CN110355472A - 一种基于约束力预测薄板拼焊变形的方法 - Google Patents

一种基于约束力预测薄板拼焊变形的方法 Download PDF

Info

Publication number
CN110355472A
CN110355472A CN201910388800.8A CN201910388800A CN110355472A CN 110355472 A CN110355472 A CN 110355472A CN 201910388800 A CN201910388800 A CN 201910388800A CN 110355472 A CN110355472 A CN 110355472A
Authority
CN
China
Prior art keywords
restraining force
welding
deformation
thin plate
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910388800.8A
Other languages
English (en)
Inventor
赵剑峰
谢德巧
梁绘昕
吕非
沈理达
田宗军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201910388800.8A priority Critical patent/CN110355472A/zh
Publication of CN110355472A publication Critical patent/CN110355472A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/24Processes using, or culture media containing, waste sulfite liquor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K2035/11Medicinal preparations comprising living procariotic cells
    • A61K2035/115Probiotics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • B23K2101/185Tailored blanks
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种基于约束力预测薄板拼焊变形的方法。该方法包括以下步骤:步骤1,基于焊接组织形态优、缺陷少的焊接参数,利用固定宽度和长度的焊接板进行约束力的标定;步骤2,利用结构静力学仿真,在模型上对焊缝施加对称约束力,约束力的大小为步骤1标定的约束力大小,方向为沿焊缝中线对称,指向中线;步骤3,对模型中的特征点施加固定约束,进行网格划分后计算变形,即为薄板焊接变形结果。该方法对于焊接变形,尤其是复杂焊缝的焊接件变形进行预测,利用结构静力学模型快速计算出变形形式,并根据实际结果快速响应、修正参数,具有高速度、高精度的变形预测优势,有效指导焊接工艺规划。

Description

一种基于约束力预测薄板拼焊变形的方法
技术领域
本发明属于焊接技术领域,具体涉及一种基于约束力预测薄板拼焊变形的方法,适用于薄板拼焊的变形预测。
背景技术
焊接技术广泛应用与桥梁建筑、船舶、航空航天、汽车等领域,但是焊接过程产生变形是难以避免的一大难题。目前,对于薄板焊接而言,大多采用热弹性有限元仿真的方法开展变形预测,从而更好地指导工艺及焊缝规划,这一点对于复杂焊缝的焊接而言尤其重要。但是现有的方法仿真速度慢,与实际变形有一点的误差。
申请号201310060406.4 公开了一种焊接变形分析预测方法,属于焊接技术领域。其包括:(1)实际测量步骤;(2)对所述焊接模拟件进行计算机辅助工程(CAE)分析步骤;(3)对整个焊接工件的CAE分析步骤。该焊接变形分析预测方法使焊接变形的分析预测准确可靠,从而可以有效地优化焊接方法,非常有利于减小焊接变形量。但是该方法计算焊接变形的计算时间较长,特别是对于大型结构、复杂焊道而言,仿真计算时间甚至可达1个月。
发明内容
针对现有技术的不足,本发明的目的在于提供一种基于约束力预测薄板拼焊变形的方法,该方法对于焊接变形,尤其是复杂焊缝的焊接件变形进行快速预测,利用结构静力学模型快速计算出变形形式,并根据实际结果快速响应、修正参数,具有高速度、高精度的变形预测优势,有效指导焊接工艺规划。
一种基于约束力预测薄板拼焊变形的方法,包括以下步骤:
步骤1,基于焊接组织形态优、缺陷少的焊接参数,利用固定宽度和长度的焊接板进行约束力的标定;
步骤2,利用结构静力学仿真,在模型上对焊缝施加对称约束力,约束力的大小为步骤1标定的约束力大小,方向为沿焊缝中线对称,指向中线;
步骤3,对模型中的特征点施加固定约束,进行网格划分后计算变形,即为薄板焊接变形结果。
作为改进的是,所述特征点为焊件边缘或焊件中线。
作为改进的是,步骤3中所述的变形结果包括变形形式和最大变形量。
有益效果:
该方法对于焊接变形,尤其是复杂焊缝的焊接件变形进行快速预测,利用结构静力学模型快速计算出变形形式,并根据实际结果快速响应、修正参数,具有高速度、高精度的变形预测优势,有效指导焊接工艺规划。
附图说明
图1为单道拼焊约束力加载示意图;
图2为同方向两道拼焊约束力加载示意图;
图3为同方向两道拼焊约束力加载示意图;
其中,1-待焊接件,2-加载约束力,3-焊缝,4-焊缝中线。
具体实施方式
下面通过具体实施例对本发明作进一步详细介绍。
实施例1
一种基于约束力预测薄板拼焊变形的方法,包括下列步骤:
步骤1,基于焊接组织形态优、缺陷少的焊接参数,利用固定宽度和长度(如待焊件20mm宽、100mm长)的焊接板进行约束力的标定(对于焊接组织形态优、缺陷少为标准,一般经过多次试验即可获得);以4毫米厚316L不锈钢为例,激光焊接参数为2800W,1.5m/min,利用结构静力学仿真计算10kN的最大变形量,再利用实际测量的最大变形量与之比较,计算可得标定约束力为20kN。
步骤2,利用结构静力学仿真,在模型上对焊缝施加对称约束力20kN,如附图1所示,约束力的大小为步骤1标定的约束力大小,方向为沿焊缝中线对称,指向中线;
步骤3,对模型中的特征点(如焊件边缘、中线上)施加固定约束(所述的固定约束,是为了防止施加力后产生运动,这个根据结构特征选定,不同结构加固定约束的位置不同),进行网格划分后计算变形,即为薄板焊接变形结果,包括变形形式和最大变形量。
实施例2
一种基于约束力预测薄板拼焊变形的方法,包括下列步骤:
步骤1,基于焊接组织形态优、缺陷少的焊接参数,利用固定宽度和长度(如待焊件20mm宽、100mm长)的焊接板进行约束力的标定;以4毫米厚45钢为例,激光焊接参数为2500W,1.5m/min,利用结构静力学仿真计算10kN的最大变形量,再利用实际测量的最大变形量与之比较,标定约束力为18kN。
步骤2,利用结构静力学仿真,在模型上对焊缝施加对称约束力18kN,如附图2所示,约束力的大小为步骤1标定的约束力大小,方向为沿焊缝中线对称,指向中线;
步骤3,对模型中的特征点(如焊件边缘、中线上)施加固定约束,进行网格划分后计算变形,即为薄板焊接变形结果,包括变形形式和最大变形量。
实施例3
一种基于约束力预测薄板拼焊变形的方法,包括下列步骤:
步骤1,基于焊接组织形态优、缺陷少的焊接参数,利用固定宽度和长度(如待焊件20mm宽、100mm长)的焊接板进行约束力的标定;以4毫米厚6061铝合金为例,激光焊接参数为3500W,1.5m/min,利用结构静力学仿真计算10kN的最大变形量,再利用实际测量的最大变形量与之比较,标定约束力为14kN。
步骤2,利用结构静力学仿真,在模型上对焊缝施加对称约束力14kN,如附图3所示,约束力的大小为步骤1标定的约束力大小,方向为沿焊缝中线对称,指向中线;
步骤3,对模型中的特征点(如焊件边缘、中线上)施加固定约束,进行网格划分后计算变形,即为薄板焊接变形结果,包括变形形式和最大变形量。
由本例可见,利用本方法计算薄板焊接变形仅需1秒,而常规的热弹塑性有限元仿真需1-10小时,显著节约计算时间,便于快速优化焊接工艺。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (3)

1.一种基于约束力预测薄板拼焊变形的方法,其特征在于,包括以下步骤:步骤1,基于焊接组织形态优、缺陷少的焊接参数,利用固定宽度和长度的焊接板进行约束力的标定;步骤2,利用结构静力学仿真,在模型上对焊缝施加对称约束力,约束力的大小为步骤1标定的约束力大小,方向为沿焊缝中线对称,指向中线;步骤3,对模型中的特征点施加固定约束,进行网格划分后计算变形,即为薄板焊接变形结果。
2.根据权利要求1所述的一种基于约束力预测薄板拼焊变形的方法,其特征在于,所述特征点为焊件边缘或焊件中线。
3.根据权利要求1所述的一种基于约束力预测薄板拼焊变形的方法,其特征在于,步骤3中所述的变形结果包括变形形式和最大变形量。
CN201910388800.8A 2019-05-10 2019-05-10 一种基于约束力预测薄板拼焊变形的方法 Pending CN110355472A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910388800.8A CN110355472A (zh) 2019-05-10 2019-05-10 一种基于约束力预测薄板拼焊变形的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910388800.8A CN110355472A (zh) 2019-05-10 2019-05-10 一种基于约束力预测薄板拼焊变形的方法

Publications (1)

Publication Number Publication Date
CN110355472A true CN110355472A (zh) 2019-10-22

Family

ID=68215193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910388800.8A Pending CN110355472A (zh) 2019-05-10 2019-05-10 一种基于约束力预测薄板拼焊变形的方法

Country Status (1)

Country Link
CN (1) CN110355472A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619161A (zh) * 2022-02-16 2022-06-14 江苏科技大学 一种薄板焊接变形的模型建构及其矫平方法
CN117436321A (zh) * 2023-12-21 2024-01-23 中钧科技(深圳)有限公司 基于有限元仿真法的工件焊接分析方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104809291A (zh) * 2015-04-27 2015-07-29 江苏金通灵流体机械科技股份有限公司 一种基于ansys的双相不锈钢与异种钢焊接变形预测方法
US20170255718A1 (en) * 2016-03-07 2017-09-07 Caterpillar Inc. Method and system for determing welding process parameters
CN107194057A (zh) * 2017-05-19 2017-09-22 西北工业大学 壁板铆接扭翘变形预测方法
CN107330181A (zh) * 2017-06-28 2017-11-07 上海交通大学 预测激光焊接变形量的实现方法
CN109226933A (zh) * 2018-08-31 2019-01-18 江苏师范大学 一种大厚度低合金高强度钢多层多焊道焊接工艺确定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104809291A (zh) * 2015-04-27 2015-07-29 江苏金通灵流体机械科技股份有限公司 一种基于ansys的双相不锈钢与异种钢焊接变形预测方法
US20170255718A1 (en) * 2016-03-07 2017-09-07 Caterpillar Inc. Method and system for determing welding process parameters
CN107194057A (zh) * 2017-05-19 2017-09-22 西北工业大学 壁板铆接扭翘变形预测方法
CN107330181A (zh) * 2017-06-28 2017-11-07 上海交通大学 预测激光焊接变形量的实现方法
CN109226933A (zh) * 2018-08-31 2019-01-18 江苏师范大学 一种大厚度低合金高强度钢多层多焊道焊接工艺确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEQIAO XIE等: "《Assumption of Constraining Force to Explain Distortion in Laser Additive Manufacturing》", 《MATERIALS》 *
赵剑峰等: "《金属增材制造变形与残余应力的研究现状》", 《南京航空航天大学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619161A (zh) * 2022-02-16 2022-06-14 江苏科技大学 一种薄板焊接变形的模型建构及其矫平方法
CN117436321A (zh) * 2023-12-21 2024-01-23 中钧科技(深圳)有限公司 基于有限元仿真法的工件焊接分析方法及系统
CN117436321B (zh) * 2023-12-21 2024-04-16 中钧科技(深圳)有限公司 基于有限元仿真法的工件焊接分析方法及系统

Similar Documents

Publication Publication Date Title
Božić et al. The effect of residual stresses on fatigue crack propagation in welded stiffened panels
CN102841135B (zh) 基于金属磁记忆检测技术的焊接裂纹扩展过程的表征方法
Jacob et al. Experimental and numerical investigation of residual stress effects on fatigue crack growth behaviour of S355 steel weldments
CN103246774B (zh) 数值模拟p92钢管焊接热影响区宽度的方法
CN104809291A (zh) 一种基于ansys的双相不锈钢与异种钢焊接变形预测方法
CN110355472A (zh) 一种基于约束力预测薄板拼焊变形的方法
EP2713160A2 (en) Method and system for evaluating creep damage of high temperature component
CN107905182B (zh) 大跨度弧形闸门安装精度控制方法
Hu et al. Geometry distortion and residual stress of alternate double-sided laser peening of thin section component
CN103984860A (zh) 船体典型焊接结构表面裂纹应力强度因子的估算方法
Ufuah et al. Elevated temperature mechanical properties of butt-welded connections made with high strength steel grades S355 and S460M
Manurung et al. Investigation on welding distortion of combined butt and T-joints with 9-mm thickness using FEM and experiment
Ghafoori-Ahangar et al. Fatigue behavior of load-carrying cruciform joints with partial penetration fillet welds under three-point bending
Kozak et al. Problems of determination of welding angular distortions of T-fillet joints in ship hull structures
Caixas et al. Weld distortion prediction of the ITER vacuum vessel using finite element simulations
Zhang et al. Research on welding deformation of hollow thin-walled complex structural parts based on plane bending theory of constant section beam
Xue et al. Compilation and application of UMAT for mechanical properties of heterogeneous metal welded joints in nuclear power materials
Launert et al. 05.03: Weld residual stresses effects in the design of welded plate girders: Simulation and Implementation
CN109472117A (zh) 核电站结构裂纹附近区域残余应力分布定量无损评价方法
Dong et al. Numerical simulation and control of welding distortion for double floor structure of high speed train
CN102773622B (zh) 用于落锤试验的铬钼系低合金钢试样的焊接方法
Daneshgar et al. Analysis of residual stresses and angular distortion in stiffened cylindrical shell fillet welds using finite element method
Lee et al. Numerical investigation of the residual stresses in strength‐mismatched dissimilar steel butt welds
Deng Theoretical prediction of welding distortion in large and complex structures
US11288424B2 (en) Adaptive time scaling for accelerating explicit finite element analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191022