CN110333484A - 基于环境背景声感知与分析的室内区域级定位方法 - Google Patents

基于环境背景声感知与分析的室内区域级定位方法 Download PDF

Info

Publication number
CN110333484A
CN110333484A CN201910633671.4A CN201910633671A CN110333484A CN 110333484 A CN110333484 A CN 110333484A CN 201910633671 A CN201910633671 A CN 201910633671A CN 110333484 A CN110333484 A CN 110333484A
Authority
CN
China
Prior art keywords
sound
interior space
audio
low order
rbf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910633671.4A
Other languages
English (en)
Other versions
CN110333484B (zh
Inventor
宋浠瑜
王玫
仇洪冰
罗丽燕
闵梓易
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201910633671.4A priority Critical patent/CN110333484B/zh
Publication of CN110333484A publication Critical patent/CN110333484A/zh
Application granted granted Critical
Publication of CN110333484B publication Critical patent/CN110333484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/04Training, enrolment or model building
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/18Artificial neural networks; Connectionist approaches

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明一种基于环境背景声感知与分析的室内区域级定位方法,首先通过智能手机麦克风感知室内各区域的环境背景声,并进行预处理;然后提取声信号的低阶声学指纹;其次,通过K均值聚类算法,结合房间几何轮廓信息先验,构建室内空间码本集,并获取声信号的高阶声学指纹;最后,将高阶声学指纹作为径向基函数核逆向传播神经网络的输入,经过线下训练,线上测试验证,输出用户位置信息。该方法由于引入了室内空间码本集,充分利用室内空间低阶声学指纹的多样性,能提高定位系统的准确率,同时由于引入了高阶声学指纹,充分利用室内空间声学特征的统计特性,提高了定位系统的稳定性,满足实时室内定位解决方案的性能要求。

Description

基于环境背景声感知与分析的室内区域级定位方法
技术领域
本发明涉及室内定位领域,具体是一种基于环境背景声感知与分析的室内区域级定位方法。
背景技术
随着全球定位系统(GPS)和北斗导航系统(BD)的广泛应用,室内空间定位问题已基本解决,而室内空间的感知和定位还没有通用的解决方案,如何在强噪声、强混响和多源环境下进行场景辨识和感兴趣目标定位已经成为各种智能交互与通信系统所关注的共性焦点问题。
实用的室内定位解决方案需要满足精度、覆盖范围、可靠性、成本、功耗、可扩展性和响应时间等方面的需求,基于手机平台的室内环境感知解决方案是最具潜力的发展方向。近年来,国内外研究者们提出了蓝牙、RFID、WLAN、超宽带、光、图像等室内定位技术及应用系统,通过用户携带的智能手机自动感知一个未知房间的环境特性,如声、色彩、光、wifi强度,惯性传感器等信息,同时将感知到的信息发送到云端服务器,经过数据处理,形成测试指纹,并与存储的指纹库进行比对,最模型的某一个指纹对应的逻辑地址就是用户的位置。此类研究的商用模式以WiFi室内定位为典型代表,但是,由于室内环境复杂,障碍物较多,再加上人员流动和各种噪声干扰等不确定因素,WiFi信号强度十分不稳定,因此,WiFi室内定位精度通常在5m左右,通过对WiFi信号强度值进行一些数据预处理操作,可以在一定程度上降低其定位误差,但由于室内多点的WiFi信号强度一样,且WiFi指纹数据库的细粒度有限,单纯以WiFi信号强度值作为指纹特征,难以满足较高的定位要求。相对WiFi信号而言,地磁场是自然形成的,无所不在,只要室内建筑结构不发生大的改变,地磁信号的分布就相对稳定,但是,很多非墙壁、非电梯、非机房等室内空间,相邻区域的地磁信号区分度不大,因此,仅依靠地磁信息的室内定位精度通常为房间级。
由于声学信号的频率较低,数字化等数据处理相对容易,且无需附加硬件处理设备,用手机等智能终端就可以进行信号的预处理(如:门限阈值判断等),因此,近年来,随着人工智能、大数据、物联网、语音处理与识别等技术的飞速发展,智能语音交互产业规模快速增长,无论学业术界或是产业界都将大量的研究成本投入在声场有用信号,如语音信号、音乐信号的研究当中。大量研究文献提出利用声信号的时域、频域或时频特征,结合深度学习神经网络解决用户位置服务需求。然而,随着经济的快速增长,手机用户应用需求也在快速增长,因此,基于多维度组合特征的高量级信息流必然导致深度学习神经网络的结构设计更加复杂,从而导致运算量增加,用户的实时(准实时)位置服务体验变差。
发明内容
在充分考虑上述定位精度与模型实现复杂度的情况下,本发明提出了一种基于环境背景声感知与分析的室内区域级定位方法。该方法由于引入了室内空间码本集,充分利用室内空间低阶声学指纹的多样性,能提高定位系统的准确率,同时由于引入了高阶声学指纹,充分利用室内空间声学特征的统计特性,提高了定位系统的稳定性,满足实时室内定位解决方案的性能要求。
实现本发明目的的技术方案是:
一种基于环境背景声感知与分析的室内区域级定位方法,包括如下步骤:
(1)通过智能手机麦克风感知室内各区域的环境背景声,并进行预处理;
(2)基于环境声的听觉感知与自动识别理论及方法,提取声信号的低阶声学指纹特征;
(3)通过K均值聚类算法,结合房间几何轮廓信息先验,构建室内空间码本集,并获取声信号的高阶声学指纹;
(4)将高阶声学指纹作为径向基函数核逆向传播神经网络的输入,经过经下训练、线上测试验证,输出用户位置信息。
步骤(1)所述室内各区域环境背景声的预处理的方法是:
利用智能手机麦克风录制室内环境背景声音频,若音频采样频率为,每段音频时长均为秒,对音频进行分帧,每帧的样点长度为,帧间重叠率为,则每段音频的样点长度为,帧数为,然后通过加窗函数,使时域信号能更好地满足离散傅里叶变换处理的周期性要求,减少频谱泄漏。
步骤(2)所述低阶声学指纹特征的提取方法是:
基于环境声的听觉感知与自动识别理论和方法,以心理声学特征的谱域表示作为室内环境背景声音频信号的低阶声学指纹,采用对音色变化鲁棒的chromagram表征环境声的音调属性,反映声能的变化,同时采用sonogram表征环境声的响度属性,反映环境声的强度变化及其频率分布,用spectrogram表征环境声的时频特性。因此,对于每段时长为秒的环境音频信号而言,其低阶声学指纹的结构为,对该结构进行如步骤一所述预处理,可以得到帧数据向量,形成低阶声学指纹特征
其中表示的第帧数据向量。由于低阶声学指纹结构既反映了环境背景声音频信号的时频域特性,又从心理声学角度反映了人类听觉系统对声音主要的主观听觉感知特性,因此,该结构的选取能够提高定位系统的准确率。
步骤(3)所述室内空间码本集的构建与高阶声学指纹特征的提取方法,包括如下步骤:
1)室内空间码本集的构建
对于任一室内环境,将其划分为个子区域,在离线采集环境背景声阶段,每个子区域采集N段音频样本,对每一子区域进行簇指纹的计算,从而形成该室内空间码本集,在线下采集环境背景声阶段,采集人员无需人为地对每段采集音频进行区域号标注,通过对音频样本进行物理空间与分簇空间的匹配,可以实现音频样本区域号的自动化标注,即:区域号=分簇号;
对任一段时长为秒的环境音频信号进行计算,则可以得到低阶声学指纹特征,帧数为,那么对于一个室内空间的段音频样本而言,可以得到帧数据向量,对这帧数据向量进行K-means聚类,分簇数量设为,则可得到室内空间码本集 ,其中表示各簇心向量,下标为房间号;
(2)高阶声学指纹特征的提取
对任一段时长为秒的环境音频信号而言,由于其帧数通常较大,以帧为研究对象,分析该段环境音频信号所对应位置信息的概率密度分布,高阶声学指纹特征的计算过程如下所示:
利用室内空间码本集,寻找与每帧数据向量最接近的簇心向量,并返回分簇号
计算低阶声学指纹特征对应的码本向量
基于码本向量的统计特性,计算高阶声学指纹特征
其中,是克罗内克函数,即:
步骤(4)所述将高阶声学指纹作为径向基函数核逆向传播神经网络的输入,经过经下训练、线上测试验证,输出用户位置信息的方法是通过RBF-BP神经网络识别用户位置(房间号及区域号),其过程分为两个阶段:
第一阶段是信号的前向传播,从输入层经过隐含层,到达输出层;
第二阶段是误差的反向传播,从输出层经过隐含层,到达输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置;
以RBF作为隐藏层激活函数的BP模型,模拟室内环境用户位置感知系统,RBF为径向基函数,其表达式为:
其中,是作为输入样本的高阶声学指纹,是作为中心样本的高阶声学指纹样本均值,是RBF作用范围的宽度参数;
当RBF-BP网络第次迭代时,输出的位置信息估计值为,真实值为,即,其中分别表示第次输出的房间号估计值与真实值,分别表示第次输出的该房间内子区域号估计值与真实值,那么第次输出的估计值与真实值的均方误差(mean-square error, MSE)可表示为:
以最速下降法为例更新BP网络的输出层与隐藏层之间的权重参数
其中,分别表示第次和第次网络迭代后输出层与隐藏层之间的权重参数,为RBF-BP网络学习速度,可分解为:
是purelin函数
,其中为RBF基函数个数
根据上述第和第步,可以得到:
其中,
本发明的优点是:
本发明提出的一种在室内环境中快速准确实现室内区域级定位的方法,充分利用环境声的听觉感知与自动识别的研究成果,结合房间几何轮廓信息先验(形状与尺寸),构建室内空间码本集,充分利用了室内空间低阶声学指纹的多样性,提高定位系统的准确率。同时,由于引入了高阶声学指纹,充分利用室内空间声学特征的统计特性,提高定位系统的稳定性。更重要的是,将K-means聚类方法应用于室内空间码本集构建的过程,实现音频样本区域号的自动化标注,解决了线下音频采集耗时耗力的问题。
附图说明
图1为基于环境背景声感知与分析的室内区域级定位系统框架图;
图2为实施例 10s室内环境背景声的归一化chroma gram示意图;
图3为实施例 10s室内环境背景声的sonogram示意图;
图4为实施例 10s室内环境背景声的spectrogram示意图;
图5为实施例 音频样本物理空间与分簇空间的匹配示意图;
图6为实施例 基于RBF-BP神经网络的室内环境用户位置感知系统示意图;
图7为实施例 RBF参数(中心样本和宽度参数)示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的阐述,但不是对本发明内容的限定。
实施例:
如图1所示,本发明一种基于环境背景声感知与分析的室内区域级定位方法,首先通过智能手机麦克风感知室内各区域的环境背景声,并进行预处理(步骤1);然后,基于环境声的听觉感知与自动识别理论及方法,提取声信号的低阶声学指纹(步骤2);其次,通过K均值聚类算法,结合房间几何轮廓信息先验(形状与尺寸),构建室内空间码本集,并获取声信号的高阶声学指纹(步骤3);最后,将高阶声学指纹作为径向基函数核(Radial BasisFunction, RBF kernel) 逆向传播(Back propagation, BP)神经网络(RBF-BP)的输入,经过经下训练,线上测试验证,输出用户位置信息(房间号+区域号)(步骤4)。系统各步骤具体的信号处理过程如下:
步骤1. 室内各区域环境背景声的感知与预处理:利用智能手机麦克风录制室内环境背景声音频,若音频采样频率为,每段音频时长均为秒,对音频进行分帧,每帧的样点长度为,帧间重叠率为,则每段音频的样点长度为,帧数为,然后通过加窗函数,使时域信号能更好地满足离散傅里叶变换处理的周期性要求,减少频谱泄漏。
步骤2. 低阶声学指纹特征的提取:当声波作用于人类听觉系统形成声音的听觉后,音调、音色、响度是人对声音主要的主观听觉属性。由于人耳的听觉系统具备将原始音频从时域转化到频域的能力。因此,我们基于环境声的听觉感知与自动识别理论及方法,以心理声学特征的谱域表示作为室内环境背景声音频信号的低阶声学指纹:采用对音色变化鲁棒的chromagram,表征环境声的音调属性,反映声能的变化,如图2所示;采用sonogram,表征环境声的响度属性,反映环境声的强度变化及其频率分布,如图3所示;采用spectrogram,表征环境声的时频特性,如图4所示。
因此,对于每段时长为秒的环境音频信号而言,其低阶声学指纹的结构为,对该结构进行如步骤一所述预处理,可以得到帧数据向量,形成低阶声学指纹特征
其中表示的第帧数据向量。由于低阶声学指纹结构既反映了环境背景声音频信号的时频域特性,又从心理声学角度反映了人类听觉系统对声音主要的主观听觉感知特性,因此,该结构的选取能够提高定位系统的准确率。
步骤3. 室内空间码本集的构建与高阶声学指纹特征的提取:
(1)室内空间码本集的构建
对于任一室内环境,我们将其划分为个子区域,在离线采集环境背景声阶段,每个子区域采集N段音频样本,样本的采样频率、时长等相关参数如步骤一所述。我们需要对每一子区域进行簇指纹的计算,从而形成该室内空间码本集。聚类算法是实现该功能的优选。K-means算法作为目标函数聚类方法的代表,在本发明专利中被应用于室内空间码本集的生成,其优势体现在:解决了线下音频采集的耗时耗力问题。在线下采集环境背景声阶段,采集人员无需人为地对每段采集音频进行区域号标注,因为利用K-means聚类算法,结合房间几何轮廓信息先验(形状与尺寸),通过对音频样本进行物理空间与分簇空间的匹配(如图5所示),可以实现音频样本区域号的自动化标注,即:区域号=分簇号。
如果对任一段时长为秒的环境音频信号,进行如步骤一与步骤二所述计算,则可以得到低阶声学指纹特征,帧数为,那么对于一个室内空间的段音频样本而言,可以得到帧数据向量。对这帧数据向量进行K-means聚类,分簇数量设为,则可得到室内空间码本集 ,其中表示各簇心向量,下标为房间号。
(2)高阶声学指纹特征的提取
对任一段时长为秒的环境音频信号而言,由于其帧数通常较大,以帧为研究对象,分析该段环境音频信号所对应位置信息的概率密度分布,具有统计意义。因而,即使环境音频信号的某帧数据被噪声或干扰信号所污染,丢失了其对应的位置信息,也不会影响整段音频信号的分布特性。由此可见,高阶声学指纹特征有利于提高定位系统的稳定性。高阶声学指纹特征的计算过程如下所示:
利用室内空间码本集,寻找与每帧数据向量最接近的簇心向量,并返回分簇号
计算低阶声学指纹特征对应的码本向量
基于码本向量的统计特性,计算高阶声学指纹特征
其中,是克罗内克函数,即:
步骤4. 基于RBF-BP神经网络识别用户位置(房间号+区域号):
BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置。
本发明专利基于上述BP神经网络的功能描述,综合考虑定位过程的时间成本与计算复杂度因素,采用只含一个隐藏层,并以RBF作为隐藏层激活函数的BP模型,模拟室内环境用户位置感知系统,如图6所示。
RBF径向基函数,通常定义为样本到数据中心之间径向距离(通常是欧氏距离)的单调函数(由于距离是径向同性的),其表达式为:
其中,是作为输入样本的高阶声学指纹,是作为中心样本的高阶声学指纹样本均值,是RBF作用范围的宽度参数,如图7所示。
选择RBF作为隐藏层激活函数的优势在于:可以实现输入层神经元与隐藏层神经元的非权连接,即可以将输入矢量直接(不通过权连接)映射到隐空间。因此,对于每次输入,由于网络上的每一个权值不需要全部调整(只需要调整输出层与隐藏层之间的权重),避免了网络学习速度慢的现象。相关理论己经证明,具有足够多隐藏层神经元的RBF网络能以任意精度逼近任意连续函数。对于标准RBF网络而言,隐藏层神经元个数等于输入节神经元个数。
假设RBF-BP网络第次迭代时,输出的位置信息估计值为,真实值为,即,其中分别表示第次输出的房间号估计值与真实值,分别表示第次输出的该房间内子区域号估计值与真实值,那么第次输出的估计值与真实值的均方误差(mean-square error, MSE)可表示为:
以最速下降法为例更新BP网络的输出层与隐藏层之间的权重参数
其中,分别表示第次和第次网络迭代后输出层与隐藏层之间的权重参数,为RBF-BP网络学习速度,可分解为:
是purelin函数
,其中为RBF基函数个数
根据上述第和第步,可以得到:
其中,

Claims (5)

1.一种基于环境背景声感知与分析的室内区域级定位方法,其特征是:包括如下步骤:
(1)通过智能手机麦克风感知室内各区域的环境背景声,并进行预处理;
(2)基于环境声的听觉感知与自动识别理论及方法,提取声信号的低阶声学指纹特征;
(3)通过K均值聚类算法,结合房间几何轮廓信息先验,构建室内空间码本集,并获取声信号的高阶声学指纹;
(4)将高阶声学指纹作为径向基函数核逆向传播神经网络的输入,经过经下训练、线上测试验证,输出用户位置信息。
2.根据权利要求1所述的室内区域级定位方法,其特征是:步骤(1)所述室内各区域环境背景声的预处理的方法是:
利用智能手机麦克风录制室内环境背景声音频,若音频采样频率为,每段音频时长均为秒,对音频进行分帧,每帧的样点长度为,帧间重叠率为,则每段音频的样点长度为,帧数为,然后通过加窗函数,使时域信号能更好地满足离散傅里叶变换处理的周期性要求,减少频谱泄漏。
3.根据权利要求1所述的室内区域级定位方法,其特征是:步骤(2)所述低阶声学指纹特征的提取方法是:
基于环境声的听觉感知与自动识别理论和方法,以心理声学特征的谱域表示作为室内环境背景声音频信号的低阶声学指纹,采用对音色变化鲁棒的chromagram表征环境声的音调属性,反映声能的变化,同时采用sonogram表征环境声的响度属性,反映环境声的强度变化及其频率分布,用spectrogram表征环境声的时频特性,因此,对于每段时长为秒的环境音频信号而言,其低阶声学指纹的结构为,对该结构进行如步骤一所述预处理,可以得到帧数据向量,形成低阶声学指纹特征
其中表示的第帧数据向量,由于低阶声学指纹结构既反映了环境背景声音频信号的时频域特性,又从心理声学角度反映了人类听觉系统对声音主要的主观听觉感知特性,因此,该结构的选取能够提高定位系统的准确率。
4. 根据权利要求1所述的室内区域级定位方法,其特征是:步骤(3)所述室内空间码本集的构建与高阶声学指纹特征的提取方法,包括如下步骤:
1)室内空间码本集的构建
对于任一室内环境,将其划分为个子区域,在离线采集环境背景声阶段,每个子区域采集N段音频样本,对每一子区域进行簇指纹的计算,从而形成该室内空间码本集,在线下采集环境背景声阶段,采集人员无需人为地对每段采集音频进行区域号标注,通过对音频样本进行物理空间与分簇空间的匹配,可以实现音频样本区域号的自动化标注,即:区域号=分簇号;
对任一段时长为秒的环境音频信号进行计算,则可以得到低阶声学指纹特征,帧数为,那么对于一个室内空间的段音频样本而言,可以得到帧数据向量,对这帧数据向量进行K-means聚类,分簇数量设为,则可得到室内空间码本集 ,其中表示各簇心向量,下标为房间号;
(2)高阶声学指纹特征的提取
对任一段时长为秒的环境音频信号而言,由于其帧数通常较大,以帧为研究对象,分析该段环境音频信号所对应位置信息的概率密度分布,高阶声学指纹特征的计算过程如下所示:
利用室内空间码本集,寻找与每帧数据向量最接近的簇心向量,并返回分簇号
计算低阶声学指纹特征对应的码本向量
基于码本向量的统计特性,计算高阶声学指纹特征
其中,是克罗内克函数,即:
5.根据权利要求1所述的室内区域级定位方法,其特征是:步骤(4)所述将高阶声学指纹作为径向基函数核逆向传播神经网络的输入,经过经下训练、线上测试验证,输出用户位置信息的方法是通过RBF-BP神经网络识别用户位置,其过程分为两个阶段:
第一阶段是信号的前向传播,从输入层经过隐含层,到达输出层;
第二阶段是误差的反向传播,从输出层经过隐含层,到达输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置;
以RBF作为隐藏层激活函数的BP模型,模拟室内环境用户位置感知系统,RBF为径向基函数,其表达式为:
其中,是作为输入样本的高阶声学指纹,是作为中心样本的高阶声学指纹样本均值,是RBF作用范围的宽度参数;
当RBF-BP网络第次迭代时,输出的位置信息估计值为,真实值为,即,其中分别表示第次输出的房间号估计值与真实值,分别表示第次输出的该房间内子区域号估计值与真实值,那么第次输出的估计值与真实值的均方误差(mean-square error, MSE)可表示为:
以最速下降法为例更新BP网络的输出层与隐藏层之间的权重参数
其中,分别表示第次和第次网络迭代后输出层与隐藏层之间的权重参数,为RBF-BP网络学习速度,可分解为:
是purelin函数
,其中为RBF基函数个数
根据上述第和第步,可以得到:
其中,
CN201910633671.4A 2019-07-15 2019-07-15 基于环境背景声感知与分析的室内区域级定位方法 Active CN110333484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910633671.4A CN110333484B (zh) 2019-07-15 2019-07-15 基于环境背景声感知与分析的室内区域级定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910633671.4A CN110333484B (zh) 2019-07-15 2019-07-15 基于环境背景声感知与分析的室内区域级定位方法

Publications (2)

Publication Number Publication Date
CN110333484A true CN110333484A (zh) 2019-10-15
CN110333484B CN110333484B (zh) 2021-04-13

Family

ID=68146771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910633671.4A Active CN110333484B (zh) 2019-07-15 2019-07-15 基于环境背景声感知与分析的室内区域级定位方法

Country Status (1)

Country Link
CN (1) CN110333484B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693139A (zh) * 2020-06-19 2020-09-22 浙江讯飞智能科技有限公司 声音强度测量方法、装置、设备及存储介质
CN111948606A (zh) * 2020-08-12 2020-11-17 中国计量大学 一种基于uwb/蓝牙同步的声音定位系统及定位方法
CN117872269A (zh) * 2024-03-13 2024-04-12 电子科技大学 一种自适应数据处理的高精度定位方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535960A (zh) * 2014-12-29 2015-04-22 华南理工大学 一种基于rfid的室内快速定位方法
CN105116378A (zh) * 2015-09-30 2015-12-02 长沙开山斧智能科技有限公司 一种无线、超声波复合定位系统及其定位方法
CN105338498A (zh) * 2015-09-29 2016-02-17 北京航空航天大学 一种WiFi室内定位系统中指纹库的构建方法
CN106154230A (zh) * 2016-06-14 2016-11-23 浙江大学 一种基于声音测距的智能移动终端的室内定位方法
CN107529222A (zh) * 2017-09-15 2017-12-29 上海交通大学 一种基于深度学习的WiFi室内定位系统
CN107666707A (zh) * 2017-09-30 2018-02-06 长沙学院 一种基于距离测量和位置指纹的室内定位方法
CN108303090A (zh) * 2017-12-26 2018-07-20 武汉创驰蓝天信息科技有限公司 基于人工智能的室内指纹定位方法及系统
CN108810838A (zh) * 2018-06-03 2018-11-13 桂林电子科技大学 基于智能手机室内背景声感知的房间级定位方法
CN109348428A (zh) * 2018-12-04 2019-02-15 重庆邮电大学 一种蓝牙室内定位系统的指纹库快速构建方法
CN109547936A (zh) * 2018-12-29 2019-03-29 桂林电子科技大学 基于Wi-Fi信号和环境背景声的室内定位方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535960A (zh) * 2014-12-29 2015-04-22 华南理工大学 一种基于rfid的室内快速定位方法
CN105338498A (zh) * 2015-09-29 2016-02-17 北京航空航天大学 一种WiFi室内定位系统中指纹库的构建方法
CN105116378A (zh) * 2015-09-30 2015-12-02 长沙开山斧智能科技有限公司 一种无线、超声波复合定位系统及其定位方法
CN106154230A (zh) * 2016-06-14 2016-11-23 浙江大学 一种基于声音测距的智能移动终端的室内定位方法
CN107529222A (zh) * 2017-09-15 2017-12-29 上海交通大学 一种基于深度学习的WiFi室内定位系统
CN107666707A (zh) * 2017-09-30 2018-02-06 长沙学院 一种基于距离测量和位置指纹的室内定位方法
CN108303090A (zh) * 2017-12-26 2018-07-20 武汉创驰蓝天信息科技有限公司 基于人工智能的室内指纹定位方法及系统
CN108810838A (zh) * 2018-06-03 2018-11-13 桂林电子科技大学 基于智能手机室内背景声感知的房间级定位方法
CN109348428A (zh) * 2018-12-04 2019-02-15 重庆邮电大学 一种蓝牙室内定位系统的指纹库快速构建方法
CN109547936A (zh) * 2018-12-29 2019-03-29 桂林电子科技大学 基于Wi-Fi信号和环境背景声的室内定位方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693139A (zh) * 2020-06-19 2020-09-22 浙江讯飞智能科技有限公司 声音强度测量方法、装置、设备及存储介质
CN111693139B (zh) * 2020-06-19 2022-04-22 浙江讯飞智能科技有限公司 声音强度测量方法、装置、设备及存储介质
CN111948606A (zh) * 2020-08-12 2020-11-17 中国计量大学 一种基于uwb/蓝牙同步的声音定位系统及定位方法
CN111948606B (zh) * 2020-08-12 2023-04-07 中国计量大学 一种基于uwb/蓝牙同步的声音定位系统及定位方法
CN117872269A (zh) * 2024-03-13 2024-04-12 电子科技大学 一种自适应数据处理的高精度定位方法

Also Published As

Publication number Publication date
CN110333484B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
Perotin et al. CRNN-based multiple DoA estimation using acoustic intensity features for Ambisonics recordings
Pak et al. Sound localization based on phase difference enhancement using deep neural networks
NETWORK TROPE
CN110333484A (zh) 基于环境背景声感知与分析的室内区域级定位方法
CN109410976A (zh) 双耳助听器中基于双耳声源定位和深度学习的语音增强方法
CN111239687A (zh) 一种基于深度神经网络的声源定位方法及系统
CN111312273A (zh) 混响消除方法、装置、计算机设备和存储介质
Hwang et al. Environmental audio scene and activity recognition through mobile-based crowdsourcing
CN110728991B (zh) 一种改进的录音设备识别算法
CN107202559B (zh) 基于室内声学信道扰动分析的物体识别方法
Varanasi et al. Near-field acoustic source localization using spherical harmonic features
CN106019230B (zh) 一种基于i-vector说话人识别的声源定位方法
CN108810838A (zh) 基于智能手机室内背景声感知的房间级定位方法
CN107507625A (zh) 声源距离确定方法及装置
Kim et al. Acoustic Event Detection in Multichannel Audio Using Gated Recurrent Neural Networks with High‐Resolution Spectral Features
Bezzam et al. A study on more realistic room simulation for far-field keyword spotting
Li et al. Speech enhancement algorithm based on sound source localization and scene matching for binaural digital hearing aids
Oualil et al. A TDOA Gaussian mixture model for improving acoustic source tracking
CN109031202B (zh) 基于听觉场景分析的室内环境区域定位系统及方法
Chen et al. InQSS: a speech intelligibility assessment model using a multi-task learning network
CN115641839A (zh) 一种智能语音识别方法和系统
Dwivedi et al. Long-term temporal audio source localization using sh-crnn
Pasha et al. Distributed microphone arrays, emerging speech and audio signal processing platforms: A review
Habib et al. Auditory inspired methods for localization of multiple concurrent speakers
Youssef et al. Binaural speaker recognition for humanoid robots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191015

Assignee: Wuhan xingeno Technology Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2022450000387

Denomination of invention: Indoor area level localization method based on environmental background sound perception and analysis

Granted publication date: 20210413

License type: Common License

Record date: 20221226

EE01 Entry into force of recordation of patent licensing contract