CN110338776A - 基于cmos集成电路技术的ppg信号采集芯片及装置 - Google Patents

基于cmos集成电路技术的ppg信号采集芯片及装置 Download PDF

Info

Publication number
CN110338776A
CN110338776A CN201910622535.5A CN201910622535A CN110338776A CN 110338776 A CN110338776 A CN 110338776A CN 201910622535 A CN201910622535 A CN 201910622535A CN 110338776 A CN110338776 A CN 110338776A
Authority
CN
China
Prior art keywords
circuit
ppg
current
signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910622535.5A
Other languages
English (en)
Other versions
CN110338776B (zh
Inventor
王国兴
王敏
林炳辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Jintong Technology Co.,Ltd.
Original Assignee
Qidong Zhimicroelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qidong Zhimicroelectronics Technology Co Ltd filed Critical Qidong Zhimicroelectronics Technology Co Ltd
Priority to CN201910622535.5A priority Critical patent/CN110338776B/zh
Publication of CN110338776A publication Critical patent/CN110338776A/zh
Application granted granted Critical
Publication of CN110338776B publication Critical patent/CN110338776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light

Abstract

本发明提供了一种基于CMOS集成电路技术的PPG信号采集芯片,包括集成的:模拟前端放大电路模块,所述模拟前端放大电路模块用于将脉动的光电流信号转化为连续的PPG电压信号并进行放大和滤波后输出;LED驱动电路模块,所述LED驱动电路模块用于提供一路脉动LED灌电流输出,其中输出电流的最大值和占空比均能够调节;偏置电流电压产生电路模块,所述偏置电流电压产生电路模块用于产生片上的偏置电压和偏置电流。同时提供了一种采集装置,包括采集芯片以及光电模组。本发明提供的采集芯片及装置,具有低功耗,低噪声,高灵敏度,高集成度等优势,适用于低功耗可穿戴设备中PPG信号的连续测量。

Description

基于CMOS集成电路技术的PPG信号采集芯片及装置
技术领域
本发明涉及集成电路生物信号采集技术领域,具体地,涉及一种基于互补金属氧化物半导体(CMOS)集成电路加工工艺的低功耗光电容积脉搏波(photoplethysmography,简称PPG)信号的实时采集芯片及装置。
背景技术
随着现代医疗技术的发展,我国乃至全世界正在迈向老龄化社会,老龄人的健康问题日渐受到人们的重视。而心脑血管疾病的突发性和潜伏性导致患者很难得到及时的治疗,因此发病致死率很高。为了解决上述问题,需要一套全天候可穿戴的心率血压监测设备,一旦病人心脑血管疾病发作,该设备能够检测到心率和血压异常,并及时报警,以便家人和医生第一时间赶到病人身边及时施救,进而大大降低发病者的死亡率。
从功能的角度来讲,该设备需要检测心率和血压。传统的检测心率和血压的方式是分别通过脉搏波的周期和压力来进行检测和计算,利用这种方式检测血压的仪器主要有水银式血压计,压电式血压计等。这些仪器由于本身比较笨重,且检测的时候需要将袖带缠绕在手臂上并施加压力,因此具有检测不方便的问题,所以这种检测技术不适合用于24小时全天候监测的可穿戴设备上。全天候可穿戴的心率血压监测设备首先应当是便携的,佩戴起来不影响人们日常生活,现在新兴的光电式脉搏波检测能够满足这样的要求。这种检测技术利用光电转换的原理,能实时检测PPG信号,进而计算出心率和血压。
在基于上述光电式脉搏波检测技术的心率血压监测系统中,PPG信号采集芯片作为整套系统信号输入的接口,其性能直接决定了后续需要进行处理的信号质量,并且影响着心率和血压计算的准确性,在这个系统中占据了十分关键的地位。而从应用的角度来讲,这套心率血压监测系统应该可穿戴,续航时间长,这就要求PPG采集芯片功耗低、集成度高,然而现有的PPG采集电路功耗偏高且集成度低。
经过检索发现,公开号为CN104224143A的《超低功耗的PPG信号采集电路及采集方法》,采用多个比较器和ADC,会增加电路复杂度及功耗,而且电路原理图并没有按照集成电路的特点进行设计,板级系统会占用过大空间,不适用于可穿戴设备,且功耗、体积和灵敏度也是影响可穿戴设备中PPG信号采集的主要问题。
目前没有发现同本发明类似技术的说明或报道,也尚未收集到国内外类似的资料。
发明内容
针对现有技术中存在的上述不足,本发明的目的是提供一种基于CMOS集成电路技术的PPG信号采集芯片及装置。CMOS集成电路加工工艺作为当前最流行的集成电路量产工艺之一,具有价格低廉、工艺成熟稳定、易于集成等优点;同时把复杂的PPG采集电路集成到一块芯片,能极大地降低电路尺寸和量产成本;再加上低功耗设计,延长了设备的续航能力,降低电池容量和尺寸的要求。本发明对可穿戴设备上的PPG采集具有重要意义。
为达到上述目的,本发明是通过以下技术方案实现的。
根据本发明的一个方面,提供了一种基于CMOS集成电路技术的PPG信号采集芯片,包括芯片级集成的如下模块:
-模拟前端放大电路模块,所述模拟前端放大电路模块用于将脉动的光电流信号转化为连续的PPG电压信号并进行放大和滤波后输出;
-LED驱动电路模块,所述LED驱动电路模块用于提供一路脉动LED灌电流输出,输出电流的最大值和占空比均可通过数字端口调节;
-偏置电流电压产生电路模块,所述偏置电流电压产生电路模块用于产生片上的偏置电压和偏置电流,无需额外的器件和片外的偏置电路,提高集成度。
优选地,所述模拟前端放大电路模块包括集成的跨阻放大器、环境光抑制电路、包络检测电路、低通滤波器、次级放大器及驱动增强器;其中:
所述跨阻放大器用于将光电二极管输出的光电流信号转化为脉动的PPG电压信号并进行信号放大;
所述环境光抑制电路用于抑制环境光所产生的光电流分量,避免该光电流分量导致跨阻放大器饱和;
所述包络检测电路用于将脉动的PPG电压信号转化为连续的PPG电压信号;
所述低通滤波器采用Gm-C滤波器,无需片外器件,实现片上极低截止频率;
所述次级放大器用于对连续的PPG电压信号进行放大并使其带有高通特性;
所述驱动增强器采用单位增益放大器,增强输出级的驱动能力。
优选地,所述跨阻放大器包括:运算放大器OTA1、电阻Rf和电容Cf,其中:OTA1的反相输入端连接光电二极管的阴极,接收光电流,OTA1的同相输入端连接直流共模电平,OTA1、Cf和Rf并联组成电压-电流负反馈电路;
优选地,所述包络检测电路包括:包络检测模块Env Detector,其中:EnvDetector输入端连接跨阻放大器的运算放大器OTA1的输出端,把脉动的PPG电压信号转换为连续的PPG电压信号。
优选地,所述环境光抑制电路包括:运算放大器EA、电阻Rprst、电阻Rp2、电容CC和晶体管Mctrl,其中:EA、CC、Rp2连接成有源积分器,Rprst与Rp2并联,用于电路复位;环境光抑制电路的输入端连接包络检测电路的包络检测模块Env Detector的输出端,EA的输出端连接Mctrl的栅极,驱动Mctrl产生漏极电流以抵消光电流的环境光分量。
优选地,所述低通滤波器包括:跨导单元Gm和电容Cm,其中:Gm的输出端与反相输入端相连,连接成单位增益放大器,Cm的两端分别与Gm的输出端和地相连,Gm和Cm组成有源低通滤波器。
优选地,所述次级放大器包括:电容C1、电容C2、电阻Rp3、电阻Rrst和运算放大器OTA2,其中:OTA2、C1和C2连接成电压-电压负反馈电路,Rp3连接到OTA2的反相输入端和输出端之间,提供直流偏置,Rrst与Rp3并联,用于电路的复位。
优选地,所述驱动增强器采用单位增益放大器,用于驱动后续电路。
优选地,所述LED驱动电路模块采用基于电流镜的电流输出电路,所述基于电流镜的电流输出电路的峰值电流大小为可调节,分辨率为3比特;开关控制电流通断,工作占空比低至1%。
优选地,所述偏置电流电压产生电路模块包括全集成的带隙基准电路和参考电流产生电路,分别用于产生偏置电压和纳安级别的偏置电流。
根据本发明的另一个方面,提供了一种基于CMOS集成电路技术的PPG信号采集装置,包括作为外围电路的光学模组以及芯片级集成的多个模块;其中:
所述光学模组包括集成的LED和光电二极管,所述LED用于发光照射人体组织,所述光电二极管用于将检测到的经人体组织吸收后反射出来的光强信息转化成微弱的脉动的光电流信号。
所述芯片级集成的多个模块,包括:
-模拟前端放大电路模块,所述模拟前端放大电路模块用于将光电二极管输出的微弱的脉动的光电流信号转化为连续的PPG电压信号并进行放大和滤波后输出;
-LED驱动电路模块,所述LED驱动电路模块用于提供一路脉动LED灌电流输出,输出电流的最大值和占空比均可通过数字端口调节;
-偏置电流电压产生电路模块,所述偏置电流电压产生电路模块用于产生片上的偏置电压和偏置电流,无需额外的器件和片外的偏置电路,提高集成度。
优选地,所述模拟前端放大电路模块包括集成的跨阻放大器、环境光抑制电路、包络检测电路、低通滤波器、次级放大器及驱动增强器;其中:
所述跨阻放大器用于将光电二极管输出的光电流信号转化为脉动的PPG电压信号并进行信号放大;
所述环境光抑制电路用于抑制环境光所产生的光电流分量,避免该光电流分量导致跨阻放大器饱和;
所述包络检测电路用于将脉动的PPG电压信号转化为连续的PPG电压信号;
所述低通滤波器采用Gm-C滤波器,无需片外器件,实现片上极低截止频率;
所述次级放大器用于对连续的PPG电压信号进行放大并使其带有高通特性;
所述驱动增强器采用单位增益放大器,增强输出级的驱动能力。
优选地,所述LED驱动电路模块采用基于电流镜的电流输出电路,所述基于电流镜的电流输出电路的峰值电流大小为可调节,分辨率为3比特;开关控制电流通断,工作占空比低至1%。
优选地,所述偏置电流电压产生电路模块包括全集成的带隙基准电路和参考电流产生电路,分别用于产生偏置电压和纳安级别的偏置电流。
与现有技术相比,本发明具有如下有益效果:
本发明提供的基于CMOS集成电路技术的PPG信号采集芯片及装置,能够将光学模组通过光电转换输出的光电流信号转换成PPG电压信号输出;另外,还集成了用于驱动光学模组中的LED发光的LED驱动电路模块。本发明集成了LED驱动电路模块和模拟前端放大电路(AFE)模块,外围电路只再需一个集成LED和光电二极管的光学模组即可测量PPG信号。LED驱动电路模块可以通过不同占空比的PWM信号控制其工作占空比,用极低的占空比驱动LED使得LED的平均电流消耗极大地降低。模拟前端放大电路能抑制环境光引起的光电流分量,把脉冲的光电流转化成连续的电压并进行放大和滤波。本发明具有低功耗,低噪声,高灵敏度,高集成度等优势,适用于低功耗可穿戴设备中PPG信号的连续测量。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是本发明所提供的基于CMOS集成电路技术的低功耗PPG脉搏波采集装置的结构框图;
图2是本发明芯片中模拟前端放大电路模块的原理图;
图3是本发明芯片中LED驱动电路模块的原理图;
图4是本发明芯片中包络检测电路的原理图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明实施例提供了一种基于CMOS集成电路技术的低功耗PPG信号采集芯片,包括芯片级集成的如下模块:
-模拟前端放大电路模块,所述模拟前端放大电路模块用于将光电二极管输出的微弱的脉动的光电流信号转化为连续的PPG电压信号并进行放大和滤波后输出;
-LED驱动电路模块,所述LED驱动电路模块提供一路脉动LED灌电流输出,输出电流的最大值和占空比均可通过数字端口调节;
-偏置电流电压产生电路模块,所述偏置电流电压产生电路模块用于产生片上的偏置电压和偏置电流,无需额外的器件和片外的偏置电路,提高集成度。
进一步地,所述模拟前端放大电路模块包括集成的跨阻放大器、环境光抑制电路、包络检测电路、低通滤波器、次级放大电路及驱动增强电路;其中:
所述跨阻放大器用于将光电二极管输出的脉动的光电流信号转化为脉动的PPG电压信号并进行信号放大;
所述环境光抑制电路用于抑制环境光所产生的光电流分量,避免该光电流分量导致跨阻放大器饱和;
所述包络检测电路用于将脉动的PPG电压信号转化为连续的PPG电压信号;
所述低通滤波器采用Gm-C滤波器,无需片外器件,实现片上极低截止频率;
所述次级放大电路用于对连续的PPG电压信号进行放大并使其带有高通特性;
所述驱动增强电路采用单位增益放大器,增强输出级的驱动能力。
进一步地,所述LED驱动电路模块采用基于电流镜的电流输出电路,所述基于电流镜的电流输出电路的峰值电流大小为可调节,分辨率为3比特;开关控制电流通断,工作占空比低至1%。
进一步地,所述偏置电流电压产生电路模块包括全集成的带隙基准电路和参考电流产生电路,分别用于产生偏置电压和纳安级别的偏置电流。
本发明实施例同时提供了一种基于CMOS集成电路技术的低功耗PPG信号采集装置,包括上述的采集芯片以及作为外围电路的光学模组;所述光学模组包括集成的LED和光电二极管,其中:
所述LED用于发光照射人体组织;
所述光电二极管用于将检测到的经人体组织吸收后反射出来的光强信息转化成微弱的脉动的光电流信号。
下面结合附图对本发明上述实施例所提供的技术方案进一步详细描述。
请先参阅图1,图1是本实施例所提供的基于CMOS集成电路技术的低功耗PPG信号采集装置的结构框图。其中,芯片部分集成了模拟前端放大电路模块(AFE)和LED驱动电路模块(LED driver)。LED驱动电路模块控制LED发光,照射人体组织,由于人体血管内的血液容积会随心脏搏动发生周期性变化,从而对光的吸收能力也发生变化,借助光电二极管能够把检测到的经人体组织吸收后反射出来的光强信息转化成光电流信号,模拟前端放大电路模块能把光电流转化成PPG电压信号并进行放大和滤波。这样得到的PPG电压信号能反映心脏搏动产生的脉搏信息。
上述实施例中的模拟前端放大电路模块,其具体原理图如图2所示。整个电路分为四级:跨阻放大器组件(TIA)、低通滤波器(LPF)、后放大器(PA)(次级放大器)和驱动增强器(buffer)。
其中:
跨阻放大器组件(TIA)包含了跨阻放大器、环境光抑制电路和包络检测电路。
跨阻放大器包括:运算放大器OTA1、电阻Rf和电容Cf,其中:OTA1的反相输入端连接光电二极管的阴极,接收光电流,OTA1的同相输入端连接直流共模电平,OTA1、Cf和Rf并联组成电压-电流负反馈电路。
包络检测电路包括:包络检测模块Env Detector,其中:Env Detector输入端连接跨阻放大器的运算放大器OTA1的输出端,把脉动的PPG电压信号转换为连续的PPG电压信号。
环境光抑制电路包括:运算放大器EA、电阻Rprst、电阻Rp2、电容CC和晶体管Mctrl,其中:EA、CC、Rp2连接成有源积分器,Rprst与Rp2并联,用于电路复位;环境光抑制电路的输入端连接包络检测电路的包络检测模块Env Detector的输出端,EA的输出端连接Mctrl的栅极,驱动Mctrl产生漏极电流以抵消光电流的环境光分量。
低通滤波器包括:跨导单元Gm和电容Cm,其中:Gm的输出端与反相输入端相连,连接成单位增益放大器,Cm的两端分别与Gm的输出端和地相连,Gm和Cm组成有源低通滤波器。
次级放大器包括:电容C1、电容C2、电阻Rp3、电阻Rrst和运算放大器OTA2,其中:OTA2、C1和C2连接成电压-电压负反馈电路,Rp3连接到OTA2的反相输入端和输出端之间,提供直流偏置,Rrst与Rp3并联,用于电路的复位。
驱动增强器采用单位增益放大器,用于驱动后续电路。
其工作原理为:
运算放大器OTA1和电阻Rf组成了基本的跨阻放大器,阻抗增益由Rf决定,电容Cf用于频率补偿。由于输入的光电流是脉动的,当LED亮时,光电流从光电二极管D1的阴极流向阳极,OTA1输出电压信号;当LED熄灭时,光电流为零,OTA1输出电压降低。包络检测电路(EnvDetector)的输出电压能追随输入电压变化而变化,但电压升高时能迅速跟随,输入电压降低时输出电压下降很慢,具体实现电路如图4所示。输入电压升高时,电路通过晶体管M6对电容Ch进行快速充电,使输出电压迅速提升;当输入电压下降时,电路通过晶体管Mdis对电容Ch放电,通过控制放电电流的大小就能控制输出电压下降的速度。经过包络检测电路,脉动的PPG电压信号被转化为连续的PPG电压信号。由于光电流的直流分量是交流分量的几十到一百倍,所以为了避免OTA1饱和,直流分量需要通过环境光抑制电路(一种直流消除回路)加以抑制。当光电流增大时,包络检测电路输出电压增高,误差放大器(EA)的反相输入端电压增高,输出电压降低,晶体管Mctrl漏极电流增加,与光电流抵消,使得流经Rf的电流减小,避免OTA1饱和。具体地,Rf取值约为1.2MΩ从而TIA的阻抗增益约为122dBΩ,电阻Rp2采用虚拟电阻实现,从而在芯片上用较小的面积实现几百G欧姆的电阻,也为环境光抑制电路引入小于0.5Hz的极点(PPG电压信号频带为0.5-4Hz),使得回路只会对小于0.5Hz的光电流进行抑制,有用信号正常地通过TIA放大。
低通滤波器采用Gm-C架构,如图2中LPF所示,从而在输出端实现大小为Gm/Cm的极点。其中跨导单元Gm采用Serial-Parallel(SP)架构实现极小的跨导,从而使得电容Cm能片上集成。具体地,该低通滤波器3dB频率约为20Hz,能很好地滤除高频,特别是LED脉动频率的噪声。
后放大器(即次级放大器)用电容C1、C2和运算放大器OTA2搭建了电压放大器,并具有高通特性,能进一步对低频噪声进行抑制。电阻Rp3用来稳定电路的直流点,电压增益为C1/C2,高通3dB频率为1/2πRp3C2。由于高通3dB频率也需要小于0.5Hz,所以Rp3为虚拟电阻。具体地,该电压增益为20dB,所以整个模拟前端放大电路(AFE)阻抗增益为142dBΩ,高阻抗增益使得本装置的芯片部分能检测更微弱的光电流,从而降低了LED所需的驱动电流。
驱动增强器为单位增益放大器,用于驱动后续电路,如ADC。
上述实施例中的LED驱动电路模块具体原理图如图3所示,整个模块以电流镜为基础。晶体管M5为开关,用于控制整个模块是否工作。电阻RS与晶体管M1用于产生基准电流,经过两级放大最终从端口Iout输出。晶体管M6~M9组成二进制权重的电流源阵列,即M9=2M8=4M7=8M6。再通过数字输入信号SW0~SW2控制开关晶体管M10~M12,能实现输出电流的峰值大小3比特精度可调。
综上所述,本发明上述实施例所提供的基于CMOS集成电路技术的PPG信号采集芯片及装置,集成了模拟前端放大电路模块、LED驱动电路模块、偏置电流电压产生电路模块,集成度高且可用CMOS工艺生产;装置通过使LED以极低占空比工作,大大降低LED平均功耗,同时增大模拟前端放大电路模块的阻抗增益,使检测电路能检测极微弱的光电流,从而降低LED所需的峰值电流,本发明上述实施例整体平均电流消耗小于50μA。在电路细节上,模拟前端放大电路模块采用亚阈值电路设计,大部分晶体管工作在亚阈值区,使得电路功耗进一步降低;同时,采用虚拟电阻实现片上大电阻,实现极低频的极点,避免使用片外电阻或电容,提高集成度。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括本发明的专利保护方位内。

Claims (10)

1.一种基于CMOS集成电路技术的PPG信号采集芯片,其特征在于,包括芯片级集成的如下模块:
-模拟前端放大电路模块,所述模拟前端放大电路模块用于将脉动的光电流信号转化为连续的PPG电压信号并进行放大和滤波后输出;
-LED驱动电路模块,所述LED驱动电路模块用于提供一路脉动LED灌电流输出,其中输出电流的最大值和占空比均能够调节;
-偏置电流电压产生电路模块,所述偏置电流电压产生电路模块用于产生片上的偏置电压和偏置电流。
2.根据权利要求1所述的基于CMOS集成电路技术的PPG信号采集芯片,其特征在于,所述模拟前端放大电路模块包括集成的跨阻放大器、环境光抑制电路、包络检测电路、低通滤波器、次级放大器及驱动增强器;其中:
所述跨阻放大器用于将光电二极管输出的光电流信号转化为脉动的PPG电压信号并进行信号放大;
所述环境光抑制电路用于抑制环境光所产生的光电流分量;
所述包络检测电路用于将脉动的PPG电压信号转化为连续的PPG电压信号;
所述低通滤波器用于实现片上极低截止频率;
所述次级放大器用于对连续的PPG电压信号进行放大并使其带有高通特性;
所述驱动增强器用于增强输出级的驱动能力。
3.根据权利要求2所述的基于CMOS集成电路技术的PPG信号采集芯片,其特征在于,所述跨阻放大器包括:运算放大器OTA1、电阻Rf和电容Cf,其中:OTA1的反相输入端连接光电二极管的阴极,接收光电流,OTA1的同相输入端连接直流共模电平,OTA1、Cf和Rf并联组成电压-电流负反馈电路。
4.根据权利要求2所述的基于CMOS集成电路技术的PPG信号采集芯片,其特征在于,所述包络检测电路包括:包络检测模块Env Detector,其中:Env Detector输入端连接跨阻放大器的运算放大器OTA1的输出端,把脉动的PPG电压信号转换为连续的PPG电压信号。
5.根据权利要求2所述的基于CMOS集成电路技术的PPG信号采集芯片,其特征在于,所述环境光抑制电路包括:运算放大器EA、电阻Rprst、电阻Rp2、电容CC和晶体管Mctrl,其中:EA、CC、Rp2连接成有源积分器,Rprst与Rp2并联,用于电路复位;环境光抑制电路的输入端连接包络检测电路的包络检测模块Env Detector的输出端,EA的输出端连接Mctrl的栅极,驱动Mctrl产生漏极电流以抵消光电流的环境光分量。
6.根据权利要求2所述的基于CMOS集成电路技术的PPG信号采集芯片,其特征在于,所述低通滤波器包括:跨导单元Gm和电容Cm,其中:Gm的输出端与反相输入端相连,连接成单位增益放大器,Cm的两端分别与Gm的输出端和地相连,Gm和Cm组成有源低通滤波器。
7.根据权利要求2所述的基于CMOS集成电路技术的PPG信号采集芯片,其特征在于,所述次级放大器包括:电容C1、电容C2、电阻Rp3、电阻Rrst和运算放大器OTA2,其中:OTA2、C1和C2连接成电压-电压负反馈电路,Rp3连接到OTA2的反相输入端和输出端之间,提供直流偏置,Rrst与Rp3并联,用于电路的复位。
8.根据权利要求2所述的基于CMOS集成电路技术的PPG信号采集芯片,其特征在于,所述驱动增强器采用单位增益放大器,用于驱动后续电路。
9.根据权利要求1所述的基于CMOS集成电路技术的PPG信号采集芯片,其特征在于,所述LED驱动电路模块采用基于电流镜的电流输出电路,所述基于电流镜的电流输出电路的峰值电流大小为可调节,分辨率为3比特;开关控制电流通断,工作占空比低至1%;
和/或
所述偏置电流电压产生电路模块包括全集成的带隙基准电路和参考电流产生电路,分别用于产生偏置电压和纳安级别的偏置电流。
10.一种基于CMOS集成电路技术的PPG信号采集装置,其特征在于,包括权利要求1至9中任一项所述的采集芯片以及作为外围电路的光学模组;
所述光学模组包括集成的LED和光电二极管,其中:
所述LED用于发光照射人体组织;
所述光电二极管用于将检测到的经人体组织吸收后反射出来的光强信息转化成脉动的光电流信号。
CN201910622535.5A 2019-07-11 2019-07-11 基于cmos集成电路技术的ppg信号采集芯片及装置 Active CN110338776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910622535.5A CN110338776B (zh) 2019-07-11 2019-07-11 基于cmos集成电路技术的ppg信号采集芯片及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910622535.5A CN110338776B (zh) 2019-07-11 2019-07-11 基于cmos集成电路技术的ppg信号采集芯片及装置

Publications (2)

Publication Number Publication Date
CN110338776A true CN110338776A (zh) 2019-10-18
CN110338776B CN110338776B (zh) 2022-04-01

Family

ID=68175810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910622535.5A Active CN110338776B (zh) 2019-07-11 2019-07-11 基于cmos集成电路技术的ppg信号采集芯片及装置

Country Status (1)

Country Link
CN (1) CN110338776B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112842312A (zh) * 2021-02-01 2021-05-28 上海交通大学 心率传感器及其自适应心跳锁环系统和方法
US20220007953A1 (en) * 2020-07-10 2022-01-13 Samsung Electronics Co., Ltd. Photoplethysmography sensor and semiconductor device including the same
CN115083097A (zh) * 2022-06-09 2022-09-20 南京英锐创电子科技有限公司 模拟前端电路和烟雾报警器
CN116260402A (zh) * 2023-02-16 2023-06-13 北京泽声科技有限公司 光电检测电路
WO2024021651A1 (zh) * 2022-07-29 2024-02-01 普源精电科技股份有限公司 模拟前端芯片和示波器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101351152A (zh) * 2005-12-28 2009-01-21 尼伦简·比科 呼吸生物反馈装置
CN101732050A (zh) * 2009-12-04 2010-06-16 西安交通大学 一种基于光电容积波的呼吸率监测方法
CN102076151A (zh) * 2011-01-10 2011-05-25 杭州矽力杰半导体技术有限公司 一种高效率的led驱动电路和驱动方法
CN105491943A (zh) * 2014-06-30 2016-04-13 皇家飞利浦有限公司 光电容积脉搏波传感器装置和方法
CN105832289A (zh) * 2015-01-30 2016-08-10 三星电子株式会社 用于使用希尔伯特变换估计生物生理速率的设备和方法
CN106209255A (zh) * 2016-06-16 2016-12-07 青岛海信宽带多媒体技术有限公司 光模块及其激光器偏置电路功率控制方法
US20170099711A1 (en) * 2015-10-02 2017-04-06 Texas Instruments Incorporated Transmitter Architecture for Photoplethysmography Systems
CN106817099A (zh) * 2017-04-06 2017-06-09 高科创芯(北京)科技有限公司 用于生理电势信号检测的放大器
CN108652605A (zh) * 2018-03-27 2018-10-16 上海交通大学 基于单路ppg信号的实时血压监测装置
CN109962871A (zh) * 2019-03-28 2019-07-02 四川中微芯成科技有限公司 Ask调幅信号包络检测系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101351152A (zh) * 2005-12-28 2009-01-21 尼伦简·比科 呼吸生物反馈装置
CN101732050A (zh) * 2009-12-04 2010-06-16 西安交通大学 一种基于光电容积波的呼吸率监测方法
CN102076151A (zh) * 2011-01-10 2011-05-25 杭州矽力杰半导体技术有限公司 一种高效率的led驱动电路和驱动方法
CN105491943A (zh) * 2014-06-30 2016-04-13 皇家飞利浦有限公司 光电容积脉搏波传感器装置和方法
CN105832289A (zh) * 2015-01-30 2016-08-10 三星电子株式会社 用于使用希尔伯特变换估计生物生理速率的设备和方法
US20170099711A1 (en) * 2015-10-02 2017-04-06 Texas Instruments Incorporated Transmitter Architecture for Photoplethysmography Systems
CN106209255A (zh) * 2016-06-16 2016-12-07 青岛海信宽带多媒体技术有限公司 光模块及其激光器偏置电路功率控制方法
CN106817099A (zh) * 2017-04-06 2017-06-09 高科创芯(北京)科技有限公司 用于生理电势信号检测的放大器
CN108652605A (zh) * 2018-03-27 2018-10-16 上海交通大学 基于单路ppg信号的实时血压监测装置
CN109962871A (zh) * 2019-03-28 2019-07-02 四川中微芯成科技有限公司 Ask调幅信号包络检测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHAMED等: "A Fully Integrated High-Sensitivity Wide Dynamic Range PPG Sensor With an Integrated Photodiode and an Automatic Dimming Control LED Driver", 《IEEE SENSORS JOURNAL》 *
黎圣峰: "便携式血氧信号检测装置设计", 《传感器与微系统》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220007953A1 (en) * 2020-07-10 2022-01-13 Samsung Electronics Co., Ltd. Photoplethysmography sensor and semiconductor device including the same
CN112842312A (zh) * 2021-02-01 2021-05-28 上海交通大学 心率传感器及其自适应心跳锁环系统和方法
CN112842312B (zh) * 2021-02-01 2022-03-08 上海交通大学 心率传感器及其自适应心跳锁环系统和方法
CN115083097A (zh) * 2022-06-09 2022-09-20 南京英锐创电子科技有限公司 模拟前端电路和烟雾报警器
WO2024021651A1 (zh) * 2022-07-29 2024-02-01 普源精电科技股份有限公司 模拟前端芯片和示波器
CN116260402A (zh) * 2023-02-16 2023-06-13 北京泽声科技有限公司 光电检测电路

Also Published As

Publication number Publication date
CN110338776B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN110338776A (zh) 基于cmos集成电路技术的ppg信号采集芯片及装置
CN108245174B (zh) 一种反射式光电容积波的模拟电路前端模块及检测方法
KR101701560B1 (ko) 포토다이오드들에 대한 회로 아키텍처
Wong et al. A low-power CMOS front-end for photoplethysmographic signal acquisition with robust DC photocurrent rejection
JPH01135330A (ja) 脈拍酸素計システム
Lin et al. Low-power high-sensitivity photoplethysmography sensor for wearable health monitoring system
CN110650684B (zh) 用于光学监测系统的电路装置和用于光学监测的方法
CN108652605A (zh) 基于单路ppg信号的实时血压监测装置
JP2020527402A (ja) 健康管理装置
CN106419880A (zh) 穿戴式血压监测装置
CN204408278U (zh) 一种医用光电检测前置放大电路
CN206630605U (zh) 穿戴式血压监测装置
CN115153530A (zh) 采样电路、生物特征识别装置以及电子设备
JP2023052921A (ja) 生理学的変化を測定するためのフォトプレチスモグラフィ(ppg)装置および方法
Jung et al. 28.2 A 400-to-1000nm 24μ W monolithic PPG sensor with 0.3 A/W spectral responsivity for miniature wearables
WO2017113909A1 (zh) 一种利用光电方式检测人体心率的集成芯片
Lin et al. Photoplethysmography (PPG) sensor circuit design techniques
JP3208538B2 (ja) 光電容積脈波計
CN215305855U (zh) 一种心率监测装置
CN206777308U (zh) 可穿戴式生物信号采集装置
US20220071500A1 (en) Adaptive Light Sensor
CN201912089U (zh) 具有显示界面自动多方向切换功能的指夹式脉搏血氧仪
Zhang et al. A fully differential PPG readout amplifier with a reconfigurable bandwidth for power minimization
CN114224302A (zh) 一种多生理参数信号单通道同步采集装置
Budidha et al. Photoplethysmography technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210506

Address after: 214 000 999-8-d2-801-802, gaolang East Road, Wuxi City, Jiangsu Province

Applicant after: Wuxi Jintong Technology Co.,Ltd.

Address before: 226000 No. 500, Linyang Road, Qidong Economic Development Zone, Nantong City, Jiangsu Province

Applicant before: Qidong zhimicroelectronics Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant