CN110344148B - A magnetoelectric spinning spindle power sensor - Google Patents
A magnetoelectric spinning spindle power sensor Download PDFInfo
- Publication number
- CN110344148B CN110344148B CN201910696868.2A CN201910696868A CN110344148B CN 110344148 B CN110344148 B CN 110344148B CN 201910696868 A CN201910696868 A CN 201910696868A CN 110344148 B CN110344148 B CN 110344148B
- Authority
- CN
- China
- Prior art keywords
- spindle
- clutch
- clutch assembly
- assembly
- magnetoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009987 spinning Methods 0.000 title claims abstract description 44
- 230000006698 induction Effects 0.000 claims abstract description 78
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- 238000000605 extraction Methods 0.000 claims abstract description 20
- 238000002955 isolation Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 3
- 230000008859 change Effects 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 14
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 239000004753 textile Substances 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 6
- 230000005674 electromagnetic induction Effects 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H1/00—Spinning or twisting machines in which the product is wound-up continuously
- D01H1/14—Details
- D01H1/20—Driving or stopping arrangements
- D01H1/24—Driving or stopping arrangements for twisting or spinning arrangements, e.g. spindles
- D01H1/241—Driving or stopping arrangements for twisting or spinning arrangements, e.g. spindles driven by belt
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H13/00—Other common constructional features, details or accessories
- D01H13/32—Counting, measuring, recording or registering devices
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H7/00—Spinning or twisting arrangements
- D01H7/02—Spinning or twisting arrangements for imparting permanent twist
- D01H7/04—Spindles
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H7/00—Spinning or twisting arrangements
- D01H7/02—Spinning or twisting arrangements for imparting permanent twist
- D01H7/04—Spindles
- D01H7/08—Mounting arrangements
- D01H7/12—Bolsters; Bearings
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Or Twisting Of Yarns (AREA)
Abstract
本发明公开了一种磁电式纺纱锭子功率传感器,包括锭杆和锭脚,锭杆与锭脚活动连接,锭脚的内部设有离合组件、磁体、磁电敏感组件和集成转换模块,离合组件套设在锭杆的下部,且离合组件与锭杆固定连接;磁电敏感组件套设在离合组件的远离锭杆的一侧,磁电敏感组件与离合组件的外侧固定连接;磁电敏感组件的感应线圈与磁体相配合;磁体与离合组件的内侧固定连接;磁电敏感组件的信号提取电阻与感应线圈电连接组成闭合回路,且信号提取电阻与集成转换模块电连接。本发明的外形与传统纺纱锭子的外形一致,具有性能稳定、灵敏度高,可反复使用、批量化生产、成本低、寿命长、不改变传统锭子既有工作方式的优点。
The invention discloses a magnetoelectric spinning spindle power sensor, comprising a spindle rod and a spindle foot, the spindle rod and the spindle foot are movably connected, and a clutch assembly, a magnet, a magnetoelectric sensitive component and an integrated conversion module are arranged inside the spindle foot. The clutch component is sleeved on the lower part of the spindle, and the clutch component is fixedly connected with the spindle; the magnetoelectric sensitive component is sleeved on the side of the clutch component away from the spindle, and the magnetoelectric sensitive component is fixedly connected with the outer side of the clutch component; The induction coil of the sensitive component is matched with the magnet; the magnet is fixedly connected with the inner side of the clutch component; the signal extraction resistance of the magnetoelectric sensitive component is electrically connected with the induction coil to form a closed loop, and the signal extraction resistance is electrically connected with the integrated conversion module. The appearance of the invention is consistent with that of the traditional spinning spindle, and has the advantages of stable performance, high sensitivity, repeated use, mass production, low cost, long service life, and does not change the existing working mode of the traditional spindle.
Description
技术领域technical field
本发明涉及纺织机械领域,具体涉及一种磁电式纺纱锭子功率传感器。The invention relates to the field of textile machinery, in particular to a magnetoelectric type spinning spindle power sensor.
背景技术Background technique
1831年8月,英国物理学家迈克尔·法拉第(Michael Faraday,1791年9月22日~1867年8月25日)发现了电磁感应定律,1832年,俄国物理学家受法拉第电磁感应定律的启发,展开了大量电磁实验,于1833年发表论文《论动电感应引起的电流方向》,该文章指出:感应电流的方向是使它所产生的磁场与引起感应的原磁场的变化方向相反。1865年,英国麦克斯韦从电磁理论推论电磁波的存在,它以光速传播并断定光就是一种电磁波。自此以后,电磁感应定律逐渐地得到了广泛应用,磁电传感原理就是法拉第电磁感应定律在传感器技术上具体的应用体现。2006年清华大学汽车工程系宋国民、李骏、胡林峰和蒋兆颐等人在研究磁电式转速传感原理的基础上开发了针对高压柴油机的磁电式转速传感器,该传感器可安装到电控柴油机上取代进口。2010年中国地震局工程力学研究所的宋丽红、田辉鹏、黄浩华研究了磁电式传感器与信号调节器的匹配问题。2013年上海交通大学汽车电子技术研究所的任国丰、田丰、张树梅、杨林研究了用于电控柴油机磁电式转速传感器的输出电压特性,指出减小安装间隙可提高低速下的输出电压。2014年西南科技大学制造科学与工程学院的昝钧德和向北平研究了梭式止回阀阀芯位移磁电式传感器的磁场变化,为管道安全保障提供理论基础。2017年中国航天科工集团第三研究院第三十一研究所安璟月研制了某蜗轮发动机用磁电子转速传感器。可见,尽管磁电式传感器得到了应用,但是磁电式传感器的应用研究并没有广泛展开,也没有得到广泛的应用,当前其应用主要集中在汽车领域。In August 1831, British physicist Michael Faraday (September 22, 1791 to August 25, 1867) discovered the law of electromagnetic induction. In 1832, Russian physicists were inspired by Faraday's law of electromagnetic induction. , launched a large number of electromagnetic experiments, and published a paper in 1833 "On the direction of current caused by electrokinetic induction". In 1865, British Maxwell deduced the existence of electromagnetic waves from the electromagnetic theory, which propagated at the speed of light and concluded that light is a kind of electromagnetic wave. Since then, the law of electromagnetic induction has gradually been widely used, and the principle of magnetoelectric sensing is the specific application of Faraday's law of electromagnetic induction in sensor technology. In 2006, Song Guomin, Li Jun, Hu Linfeng and Jiang Zhaoyi from the Department of Automotive Engineering of Tsinghua University developed a magnetoelectric speed sensor for high-voltage diesel engines on the basis of studying the principle of magnetoelectric speed sensing. Diesel engines replace imports. In 2010, Song Lihong, Tian Huipeng and Huang Haohua from the Institute of Engineering Mechanics of China Earthquake Administration studied the matching problem of magnetoelectric sensors and signal conditioners. In 2013, Ren Guofeng, Tian Feng, Zhang Shumei and Yang Lin from the Institute of Automotive Electronics Technology of Shanghai Jiao Tong University studied the output voltage characteristics of the magnetoelectric speed sensor for electronically controlled diesel engines, and pointed out that reducing the installation gap can improve the output voltage at low speeds . In 2014, Zan Junde and Xiang Beiping from the School of Manufacturing Science and Engineering, Southwest University of Science and Technology, studied the magnetic field change of the shuttle check valve spool displacement magnetoelectric sensor to provide a theoretical basis for pipeline safety. In 2017, An Jingyue, the 31st Research Institute of the Third Research Institute of China Aerospace Science and Industry Corporation, developed a magnetoelectronic speed sensor for a worm gear engine. It can be seen that although the magnetoelectric sensor has been applied, the application research of the magnetoelectric sensor has not been widely carried out and has not been widely used, and its current application is mainly concentrated in the automotive field.
纺纱锭子是纺纱机上加拈卷绕的主要部件之一,是纺织机上常用的关键部件之一,锭子是否在线正常工作及锭子的在线消耗功率、转速是纺织行业普遍关注的关键参数。由于锭子和锭脚的工作方式是拔插式的,并且传统锭子是纯机械精密机构,锭脚中的机械结构复杂、零件尺寸小并且加工精度要求较高,装配工艺繁杂,因此传统锭子的制作成本相对比较高。若纺纱锭子在工作过程中由于某种故障而不转动时,纺纱机操作人员难以及时获悉并修复,由于每根纺纱锭子工作时的实时消耗功率无从知晓,难以根据实际情况优化纺纱锭子的机械结构,难以评估一台纺织机所有锭子的在线消耗功率,难以对不同类型的锭子的性能作出恰当的分析和评价,因此纺织机的自动化程度也比较低。Spinning spindle is one of the main components of the spinning machine, and it is one of the key components commonly used in textile machines. Whether the spindle works normally online, the online power consumption and speed of the spindle are the key parameters that the textile industry generally pays attention to. Because the working mode of the spindle and the spindle foot is plug-in type, and the traditional spindle is a pure mechanical precision mechanism, the mechanical structure in the spindle foot is complex, the size of the parts is small, the machining accuracy is high, and the assembly process is complicated. Therefore, the production of traditional spindles The cost is relatively high. If the spinning spindle does not rotate due to a certain fault during the working process, it is difficult for the spinning machine operator to know and repair it in time. Since the real-time power consumption of each spinning spindle during operation is unknown, it is difficult to optimize the spinning according to the actual situation. Due to the mechanical structure of the spindle, it is difficult to evaluate the online power consumption of all the spindles of a textile machine, and it is difficult to properly analyze and evaluate the performance of different types of spindles, so the degree of automation of the textile machine is relatively low.
为了能够在线测量锭子的消耗功率和转速,因此人们便越来越多地关注如何利用现有的技术在线检测锭子消耗功率和转速,同时不改变传统锭子的既定工作方式。In order to be able to measure the power consumption and rotational speed of the spindle online, people pay more and more attention to how to use the existing technology to detect the power consumption and rotational speed of the spindle online without changing the established working mode of the traditional spindle.
发明内容SUMMARY OF THE INVENTION
针对在纺纱机批量生产过程中不能及时判断出问题锭子的现况,本发明基于法拉第电磁感应效应提出了一种磁电式纺纱锭子功率传感器,可以准确的获知所有锭子的在线消耗功率并进行实时监控,有利于及时维修或更换问题锭子并提高工业生产效率。Aiming at the current situation that the problematic spindles cannot be judged in time during the mass production process of the spinning machine, the present invention proposes a magnetoelectric spinning spindle power sensor based on the Faraday electromagnetic induction effect, which can accurately know the online power consumption of all spindles and Real-time monitoring is conducive to timely repair or replacement of problematic spindles and improve industrial production efficiency.
本发明的技术方案是这样实现的:一种磁电式纺纱锭子功率传感器,包括锭杆和锭脚,锭杆与锭脚活动连接组成封闭结构,所述锭脚的内部设有离合组件、磁体、磁电敏感组件和集成转换模块,所述离合组件套设在锭杆的底部并与锭杆活动连接,锭杆旋转时,离合组件同锭杆一起旋转;所述磁电敏感组件套设在离合组件的远离锭杆的一侧,磁电敏感组件与离合组件的外侧固定连接,且磁电敏感组件不随锭杆一起旋转;所述磁电敏感组件的感应线圈与磁体相配合,除感应线圈外,磁电敏感组件的其它结构均为采用绝缘材料制作;所述磁体位于离合组件的远离锭杆的一侧,磁体与离合组件的内侧活动连接,且磁体同锭杆一起旋转;所述磁电敏感组件的信号提取电阻Rf与感应线圈电连接组成闭合回路,且信号提取电阻Rf与集成转换模块电连接。当锭杆旋转时,磁体同锭杆一起旋转,相当于磁场以锭杆的速度在空间旋转,由于感应线圈不动,从而相当于磁力线被被迫切割,从而在磁电敏感组件中产生了感应电动势,信号提取电阻Rf与感应线圈电连接组成了闭合回路,信号提取电阻Rf中便产生了相应的感应电压和感应电流,集成转换模块测量出感应电压和感应电流后将两个数据相乘即为锭子的消耗功率,集成转换模块与外部连接以便将测量结果输出。The technical scheme of the present invention is realized as follows: a magnetoelectric spinning spindle power sensor includes a spindle rod and a spindle foot, the spindle rod and the spindle foot are movably connected to form a closed structure, and the inside of the spindle foot is provided with a clutch assembly, A magnet, a magneto-electric sensitive component and an integrated conversion module, the clutch component is sleeved on the bottom of the spindle and is movably connected with the spindle. When the spindle rotates, the clutch component rotates together with the spindle; the magneto-electric sensitive component is sleeved On the side of the clutch assembly away from the spindle, the magneto-electric sensitive component is fixedly connected to the outside of the clutch component, and the magneto-electric sensitive component does not rotate with the spindle; the induction coil of the magneto-electric sensitive component cooperates with the magnet, in addition to the induction Outside the coil, other structures of the magneto-electric sensitive component are made of insulating materials; the magnet is located on the side of the clutch component away from the spindle, the magnet is movably connected to the inner side of the clutch component, and the magnet rotates together with the spindle; the The signal extraction resistance Rf of the magneto-electric sensitive component is electrically connected with the induction coil to form a closed loop, and the signal extraction resistance Rf is electrically connected with the integrated conversion module. When the spindle rotates, the magnet rotates together with the spindle, which is equivalent to the magnetic field rotating in space at the speed of the spindle. Since the induction coil does not move, it is equivalent to the magnetic force line being forced to cut, thus generating an induction in the magnetoelectric sensitive component. The electromotive force, the signal extraction resistance Rf and the induction coil are electrically connected to form a closed loop, and the corresponding induced voltage and induced current are generated in the signal extraction resistance Rf. After the integrated conversion module measures the induced voltage and induced current, the two data are multiplied. For the power consumption of the spindles, an integrated conversion module is connected to the outside in order to output the measurement results.
进一步地,所述离合组件包括离合键、离合组件支撑装配件和轴向推力球轴承,所述离合键的上部设有支撑台,支撑台通过轴向推力球轴承与离合组件支撑装配件活动连接;离合键内设有通孔,锭杆底部的外伸轴插入通孔后与离合键固定连接,离合键随锭杆一起旋转;离合键可以通过键或内齿轮与锭杆实现连接或分离;所述轴向推力球轴承套设在离合键上,轴向推力球轴承的一侧与支撑台固定连接,轴向推力球轴承的另一侧与离合组件支撑装配件的上部固定连接;所述离合组件支撑装配件套设离合键上,且离合组件支撑装配件与离合键活动连接,且离合组件支撑装配件的下部与磁电敏感组件连接;所述磁体位于通孔的下部,磁体与离合键装配连接,且磁体与磁电敏感组件相配合。所述轴向推力球轴承对离合键起到轴向支撑定位的作用。Further, the clutch assembly includes a clutch key, a support assembly of the clutch assembly and an axial thrust ball bearing, the upper part of the clutch key is provided with a support platform, and the support platform is movably connected with the support assembly of the clutch assembly through the axial thrust ball bearing. There is a through hole in the clutch key, and the outrigger shaft at the bottom of the spindle is inserted into the through hole and fixedly connected with the clutch key, and the clutch key rotates with the spindle; the clutch key can be connected or separated from the spindle through a key or internal gear; The axial thrust ball bearing is sleeved on the clutch key, one side of the axial thrust ball bearing is fixedly connected with the support table, and the other side of the axial thrust ball bearing is fixedly connected with the upper part of the support assembly of the clutch assembly; the The clutch assembly support assembly is sleeved on the clutch key, and the clutch assembly support assembly is movably connected with the clutch key, and the lower part of the clutch assembly support assembly is connected with the magnetoelectric sensitive component; the magnet is located at the lower part of the through hole, and the magnet is connected to the clutch The key assembly is connected, and the magnet mates with the magnetoelectric sensitive component. The axial thrust ball bearing plays the role of axial support and positioning for the clutch key.
进一步地,所述离合组件支撑装配件包括离合组件支撑外套,所述离合组件支撑外套套设在离合键上,且离合组件支撑外套通过机械轴承与离合键活动连接;所述机械轴承的外侧与离合组件支撑外套固定连接,机械轴承的内侧与离合键固定连接;所述机械轴承为角接触球轴承、滚子轴承或向心推力轴承,所有可以同时实现轴向和径向定位的轴承都可以使用;所述离合组件支撑外套的上部与轴向推力球轴承固定连接,离合组件支撑外套的下部与磁电敏感组件固定连接。由于机械轴承和轴向推力球轴承的存在,锭杆旋转时,离合组件支撑外套不动;机械轴承实现对锭杆的向心定位,防止锭杆和离合键连接在一起旋转时所发生的偏斜现象,增强锭杆和离合键的轴向刚度和向心定位。Further, the clutch assembly support assembly includes a clutch assembly support sleeve, the clutch assembly support sleeve is sleeved on the clutch key, and the clutch assembly support sleeve is movably connected with the clutch key through a mechanical bearing; the outer side of the mechanical bearing is connected to the clutch key. The support jacket of the clutch assembly is fixedly connected, and the inner side of the mechanical bearing is fixedly connected with the clutch key; the mechanical bearing is an angular contact ball bearing, a roller bearing or a radial thrust bearing, all bearings that can achieve both axial and radial positioning can be In use; the upper part of the support jacket of the clutch component is fixedly connected with the axial thrust ball bearing, and the lower part of the support jacket of the clutch component is fixedly connected with the magnetoelectric sensitive component. Due to the existence of the mechanical bearing and the axial thrust ball bearing, when the spindle rotates, the support jacket of the clutch assembly does not move; the mechanical bearing realizes the centripetal positioning of the spindle to prevent the deflection of the spindle and the clutch key when they are connected together and rotate. Oblique phenomenon, enhance the axial rigidity and centripetal positioning of spindle and clutch key.
为了轴向压紧离合键和固定机械轴承的内座圈并防止轴向窜动,所述离合键和机械轴承通过离合键端盖固定连接;所述离合键端盖位于离合组件支撑装配件和磁体之间,离合键端盖套设在离合键上,且离合键端盖与离合键固定连接。In order to axially compress the clutch key and the inner race of the fixed mechanical bearing and prevent axial play, the clutch key and the mechanical bearing are fixedly connected through the clutch key end cover; the clutch key end cover is located between the clutch assembly support assembly and the Between the magnets, the clutch key end cover is sleeved on the clutch key, and the clutch key end cover is fixedly connected with the clutch key.
为了向轴向推力球轴承提供轴向支撑并起到传力的作用,所述离合组件支撑装配件还包括离合组件支撑端盖,所述离合组件支撑端盖套设在离合键上,离合组件支撑端盖的一侧设有凹槽II,离合组件支撑端盖的另一侧设有连接台,连接台与离合组件支撑外套的内壁固定连接;所述轴向推力球轴承设置在凹槽II内;所述离合组件支撑外套的数量至少为两个,且两个离合组件支撑外套之间通过离合组件支撑端盖连接。In order to provide axial support to the axial thrust ball bearing and play the role of force transmission, the clutch assembly support assembly further includes a clutch assembly support end cover, the clutch assembly support end cover is sleeved on the clutch key, and the clutch assembly One side of the support end cover is provided with a groove II, and the other side of the support end cover of the clutch assembly is provided with a connection platform, which is fixedly connected with the inner wall of the support jacket of the clutch assembly; the axial thrust ball bearing is arranged in the groove II inside; the number of the clutch assembly support jackets is at least two, and the two clutch assembly support jackets are connected through the clutch assembly support end cover.
进一步地,所述磁电敏感组件还包括感应线圈骨架和感应线圈骨架端盖,感应线圈骨架的上部通过感应线圈骨架端盖与离合组件固定连接,感应线圈骨架的下部圆周方向设有凹槽I;所述感应线圈设置在凹槽I内,并缠绕在凹槽I的内壁上,且且感应线圈骨架设置在磁体的外部。所述感应线圈骨架采用绝缘材料制作。Further, the magnetoelectric sensitive assembly also includes an induction coil bobbin and an induction coil skeleton end cover, the upper part of the induction coil skeleton is fixedly connected with the clutch assembly through the induction coil skeleton end cover, and the lower circumferential direction of the induction coil skeleton is provided with a groove I. ; The induction coil is arranged in the groove I, and is wound on the inner wall of the groove I, and the induction coil bobbin is arranged outside the magnet. The induction coil skeleton is made of insulating material.
优选地,所述感应线圈骨架与离合组件之间、感应线圈骨架与感应线圈骨架端盖之间均设有绝缘垫片,且绝缘垫片与离合组件和感应线圈骨架端盖固定连接。绝缘垫片从电气性能方面起到将感应线圈与其它结构隔离的作用。Preferably, insulating gaskets are provided between the induction coil bobbin and the clutch assembly and between the induction coil bobbin and the end cover of the induction coil bobbin, and the insulating gasket is fixedly connected to the clutch assembly and the end cover of the induction coil bobbin. The insulating spacer acts to electrically isolate the induction coil from other structures.
进一步地,所述集成转换模块包括功率计算模块、存储器和信号输出模块,所述功率计算模块包括功率放大器、模拟乘法器和功率因数控制器,所述模拟乘法器的输入与信号提取电阻Rf电连接,模拟乘法器的输出与功率放大器电连接;所述功率放大器与功率因数控制器电连接;所述功率因数控制器与存储器电连接;所述存储器与信号输出模块电连接;所述信号输出模块包括模数转换芯片,模数转换芯片的输入与存储器电连接,模数转换芯片的输出通过导线从锭脚的底部穿出。Further, the integrated conversion module includes a power calculation module, a memory and a signal output module, and the power calculation module includes a power amplifier, an analog multiplier and a power factor controller, and the input of the analog multiplier is electrically connected to the signal extraction resistor Rf. The output of the analog multiplier is electrically connected with the power amplifier; the power amplifier is electrically connected with the power factor controller; the power factor controller is electrically connected with the memory; the memory is electrically connected with the signal output module; the signal output The module includes an analog-to-digital conversion chip, the input of the analog-to-digital conversion chip is electrically connected to the memory, and the output of the analog-to-digital conversion chip passes through the bottom of the spindle foot through a wire.
优选地,所述集成转换模块位于锭脚的底部,且集成转换模块与磁电敏感组件之间设有绝缘隔离板;所述绝缘隔离板与锭脚活动连接。绝缘隔离板将磁电敏感组件与集成转换模块分隔开来,进而形成对磁电敏感组件的保护。Preferably, the integrated conversion module is located at the bottom of the spindle foot, and an insulating isolation plate is provided between the integrated conversion module and the magneto-electric sensitive assembly; the insulating isolation plate is movably connected to the spindle foot. The insulating spacer separates the magneto-sensitive components from the integrated conversion module, thereby forming protection for the magneto-sensitive components.
进一步地,所述锭脚包括锭脚端盖和锭脚外壳,所述锭脚端盖上设有输出导线孔和销定位工艺孔,且锭脚端盖与锭脚外壳的下部连接;所述锭脚外壳的外部设有锭脚外螺纹,锭脚外壳内设有支撑板,支撑板与锭脚外壳固定连接,锭脚外壳的上部与锭杆活动连接;所述集成转换模块位于锭脚端盖内,并与锭脚端盖固定连接,且集成转换模块的输出通过导线从输出导线孔中导出后与外部设备连接;所述锭杆包括锭轴和锭盘,所述锭盘套设在锭轴上,并与锭轴装配连接;所述锭轴的下侧设有外伸轴,锭轴与锭盘装配后通过外伸轴与离合组件装配连接;所述锭盘与锭脚外壳连接。Further, the spindle foot includes a spindle foot end cover and a spindle foot shell, and the spindle foot end cover is provided with an output wire hole and a pin positioning process hole, and the spindle foot end cover is connected with the lower part of the spindle foot shell; The outside of the shell of the spindle foot is provided with the outer thread of the spindle foot, the inside of the shell of the spindle foot is provided with a support plate, the support plate is fixedly connected with the shell of the spindle foot, and the upper part of the shell of the spindle foot is movably connected with the spindle rod; the integrated conversion module is located at the end of the spindle foot Inside the cover, and fixedly connected with the end cover of the spindle foot, and the output of the integrated conversion module is led out from the output lead hole through the wire and connected to the external equipment; on the spindle shaft, and is assembled and connected with the spindle shaft; the underside of the spindle shaft is provided with an outrigger shaft, and after the spindle shaft is assembled with the ingot tray, the outrigger shaft is assembled and connected with the clutch assembly; the ingot tray is connected with the spindle foot shell .
本发明磁电式纺纱锭子功率传感器的外形与传统纺纱锭子的外形一致,因此与磁电式纺纱锭子功率传感器的外观相关的机构件,如锭杆、锭脚等均与传统纺纱锭子的设计相同。锭脚与纺织机固定,在传送皮带的作用下,纱线、纱筒和锭杆会以相同的转速旋转,由于锭杆一直伸到锭脚的内部,因此锭杆与锭脚之间必然会产生连续的相对转动,磁体在离合键的带动下同锭杆一起旋转,锭脚内部的感应线圈不动,锭杆的转动就相当于磁场以锭杆速度在锭脚空间内旋转,这时感应线圈由于不动而被迫切割磁力线,根据法拉第电磁感应定律,磁电式纺纱锭子功率传感器输出的是感应电动势,因此可以将感应线圈看作电路中的可变电源,该可变电源负载上所消耗的功率就是锭子的在线消耗功率。信号提取电阻Rf与感应线圈为闭合回路,因此信号提取电阻Rf上的电流即为感应电流。The appearance of the magnetoelectric spinning spindle power sensor of the present invention is consistent with the appearance of the traditional spinning spindle, so the mechanical components related to the appearance of the magnetoelectric spinning spindle power sensor, such as spindle rods, spindle feet, etc., are the same as those of the traditional spinning spindle. The spindles are of the same design. The spindle foot is fixed with the textile machine. Under the action of the conveyor belt, the yarn, the bobbin and the spindle will rotate at the same speed. Continuous relative rotation is generated, the magnet rotates together with the spindle rod driven by the clutch key, the induction coil inside the spindle foot does not move, and the rotation of the spindle rod is equivalent to the rotation of the magnetic field in the spindle foot space at the speed of the spindle rod. The coil is forced to cut the magnetic field line because it does not move. According to Faraday's law of electromagnetic induction, the output of the magnetoelectric spinning spindle power sensor is an induced electromotive force, so the induction coil can be regarded as a variable power supply in the circuit. The power consumed is the online power consumption of the spindle. The signal extraction resistor Rf and the induction coil form a closed loop, so the current on the signal extraction resistor Rf is the induced current.
感应线圈上的感应电动势的计算公式如下:The formula for calculating the induced electromotive force on the induction coil is as follows:
式中,W表示固定于锭脚中的线圈有效匝数,φ表示匝链线圈磁通,B表示磁场的磁感应强度,θ表示感应线圈平面法线方向与磁场方向间的夹角,S表示每匝线圈的截面积,ω表示锭杆相对于锭脚的旋转角速度,t表示时间。In the formula, W represents the effective number of turns of the coil fixed in the spindle foot, φ represents the magnetic flux of the turn-chain coil, B represents the magnetic induction intensity of the magnetic field, θ represents the angle between the normal direction of the induction coil plane and the direction of the magnetic field, and S represents each The cross-sectional area of the coil, ω represents the rotational angular velocity of the spindle bar relative to the spindle foot, and t represents the time.
当θ=90°时,根据(1-1)得到:When θ=90°, according to (1-1), we get:
e=WBSω; (1-2)e=WBSω; (1-2)
可见,当磁电式纺纱锭子功率传感器的敏感元件结构确定后,B、S、W均为定值,因此磁电敏感元件的输出感应电动势e与锭子角速度ω成正比。It can be seen that after the structure of the sensitive element of the magnetoelectric spinning spindle power sensor is determined, B, S, and W are all fixed values, so the output induced electromotive force e of the magnetoelectric sensor is proportional to the angular velocity of the spindle ω.
众所周知,角速度ω和转速n之间具有确定的关系:As we all know, there is a definite relationship between the angular velocity ω and the rotational speed n:
式中,n表示锭子的转速。In the formula, n represents the rotational speed of the spindle.
结合式(1-2)和式(1-3),得到:Combining formula (1-2) and formula (1-3), we get:
其中: in:
结合式(1-1)和式(1-3),得到:Combining formula (1-1) and formula (1-3), we get:
其中: in:
由此可见,磁电式纺纱锭子功率传感器的输出感应电动势e与锭子转速n成正比。It can be seen that the output induced electromotive force e of the magnetoelectric spinning spindle power sensor is proportional to the spindle speed n.
通过传感器测量出对应的感应电压和感应电流,功率计算模块根据功率与电压、电流的关系便可测出纺纱锭子的在线消耗功率。当锭杆由于某种原因而导致转动异常时,则锭脚内部的感应线圈上便会产生异常的感应电压和感应电流,而功率计算模块所得出的在线消耗功率也会出现异常。另外,若将磁电敏感组件中的感应电压(感应电动势)直接进行放大、调压和转换,则可得出与锭子转速相对应的输出电压。利用已知的锭子的在线消耗功率和转速(对应于输出电压),再依据功率与转速的关系,通过模拟电路又可得到传送皮带作用到锭子上的动态转矩。因此,本发明所给的磁电式纺纱锭子功率传感器还可输出以下检测参数:锭子在线消耗功率、锭子转速、锭子某一瞬时的角速度和动态转矩。The corresponding induced voltage and induced current are measured by the sensor, and the power calculation module can measure the online power consumption of the spinning spindle according to the relationship between power, voltage and current. When the spindle bar rotates abnormally for some reason, abnormal induced voltage and induced current will be generated on the induction coil inside the spindle foot, and the online power consumption obtained by the power calculation module will also be abnormal. In addition, if the induced voltage (induced electromotive force) in the magneto-electric sensitive component is directly amplified, regulated and converted, the output voltage corresponding to the rotational speed of the spindle can be obtained. Using the known online power consumption and rotational speed of the spindle (corresponding to the output voltage), and then according to the relationship between the power and the rotational speed, the dynamic torque acting on the spindle by the conveyor belt can be obtained through the analog circuit. Therefore, the magnetoelectric spinning spindle power sensor provided by the present invention can also output the following detection parameters: online power consumption of the spindle, rotation speed of the spindle, angular velocity and dynamic torque of the spindle at a certain instant.
本发明具有如下有益效果:本发明将锭子本身转变为磁电式纺纱锭子功率传感器,除导线外露外,离合组件、磁体、磁电敏感组件和集成转换模块均位于内部,它既能像传统锭子那样工作,也能在线实时测量锭子的转速和消耗功率,并通过测量数据判定锭子是否处于正常工作状态。本发明保持了传统锭子既有的拔插安装方式、工作方式和固定方式,保留了传统锭子工作方式的优点,将传统纺纱锭杆转变为传感导引元件,将传统锭脚改造成传感锭脚,以传统锭子的拔插方式,通过离合组件实现锭杆与磁电敏感组件的离合,同时锭脚内部没有了传统锭子的精密传动机械机构和油润滑机构;当锭杆随着纱筒一起旋转时,锭杆与离合键连接因此锭杆的转动必然会带动离合键的同速转动,固定于离合键末尾处的磁体也必然随之同速旋转,并且磁体与锭杆的运动状态相同。总之,本发明具有结构清晰、性能稳定、灵敏度高,可在恶劣环境下反复使用、可批量化生产、成本低、寿命长、不改变传统锭子既有的工作方式的优点。The present invention has the following beneficial effects: the present invention transforms the spindle itself into a magnetoelectric spinning spindle power sensor, except that the wires are exposed, the clutch assembly, the magnet, the magnetoelectric sensitive assembly and the integrated conversion module are all located inside. Even if the spindle works like that, it can also measure the rotation speed and power consumption of the spindle in real time online, and determine whether the spindle is in normal working state through the measurement data. The invention maintains the existing plug-in installation, working and fixing methods of the traditional spindle, retains the advantages of the traditional spindle working mode, transforms the traditional spinning spindle rod into a sensing and guiding element, and transforms the traditional spindle foot into a transmission The spindle sensing foot, in the traditional way of inserting the spindle, realizes the clutching between the spindle bar and the magnetoelectric sensitive component through the clutch assembly. At the same time, there is no precision transmission mechanism and oil lubrication mechanism of the traditional spindle inside the spindle foot. When the cylinder rotates together, the spindle is connected with the clutch key, so the rotation of the spindle will inevitably drive the rotation of the clutch key at the same speed, and the magnet fixed at the end of the clutch key will also rotate at the same speed, and the movement state of the magnet and the spindle same. In a word, the present invention has the advantages of clear structure, stable performance, high sensitivity, repeated use in harsh environments, mass production, low cost, long service life, and does not change the existing working mode of traditional spindles.
另外,本发明的结构件均采用常规机械加工、嵌套装配、金属导线焊接等工艺制作,可应用于纺织行业的各类纺机和拈线机中,有利于提高纺织行业中各类纺机和拈线机等的纺纱设备的自动化水平,提高纺机和拈线机的工作可靠性和生产效率,及时排除纺纱设备工作时的锭子故障,也可用于纺纱锭子功率测试等方面,操作人员便可以及时判断某个锭子是否出现了问题。In addition, the structural parts of the present invention are all manufactured by conventional machining, nested assembly, metal wire welding and other processes, and can be applied to various spinning machines and thread-twisting machines in the textile industry, which is beneficial to improve the performance of various spinning machines in the textile industry. It can improve the automation level of spinning equipment such as spinning machines and spinning machines, improve the working reliability and production efficiency of spinning machines and spinning machines, eliminate spindle failures in spinning equipment in time, and can also be used for spinning spindle power testing, etc. The operator can judge in time whether there is a problem with a certain spindle.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为本发明的结构示意图。FIG. 1 is a schematic structural diagram of the present invention.
图2为本发明的锭脚示意图。Figure 2 is a schematic diagram of the spindle foot of the present invention.
图3为本发明的锭脚剖视图。3 is a sectional view of the spindle foot of the present invention.
图4为本发明的锭脚端盖示意图。FIG. 4 is a schematic diagram of the end cap of the spindle foot of the present invention.
图5为本发明的锭杆示意图。Figure 5 is a schematic diagram of the spindle bar of the present invention.
图6为本发明的离合组件支撑外套示意图。FIG. 6 is a schematic diagram of the support jacket of the clutch assembly of the present invention.
图7为本发明的套筒支撑件示意图。FIG. 7 is a schematic diagram of the sleeve support of the present invention.
图8为本发明的离合组件支撑端盖示意图。FIG. 8 is a schematic diagram of the support end cover of the clutch assembly of the present invention.
图9为本发明的离合组件支撑装配件示意图。FIG. 9 is a schematic diagram of the support assembly of the clutch assembly of the present invention.
图10为本发明的离合组件支撑装配件剖视图。10 is a cross-sectional view of the clutch assembly support assembly of the present invention.
图11为本发明的离合键示意图。FIG. 11 is a schematic diagram of the clutch key of the present invention.
图12为本发明的离合键端盖示意图。12 is a schematic diagram of the clutch key end cap of the present invention.
图13为本发明的离合组件示意图。FIG. 13 is a schematic diagram of the clutch assembly of the present invention.
图14为本发明的离合组件剖视图。14 is a cross-sectional view of the clutch assembly of the present invention.
图15为本发明的感应线圈骨架示意图。FIG. 15 is a schematic diagram of the induction coil bobbin of the present invention.
图16为本发明的感应线圈骨架端盖示意图。16 is a schematic diagram of the end cap of the induction coil bobbin of the present invention.
图17为本发明的感应线圈骨架和感应线圈骨架端盖组装示意图。FIG. 17 is a schematic diagram of the assembly of the induction coil bobbin and the end cover of the induction coil bobbin of the present invention.
图18为本发明的离合组件、感应线圈骨架和感应线圈骨架端盖组装示意图。FIG. 18 is a schematic diagram of the assembly of the clutch assembly, the induction coil bobbin and the end cover of the induction coil bobbin of the present invention.
图19为本发明的外观示意图。FIG. 19 is a schematic view of the appearance of the present invention.
图20为本发明的磁电敏感组件示意图。FIG. 20 is a schematic diagram of the magneto-electrical sensing component of the present invention.
图21为本发明的锭轴示意图。Figure 21 is a schematic diagram of the spindle shaft of the present invention.
图22为本发明的锭盘示意图。Figure 22 is a schematic diagram of the ingot tray of the present invention.
图中,1为锭杆,2为锭脚,3为离合组件,4为磁体,5为磁电敏感组件,6为集成转换模块,7为感应线圈骨架,8为感应线圈骨架端盖,10为离合键,11为离合组件支撑装配件,12为离合键端盖,13为轴向推力球轴承,14为离合组件支撑外套,15为套筒支撑件,16为离合组件支撑端盖,18为导线,19为锭钩,20为锭脚外螺纹,2-1为锭脚端盖,2-2为锭脚外壳,2-3为输出导线孔,2-4为销定位工艺孔,1-1为锭轴,1-2为锭盘,21为机械轴承,22为螺栓。In the figure, 1 is the spindle rod, 2 is the spindle foot, 3 is the clutch assembly, 4 is the magnet, 5 is the magneto-electric sensitive component, 6 is the integrated conversion module, 7 is the induction coil frame, 8 is the induction coil frame end cover, 10 11 is the clutch assembly support assembly, 12 is the clutch key end cover, 13 is the axial thrust ball bearing, 14 is the clutch assembly support jacket, 15 is the sleeve support, 16 is the clutch assembly support end cover, 18 19 is the spindle hook, 20 is the spindle pin external thread, 2-1 is the spindle pin end cover, 2-2 is the spindle pin shell, 2-3 is the output wire hole, 2-4 is the pin positioning process hole, 1 -1 is the spindle, 1-2 is the spindle, 21 is the mechanical bearing, and 22 is the bolt.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
如图1所示,一种磁电式纺纱锭子功率传感器,包括锭杆1和锭脚2,所述锭脚2与锭杆1活动连接,锭杆1可相对于锭脚2转动,锭杆1与锭脚2之间组成了封闭结构;如图4所示,所述锭脚2包括锭脚端盖2-1和锭脚外壳2-2,所述锭脚端盖2-1的外侧设有输出导线孔2-3和销定位工艺孔2-4,输出导线孔2-3位于锭脚端盖2-1下部的中心,销定位工艺孔2-4位于输出导线孔2-3的外侧;锭脚端盖2-1的内侧与锭脚外壳2-2的下部固定连接;如图2所示,所述锭脚外壳2-2上设有锭脚外螺纹20,使用时,锭脚外螺纹20与纺纱机螺纹连接,锭脚外壳2-2的上部与锭杆1活动连接;如图3所示,锭脚外壳2-2的内部设有支撑板,支撑板与锭脚外壳2-2固定连接;如图19所示,为了防止工作时皮带滑落且保持传统锭子的运送方式不变,所述锭脚2上还设有锭钩19,锭钩19与锭脚外壳2-2固定连接,使用时,锭钩19与皮带连接,防止工作时皮带滑落。在装配本发明时销定位工艺孔2-4可以起到定位的作用。如图5所示,所述锭杆1包括锭轴1-1和锭盘1-2,所述锭盘1-2固定在锭轴1-1上;所述锭轴1-1的下侧设有外伸轴;所述锭盘1-2与锭脚外壳2-2固定连接。As shown in Figure 1, a magnetoelectric spinning spindle power sensor includes a spindle rod 1 and a
进一步地,锭脚外壳2-2内设有离合组件3、磁体4、磁电敏感组件5,即离合组件3、磁体4、磁电敏感组件5设置在锭盘1-2、锭脚外壳2-2和锭脚端盖2-1所组成的封闭结构中;锭脚端盖2-1内设有集成转换模块6,集成转换模块6固定在锭脚端盖2-1内,且集成转换模块6的输出通过导线18从输出导线孔2-3中导出。导线18从锭脚端盖2-1的底部引出后再与外部设备连接,这样的输出方式不会影响到锭子在纺织机上的传统固定方式,同时也有利于信号的引出。所述离合组件3套设在锭杆1的下部,锭杆1通过外伸轴与离合组件3固定连接,锭杆1旋转时离合组件3随锭杆1一起旋转,锭脚2不动;所述磁电敏感组件5套设在离合组件3的远离锭杆1的一侧,磁电敏感组件5与离合组件3的外侧固定连接,且磁电敏感组件5不随锭杆1一起旋转;所述磁电敏感组件5的感应线圈与磁体4相配合;所述磁体4固定于离合组件3的远离锭杆1的内侧,且磁体4同锭杆1一起旋转;如图20所示,所述磁电敏感组件5的信号提取电阻Rf与感应线圈电连接组成闭合回路,且信号提取电阻Rf与集成转换模块6电连接。Further, the spindle foot shell 2-2 is provided with a clutch assembly 3, a magnet 4, and a magnetoelectric
当锭杆1旋转时,磁体4同锭杆1一起旋转,相当于磁场以锭杆1的速度在空间旋转,由于感应线圈静止,从而相当于磁力线被被迫切割,从而在磁电敏感组件5中产生了感应电动势,信号提取电阻Rf与感应线圈为闭合回路,信号提取电阻Rf中便产生了相应的感应电压和感应电流,集成转换模块6测量信号提取电阻Rf中的感应电压和感应电流后将两个数据相乘即为锭子的消耗功率,集成转换模块6与外部连接并将测量结果处理后输出。When the spindle 1 rotates, the magnet 4 rotates together with the spindle 1, which is equivalent to the magnetic field rotating in space at the speed of the spindle 1. Since the induction coil is stationary, it is equivalent to the magnetic force line being forced to cut, so that the magneto-electric
如图13和图14所示,所述离合组件3包括离合键10、离合组件支撑装配件11和轴向推力球轴承13,所述离合键10的上部设有支撑台,支撑台通过轴向推力球轴承13与离合组件支撑装配件11活动连接;离合键10内设有通孔,锭杆1底部的外伸轴插入通孔后与离合键10固定连接,且离合键10随锭杆1一起旋转,离合键10可以通过键或内齿轮与锭杆1实现连接和分离;所述轴向推力球轴承13套设在离合键10上,轴向推力球轴承13的一侧与支撑台固定连接,轴向推力球轴承13的另一侧与离合组件支撑装配件11的上部固定连接;所述离合组件支撑装配件11套设离合键10上,且离合组件支撑装配件11与离合键10活动连接,离合组件支撑装配件11的下部与磁电敏感组件5连接;所述磁体4位于通孔的下部,且磁体4与通孔过盈配合,磁体4通过螺栓22固定在离合键10的末尾处;所述轴向推力球轴承13对离合键10起到轴向支撑定位的作用。As shown in FIGS. 13 and 14 , the clutch assembly 3 includes a
如图6和9所示,所述离合组件支撑装配件11包括离合组件支撑外套14,所述离合组件支撑外套14套设在离合键10上,且离合组件支撑外套14通过机械轴承21与离合键10活动连接;所述机械轴承21位于离合键10与离合组件支撑外套14之间,机械轴承21的外侧与离合组件支撑外套14固定连接,机械轴承21的内侧与离合键10固定连接;所述机械轴承21可以为角接触球轴承、滚子轴承或向心推力轴承,所有可以同时实现轴向和径向定位的轴承都可以使用;所述离合组件支撑外套14的上部与轴向推力球轴承13固定连接,离合组件支撑外套14的下部与磁电敏感组件5固定连接。机械轴承21的内座圈和滚珠随锭杆1的旋转而转动,但机械轴承21的外座圈和离合组件支撑外套14不动。机械轴承21实现对锭杆1的向心定位,防止锭杆1和离合键10连接在一起旋转时所发生的偏斜现象,增强锭杆1和离合键10的轴向刚度和向心定位。As shown in FIGS. 6 and 9 , the clutch
为了轴向压紧离合键10和固定机械轴承21的内座圈并防止轴向窜动,所述离合键10和机械轴承21通过离合键端盖12压合;所述离合键端盖12位于离合组件支撑装配件11和磁体4之间,离合键端盖12的上部设有接触台,离合键端盖12套设在离合键10上,且离合键端盖12与离合键10通过螺栓固定连接;所述接触台与机械轴承21的内座圈压紧。In order to axially press the
如图7所示,为了对离合组件支撑外套14进行轴向支撑,所述离合组件支撑装配件11还包括套筒支撑件15,所述套筒支撑件15与离合组件支撑外套14的内壁固定连接。As shown in FIG. 7 , in order to axially support the clutch
如图8所示,为了向轴向推力球轴承13提供轴向支撑并起到传力的作用,所述离合组件3还包括离合组件支撑端盖16,所述离合组件支撑端盖16套设在离合键10上,离合组件支撑端盖16的一侧设有凹槽II,离合组件支撑端盖16的另一侧设有连接台,连接台与离合组件支撑装配件11的内壁固定连接;所述轴向推力球轴承13设置在凹槽II内;所述离合组件支撑外套14的数量至少为两个,且两个离合组件支撑外套14之间通过离合组件支撑端盖16固定连接。一个离合组件支撑外套14的下部与凹槽II的侧壁固定连接,另一个离合组件支撑外套14的上部与支撑端盖16的连接台紧配合。As shown in FIG. 8 , in order to provide axial support to the axial
本实施例中,所述机械轴承21为角接触球轴承;所述离合组件支撑装配件11的数量为2个,一个离合组件支撑装配件11包括一个离合组件支撑外套14、一个套筒支撑件15和两个机械轴承21;离合组件支撑外套14一侧的内壁上设有凸块,离合组件支撑外套14位于两个机械轴承21之间,凸块、第一个机械轴承21的外座圈、离合组件支撑外套14、第二个机械轴承21的外座圈和连接台在离合组件支撑外套14的内壁上紧密排列并连接,可以对机械轴承21起到轴向支撑的作用。In this embodiment, the
如图17所示,所述磁电敏感组件5还包括感应线圈骨架7和感应线圈骨架端盖8,所述感应线圈骨架7和感应线圈骨架端盖8均套设在离合组件3上;所述感应线圈骨架端盖8的上部通过感应线圈骨架端盖8与离合组件3固定连接;感应线圈骨架端盖8的下部设有凹部;所述凹部与感应线圈骨架7的上部的凸台紧密装配连接,感应线圈骨架7的下部圆周方向设有凹槽I;所述感应线圈位于凹槽I内,并缠绕在凹槽I的内壁上,这样便于整理和保护感应线圈,避免装配过程中其它结构对感应线圈的挤压。感应线圈骨架端盖8可以轴向支撑离合组件3,感应线圈骨架设置在磁体的外部。As shown in FIG. 17 , the magnetoelectric
优选地,所述感应线圈骨架7与离合组件3之间、感应线圈骨架7与感应线圈骨架端盖8之间设有绝缘垫片,且绝缘垫片与离合组件3和感应线圈骨架端盖8粘接,绝缘垫片从电气性能方面起到了将感应线圈与离合键10、感应线圈骨架端盖8隔离的作用。Preferably, insulating gaskets are provided between the
进一步地,所述集成转换模块6包括功率计算模块、存储器和信号输出模块,所述功率计算模块包括功率放大器、模拟乘法器和功率因数控制器,所述模拟乘法器的输入与信号提取电阻Rf电连接,模拟乘法器的输出与功率放大器电连接;所述功率放大器与功率因数控制器电连接;所述功率因数控制器与存储器电连接;所述存储器与信号输出模块电连接;所述信号输出模块包括模数转换芯片,模数转换芯片的输入与存储器电连接,模数转换芯片的输出通过导线18从锭脚2的底部穿出。功率计算模块用于测量信号提取电阻Rf上的感应电压和感应电流并以此计算锭子的实时消耗功率;存储器用于存储功率数据;信号输出模块用于向外部输出锭子的实时消耗功率,以判断锭子的工作状态。本发明不需要辅助电源就可以将锭子旋转所消耗的功率转换为易于测量的电信号,待测量信号提取电阻Rf中产生感应电压和感应电流后,功率计算模块将感应电压和感应电流相乘即为锭子的实时消耗功率,此外集成转换模块6还可将锭子消耗功率、感应电压和感应电流转换到我国国标中所规定的传感器输出范围内。本实施例中,所述功率放大器的型号为LM1875,模拟乘法器的型号为ADL5391,功率因数控制器的型号为TDA4863G;所述存储器包括64位读写存储器,64位读写存储器的型号为74LS89;所述模数转换芯片的型号为AD0832。Further, the
所述集成转换模块6与磁电敏感组件5之间设有绝缘隔离板,所述绝缘隔离板位于支撑板上,绝缘隔离板与锭脚外壳2-2固定连接,绝缘隔离板和支撑板对离合组件3和磁电敏感组件5起到轴向支撑的作用。绝缘隔离板的上部与感应线圈骨架7的下部接触,感应线圈位于绝缘隔离板和感应线圈骨架之间,因此绝缘隔离板将磁电敏感组件5与集成转换模块6分隔开来,形成了对磁电敏感组件5的保护。An insulating isolation plate is arranged between the
本实施例中,锭脚端盖2-1和锭脚外壳2-2均采用45#钢材通过常规机械加工而成;如图21和图22所示,锭轴1-1和锭盘1-2均采用滚珠轴承钢材料加工而成,锭轴1-1和锭盘1-2装配后组成锭杆1;如图10所示,离合组件支撑外套14、套筒支撑件15和离合组件支撑端盖16均采用45#钢通过常规机械加工而成,机械轴承21、离合器支撑外套14、套筒支撑件15、离合器支撑端盖16装配后组成离合组件支撑装配件11;如图11所示,离合键10为采用滚珠轴承钢材料加工而成;如图12所示,离合键端盖12为采用45#钢通过常规机械加工而成,如图18所示,将轴向推力球轴承13、两个离合组件支撑装配件11、离合键端盖12、标准内六角螺栓装配到一起,第一个离合组件支撑装配件11的一侧的离合组件支撑端盖16与轴向推力球轴承13连接,第一个离合组件支撑装配件11的另一侧与第二个离合组件支撑装配件11的一侧的离合组件支撑端盖16连接,第二个离合组件支撑装配件11的另一侧与感应线圈骨架端盖8连接,离合键端盖12通过标准内六角螺栓与离合键10和机械轴承21连接;如图15所示,感应线圈骨架7为取绝缘耐高温塑料利用注塑工艺或机械加工制作而成,如图16所示,感应线圈骨架端盖8为采用45#钢通过常规机械加工而成。另外,本实施例中离合组件3的内部所有需要润滑的地方均为脂润滑,磁体4为磁铁。In this embodiment, the end cover 2-1 of the spindle foot and the shell of the spindle foot 2-2 are made of 45# steel by conventional machining; as shown in Figure 21 and Figure 22, the spindle 1-1 and the spindle 1- 2 are all made of ball bearing steel material, spindle 1-1 and spindle 1-2 are assembled to form spindle 1; as shown in Figure 10, the clutch assembly supports the
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910696868.2A CN110344148B (en) | 2019-07-30 | 2019-07-30 | A magnetoelectric spinning spindle power sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910696868.2A CN110344148B (en) | 2019-07-30 | 2019-07-30 | A magnetoelectric spinning spindle power sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110344148A CN110344148A (en) | 2019-10-18 |
CN110344148B true CN110344148B (en) | 2020-12-18 |
Family
ID=68179157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910696868.2A Active CN110344148B (en) | 2019-07-30 | 2019-07-30 | A magnetoelectric spinning spindle power sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110344148B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0657549A (en) * | 1992-08-06 | 1994-03-01 | Hitachi Ltd | Spindle device of twisting machine |
JPH093754A (en) * | 1995-06-16 | 1997-01-07 | Nippon Mayer Kk | Driving mechanism of spindle plate in knitting machine |
CN102565448B (en) * | 2012-01-14 | 2014-02-05 | 浙江兆丰机电股份有限公司 | Automobile wheel speed sensor |
CN108385223B (en) * | 2018-01-31 | 2020-11-10 | 南京邮电大学 | A kind of high-speed spinning frame traveler speed detection device and detection method |
-
2019
- 2019-07-30 CN CN201910696868.2A patent/CN110344148B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110344148A (en) | 2019-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3056421A1 (en) | Electric bicycle central axle torque speed sense device | |
CN106482627B (en) | A kind of testing stand and method for being used to measure bearing Radial windage | |
CN101819091B (en) | Combined intelligent monitoring bearing | |
CN203806093U (en) | Middle axle torque speed sensor of electric bicycle | |
CN108534940A (en) | A kind of measuring device and measuring method of the rotor axial power of double-screw compressor | |
CN102901594A (en) | Device for testing friction moment of pairing rolling bearing | |
CN105823613B (en) | A kind of torsion dynamic stiffness detecting system of magnetic loaded type lathe live spindle | |
CN206756458U (en) | The test experimental bed of magnetic suspension bearing anti-dropping capability | |
CN105300681A (en) | Electric spindle temperature and thermal deformation testing device | |
CN211127476U (en) | High-speed motor with automatic temperature measurement function | |
CN110344148B (en) | A magnetoelectric spinning spindle power sensor | |
CN202417987U (en) | Diagnosis and test device for fan faults | |
CN211291996U (en) | Wireless sensing on-line monitoring device for pressure of lubricating film of sliding bearing | |
CN106644224B (en) | Magnetic suspension bearing dynamic torque sensor | |
CN106950062A (en) | The test experimental bed of magnetic suspension bearing anti-dropping capability | |
CN105784246A (en) | Rotary shaft axial force measuring device | |
CN110940827B (en) | Magnetoelectric revolution speed transducer suitable for large-interval measurement | |
CN209101975U (en) | A kind of angular contact ball bearing clearance detector | |
CN102607750A (en) | Test-bed for friction torque of rolling bearing | |
CN202916093U (en) | Cylindrical roller bearing retainer dynamic performance test device | |
CN104806733A (en) | Bearing stress based torque detection structure and method | |
TWI774606B (en) | Magnetic angle detector | |
CN109238537A (en) | Rotary torque sensor | |
CN203560308U (en) | A Ferrofluidic Sealed Shaft with Frictionless Angle Measurement | |
CN203561468U (en) | A high-precision torque test component in a thermal vacuum environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |