理算法,并提供预报算法的新建、更新与删除功能;
所述模型训练单元用于根据一定时间内数据采集装置采集的氧化铝实际运行所产生的数据及选择的预报算法进行模型训练,并将模型训练结果下传给模型训练评估单元;所述模型训练过程包括数据选择、数据划分、数据预处理和算法选择四步;
所述大数据分析单元根据采集到的氧化铝生产运行数据运用训练好的模型进行氧化铝生产指标预报结果与实际值之间的相关性系数计算,并根据相关性系数判断是否需要进行模型参数校正;
所述预报模型参数校正单元根据最近的生产工况数据,按照模型训练参数配置继续训练预报模型,从而得到适应新工况的校正后的预报模型参数;
所述预报模型分析单元采用校正后的预报模型参数与当前预报模型参数对预报模型训练方案管理模块中存储的氧化铝生产指标数据进行预报分析;如果采用校正后的模型参数预报氧化铝生产指标的结果比当前参数的预报模型准确性好,则选择校正后的预报模型参数,否则维持当前预报模型参数不变;
所述模型校正参数下载单元提供校正后的预报模型参数的导出功能,以便下载到边缘端的氧化铝生产指标预报计算机的预报模型管理单元中;同时还提供了边缘端的氧化铝生产指标预报计算机中软件自动远程更新校正后的模型参数的在线下载接口。
3.根据权利要求2所述的一种氧化铝生产指标的云-边协同预报系统,其特征在于:所述云端模型训练服务器上还包括模型训练评估单元用于对训练得到的预报模型进行性能评估;所述性能评估采用均方误差、平均绝对值误差、平均绝对百分误差及预报值与实际值相关性系数这些指标进行对比分析。
4.根据权利要求3所述的一种氧化铝生产指标的云-边协同预报系统,其特征在于:所述模型训练单元还内置参数配置模块,用于对模型训练过程采用的具体训练算法进行预报算法的参数配置。
5.根据权利要求4所述的一种氧化铝生产指标的云-边协同预报系统,其特征在于:所述设置在边缘端的氧化铝生产指标预报计算机的软件包括预报模型管理单元和智能预报单元;
所述预报模型管理单元实现对本地边缘端模型训练方案的管理,包括模型选择模块与模型参数校正模块;模型选择模块根据氧化铝生产过程的判断结果,选择对应生产过程的氧化铝生产指标预报模型进行预报,边缘端与云端均有相同的多种氧化铝生产指标预报模型训练方案;模型参数校正模块导入云端预报模型训练服务器校正后的预报模型参数,或者直接进行校正参数的远程更新,以便在新的工况下仍然能够保证模型预报结果的准确性;
所述智能预报单元在边缘端使用训练好的预报模型运用传入边缘端的氧化铝生产全流程实际数据针对不同生产过程对氧化铝生产指标进行预报。
6.一种氧化铝生产指标的云-边协同预报方法,基于权利要求5所述的一种氧化铝生产指标的云-边协同预报系统进行预报,其特征在于:包括氧化铝生产指标数据的采集、云端训练服务器的运行和边缘端氧化铝生产指标预报计算机的运行三部分;
所述氧化铝生产指标数据采集通过数据采集装置采集氧化铝生产所产生的实际运行数据,并将采集到的数据传输给云端训练服务器的模型训练单元和边缘端的氧化铝生产指标预报计算机智能预报单元;
所述云端训练服务器的运行包括模型训练过程与模型参数校正过程;
所述模型训练过程为:
步骤1:云端训练服务器的模型训练单元根据一定时间内数据采集装置采集的氧化铝实际运行所产生的数据及选择的预报算法进行模型训练,并将模型训练结果下传给模型训练评估单元;
步骤2:模型训练评估单元对模型训练单元训练得到的预报模型进行性能评估;性能评估指标包括均方误差、平均绝对值误差、平均绝对百分误差及预报值与实际值的相关性系数;
所述模型参数校正过程为:
步骤C1:大数据分析单元根据采集到的氧化铝生产运行数据运用训练好的模型进行氧化铝生产指标预报结果与实际值之间的相关性系数计算,并根据相关性系数判断是否需要进行模型参数校正,如果氧化铝生产指标预报结果与实际值之间的相关性系数小于根据具体生产指标要求设定的相关性系数阈值,则执行步骤2进行模型参数校正,否则不进行模型参数校正;
步骤C2:预报模型参数校正单元根据大数据分析单元得到的大数据分析结果,按照模型训练单元设置的预报模型参数配置继续训练预报模型,从而得到适应大数据分析结果的校正后的预报模型参数;
步骤C3:预报模型分析单元采用校正后的预报模型参数与当前预报模型参数对预报模型训练方案管理模块中存储的氧化铝生产指标数据进行预报分析;如果采用校正后的模型参数预报氧化铝生产指标的结果比当前参数的预报模型准确性好,则选择校正后的预报模型参数,否则维持当前预报模型参数不变;
所述边缘端的氧化铝产品指标预报计算机的运行过程为:
步骤S1:模型选择模块根据氧化铝生产过程选择所要预测的氧化铝生产指标预报模型;
步骤S2:模型参数校正模块通过模型校正参数下载单元导入在云端预报模型训练服务器校正后的预报模型参数,或者在云端直接进行校正参数的远程更新;
步骤S3:智能预报单元在边缘端使用训练好的预报模型针对不同生产过程的氧化铝生产指标进行预报。
7.根据权利要求6所述的一种氧化铝生产指标的云-边协同预报方法,其特征在于:所述模型训练过程具体包括以下过程:
数据选择:根据训练目的对数据采集装置采集到的氧化铝生产全流程数据将进行区间划分;
数据划分:选用数据划分方法将选择的数据划分为训练集与测试集;
数据预处理:根据不同目标及数据形式选用不同数据预处理算法;
算法选择:从算法与模型库管理单元选择进行模型训练的算法。
CN201910640654.3A 2019-07-16 2019-07-16 一种氧化铝生产指标的云-边协同预报系统及方法 Active CN110363355B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910640654.3A CN110363355B (zh) 2019-07-16 2019-07-16 一种氧化铝生产指标的云-边协同预报系统及方法
US17/597,189 US20220309393A1 (en) 2019-07-16 2019-07-18 Cloud-edge collaboration forecasting system and method for aluminum oxide production indexes
PCT/CN2019/096512 WO2021007845A1 (zh) 2019-07-16 2019-07-18 一种氧化铝生产指标的云-边协同预报系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910640654.3A CN110363355B (zh) 2019-07-16 2019-07-16 一种氧化铝生产指标的云-边协同预报系统及方法

Publications (2)

Publication Number Publication Date
CN110363355A CN110363355A (zh) 2019-10-22
CN110363355B true CN110363355B (zh) 2022-11-29

Family

ID=68219577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910640654.3A Active CN110363355B (zh) 2019-07-16 2019-07-16 一种氧化铝生产指标的云-边协同预报系统及方法

Country Status (3)

Country Link
US (1) US20220309393A1 (zh)
CN (1) CN110363355B (zh)
WO (1) WO2021007845A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719210B (zh) * 2019-12-05 2020-08-28 赣江新区智慧物联研究院有限公司 一种基于云边协同的工业设备预测性维护方法
CN111258984B (zh) * 2020-01-17 2021-06-22 东北大学 工业大数据环境下的产品质量端-边-云协同预报方法
CN113487156A (zh) * 2021-06-30 2021-10-08 同济大学 一种基于云-边架构的工人行为监控识别方法及装置
CN117149361B (zh) * 2023-10-30 2023-12-29 北京万界数据科技有限责任公司 一种训练模型多端协同优化系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299045A (zh) * 2014-09-24 2015-01-21 东北大学 一种选矿生产全流程精矿产量预报系统及方法
WO2016110165A1 (zh) * 2015-01-07 2016-07-14 东北大学 基于云和移动终端的选矿多生产指标优化决策系统及方法
CN108375808A (zh) * 2018-03-12 2018-08-07 南京恩瑞特实业有限公司 Nriet基于机器学习的大雾预报方法
EP3399429A1 (en) * 2017-05-04 2018-11-07 Servicenow, Inc. Model building architecture and smart routing of work items

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187803B (zh) * 2007-12-06 2011-07-20 宁波思华数据技术有限公司 基于数据挖掘技术的氨合成装置生产优化方法
US8965625B2 (en) * 2012-02-01 2015-02-24 Afton Chemical Corporation System and method for extending a lubricant discard interval
CN104076686A (zh) * 2013-03-29 2014-10-01 沈阳铝镁设计研究院有限公司 一种氧化铝生产过程动态成本控制方法
CN103955760B (zh) * 2014-04-22 2017-01-25 江苏祥兆文具有限公司 铝杆氧化染色工艺参数优化专家系统
CN108092319A (zh) * 2017-12-13 2018-05-29 国家电网公司 一种短期风电功率预测的不确定性分析方法及装置
CN109032094B (zh) * 2018-08-15 2021-01-26 东北大学 一种基于核磁共振分析仪的原油快速评价建模云平台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299045A (zh) * 2014-09-24 2015-01-21 东北大学 一种选矿生产全流程精矿产量预报系统及方法
WO2016110165A1 (zh) * 2015-01-07 2016-07-14 东北大学 基于云和移动终端的选矿多生产指标优化决策系统及方法
EP3399429A1 (en) * 2017-05-04 2018-11-07 Servicenow, Inc. Model building architecture and smart routing of work items
CN108375808A (zh) * 2018-03-12 2018-08-07 南京恩瑞特实业有限公司 Nriet基于机器学习的大雾预报方法

Also Published As

Publication number Publication date
US20220309393A1 (en) 2022-09-29
WO2021007845A1 (zh) 2021-01-21
CN110363355A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
CN110363355B (zh) 一种氧化铝生产指标的云-边协同预报系统及方法
CN106067079B (zh) 一种基于bp神经网络的灰霾预测的系统和方法
JP2020528996A (ja) ディスプレイスクリーン品質検査方法、装置、電子機器及び記憶媒体
CN110263494B (zh) 一种基于云边协同的氧化铝生产运行优化系统及方法
CN112101767A (zh) 一种设备运行状态边云融合诊断方法及系统
CN110824923A (zh) 一种基于深度学习与云计算的污水处理控制方法及其系统
CN105388876B (zh) 获得基于班组的间歇型化工生产工艺符合度的方法及装置
CN115729188B (zh) 基于数字孪生的去毛刺生产线控制信号传输系统
CN109815855B (zh) 一种基于机器学习的电子设备自动测试方法及系统
CN105427047A (zh) 输变电设备多维运维数据融合方法和系统
CN104713730B (zh) 一种根据振动信号确定飞机发动机退化率的方法
CN115613128A (zh) 一种晶体生长用智能控制系统
CN103442087B (zh) 一种基于响应时间趋势分析的Web服务系统访问量控制装置和方法
WO2020034248A1 (zh) 一种基于核磁共振分析仪的原油快速评价建模云平台
CN117273402B (zh) 基于物联网技术的玻璃深加工生产线节能管理系统及方法
CN108327718B (zh) 一种车辆自适应巡航控制系统及其控制方法
CN116225102B (zh) 一种移动式的储能通信温升自动监控系统及装置
CN116258266A (zh) 一种管理环保设备的方法、系统、设备及介质
CN115310954A (zh) 一种it业务运行维护方法及系统
CN111967667B (zh) 一种轨道交通分布式运维方法及系统
CN115438958A (zh) 一种基于互联网的智慧能效管理系统及其管理方法
KR20140147456A (ko) 상수관망의 일일 수요량 예측방법
WO2017208357A1 (ja) 生産制御装置および生産制御プログラム
CN108833550B (zh) 一种感知农业优化调度的方法及装置
CN117114226B (zh) 自动化设备的智能动态优化与工艺调度系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant