CN110330095A - 利用藻阴极微生物燃料电池同时进行除镉产电的方法 - Google Patents

利用藻阴极微生物燃料电池同时进行除镉产电的方法 Download PDF

Info

Publication number
CN110330095A
CN110330095A CN201910324629.4A CN201910324629A CN110330095A CN 110330095 A CN110330095 A CN 110330095A CN 201910324629 A CN201910324629 A CN 201910324629A CN 110330095 A CN110330095 A CN 110330095A
Authority
CN
China
Prior art keywords
fuel cell
cathode
cadmium
algae
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910324629.4A
Other languages
English (en)
Inventor
夏令
张玉
宋少先
贾菲菲
赵云良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910324629.4A priority Critical patent/CN110330095A/zh
Publication of CN110330095A publication Critical patent/CN110330095A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • C02F3/325Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae as symbiotic combination of algae and bacteria
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Ecology (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种利用藻阴极微生物燃料电池同时进行除镉产电的方法。该方法将微藻应用于微生物燃料电池的阴极,微藻在阴极吸收二氧化碳的同时,通过自发的光合作用产生氧气作为电子受体,实现了微生物燃料电池的自维持产电,获得的最大功率密度为32.9mW/m2‑209.07mW/m2。此外,阴极还进行着可溶性镉离子转变为难溶性氢氧化镉的反应,从而实现了水中镉离子的固定和去除。实验结果表明,水中Cd(II)浓度在1mg/L‑50mg/L范围内,去除效率可达到75%‑95%。

Description

利用藻阴极微生物燃料电池同时进行除镉产电的方法
技术领域
本发明涉及微生物燃料电池及污水处理技术领域,具体涉及一种利用藻阴极微生物燃料电池同时进行除镉产电的方法。
背景技术
微生物燃料电池(Microbial Fuel Cell,MFC)是一种可以将有机质能转化为电能的新装置。在目前全球能源紧缺的情况下,MFC已经成为环境科学和工程研究领域的热点课题之一。影响微生物燃料电池性能的因素主要包括四个部分:电极材料、膜、电子供体和电子受体。在已公开的文献(J.S.Sravan,S.Kishore,
A.Verma,S.V.Mohan,Bioresource Technology Phasic availability ofterminal electron acceptor on oxygen reduction reaction in microbial fuelcell,Bioresour Technol.242(2017)101–108)中,氧和铁氰化物(K3[Fe(CN)6])在微生物燃料电池阴极中应用最为广泛。然而从环境安全角度考虑,不建议使用铁氰化物;维持微生物燃料电池氧的供应需要额外提供能量,这样一来会减少净能量输出。
光合藻类微生物燃料电池为微生物燃料电池的发展提供了一个新的视角和思路。藻类吸收阳极产生的二氧化碳,光合作用产生的氧气可作为电子受体,这样既避免了额外能量的输入同时又能够源源不断的提供电子受体。因此光合藻类微生物燃料电池是一个值得深入研究的方向,具体参见CN101853955A、CN101764241A、CN201877517U、CN107887628A等。
镉离子是毒性最强的重金属元素之一,主要来源于电镀、化工、电子、核工业等领域。含镉废水直接排放或者通过地表径流进入水体,容易造成大面积的水污染,如果这些水被用于饮用或灌溉,其中所含的镉离子会通过食物链进入人体并在肾脏中迅速积累,从而引起各种慢性疾病。《生活饮用水卫生标准》(GB5749-2006)规定,饮用水中镉离子最大允许浓度为0.005mg/L。国际癌症研究机构(IARC)将镉列为人类致癌物。根据世界卫生组织(WHO)的规定,镉被列为最直接的重金属问题之一,因此去除水体中的镉离子非常必要且紧迫。
已经公开的文献中,如①F.Zhang,Z.He,Integrated organic and nitrogenremoval with electricity generation in a tubular dual-cathode microbial fuelcell,Process Biochem.47(2012)2146–2151、②O.Lefebvre,Z.Tan,Y.Shen,H.Y.Ng,Optimization of a microbial fuel cell for wastewater treatment using recycledscrap metals as a cost-effective cathode material,Bioresour Technol.127(2013)158–164、③C.Abourached,T.Catal,H.Liu,Efficacy of single-chamber microbialfuel cells for removal of cadmium and zinc with simultaneous electricityproduction,Water Res.51(2014)228–233等,能够在双室或单室微生物燃料电池中去除某些重金属,包括铬、铜、银、镉、锌等。这些技术利用厌氧阴极实现了重金属离子的还原,从而达到了将其去除的目的。某些研究成果还表明,光合藻类自身就有一定的去除重金属的能力(李恺,耿存珍,张阳,等.活性和非活性海藻吸附重金属的研究[J].环境工程,2013,31(1):51-55、张阳,耿存珍.天然藻类吸附重金属的研究[J].环境保护科学,2012,38(6):27-32.)。如果能将两者结合起来,利用藻类在微生物燃料电池中同时实现产电与去除重金属离子的双重效果,应当具有较好的应用前景。
发明内容
本发明将微藻应用于微生物燃料电池阴极,利用微藻自发的光合作用实现了藻阴极微生物燃料电池自维持产电,同时利用微藻表面的官能团以及阴极氧还原反应产物有效地去除了水体中的镉离子,实现了产电和除镉双重功效。此外,本申请将泡沫镍与石墨烯基材料(还原石墨烯、氧化石墨烯)复合进行电极改性,进一步提高藻阴极微生物燃料电池的产电能力,进而提高对镉离子的去除效果。为实现以上目的,本发明所采用的具体技术方案如下:
利用藻阴极微生物燃料电池同时进行除镉产电的方法,包括以下步骤:(a)制备改性电极;(b)将改性电极固定在双室微生物燃料电池的阳极室、阴极室中,再向阴极室注入微藻悬浮液,向阳极室注入厌氧活性污泥悬浮液,密封后在光照条件下运行一段时间,最后向阴极室注入含镉废水。
进一步的,所述双室微生物燃料电池的阳极室、阴极室通过阳离子交换膜分隔开,固定在阳极室和阴极室中的改性电极通过导线与用电设备(本发明用电阻代替)相连形成完整闭合电路。
进一步的,所述改性电极由泡沫镍与石墨烯基材料制备而成,具体方式为:以泡沫镍作为基座,在其表面附着石墨烯基材料,所述石墨烯基材料包括还原石墨烯、氧化石墨烯等。
更进一步的,改性电极的制备方法具体如下:将泡沫镍依次浸泡在稀盐酸、乙醇溶液中,以便去除其表面的氧化膜和杂质,然后将洗净后的泡沫镍浸泡在一定浓度的氧化石墨烯悬浮液中,再根据要求(氧化程度、还原程度)确定后续试验步骤(包括向溶液中加入抗坏血酸或水合肼进行还原),最后依次冷冻干燥、真空干燥即可。
进一步的,选用的微藻为水生藻,具体为小球藻、绿藻、蓝藻中的一种。借助紫外分光光度计测定微藻悬浮液在680nm波长处的吸光度确定微藻悬浮液的浓度,其吸光度取值范围为0.9-3。
进一步的,所述厌氧活性污泥悬浮液取自污水处理厂厌氧池,使用前需调节pH至碱性(8.5-10),然后曝氮气5-10min。厌氧活性污泥悬浮液的浓度通过沉降高度来控制,静置1h后污泥高度范围为1-3cm。
进一步的,所述含镉废水中镉离子浓度不超过50mg/L。
进一步的,组装好的双室微生物燃料电池在使用前需进行灭菌处理。同样的,阳离子交换膜使用前也需进行预处理。加入微藻悬浮液和厌氧活性污泥悬浮液后,密封运行至藻阴极微生物燃料电池电压稳定,再注入含镉废水。
与现有技术相比,本发明具有以下有益效果:(1)将微藻应用于微生物燃料电池阴极,同时实现了微生物燃料电池的自维持产电和镉离子去除;(2)随着反应的进行,水体中的可溶性镉离子逐渐转化成难溶的氢氧化镉,附着、堆积在电极表面或沉积在溶液底部,只需简单的过滤即可将氢氧化镉与水分离,从而实现了水体中镉离子的高效去除;(3)该藻阴极微生物燃料电池获得的最大功率密度范围是32.9mW/m2-209.07mW/m2,镉离子去除率可达到75%-95%;(4)利用石墨烯基材料对电极进行改性,使得产电功率提高了至少6倍,启动时间缩短了一半。
附图说明
图1为本发明组装的双室微生物燃料电池结构简图;
图2为本发明实施例1-2中微生物燃料电池的功率密度曲线;
图3为本发明实施例1中微生物燃料电池阴极除镉动力学曲线;
图4为本发明实施例2中微生物燃料电池阴极除镉动力学曲线。
具体实施方式
为使本领域普通技术人员充分理解本发明的技术方案和有益效果,以下结合具体实施例进行进一步说明。
实施例1
本发明所使用的双室微生物燃料电池结构如图1所示,其具体安装使用步骤如下:
(1)制备改性电极:将泡沫镍依次浸泡在稀盐酸、无水乙醇溶液中,以便去除表面的杂质与氧化膜,然后在室温下真空干燥,得到干净的泡沫镍。将干净的泡沫镍在氧化石墨烯溶液(4g/L)中浸泡12h,之后在抗坏血酸溶液(10mg/mL)中浸泡过夜,冷冻干燥24h后继续真空干燥24h,最终得到代号为NF-rGO的改性电极。
(2)利用钛丝将NF-rGO电极固定在双室微生物燃料电池的阴、阳两室,然后将整套装置、培养液、枪头等放入高压灭菌锅内,于121℃条件下灭菌20min。将阳离子交换膜(CEM,Nafion 117)依次置于30%H2O2、0.5M的H2SO4中煮30min,然后保存在去离子水中备用。之后将上述装置、培养液、枪头、空气滤膜、阳离子交换膜等置于超净台上紫外灭菌15min,最后组装好。
(3)向阴极加入250mL已活化多次(小球藻在接种前需要经过至少3次的分化培养,使得藻细胞的活性达到最佳状态)的小球藻(sp.QB-102)悬浮液(680nm波长下紫外分光光度计测定的吸光度为0.9),用空气滤膜封口。向阳极加入250mL厌氧活性污泥悬浮液(静置1h后的沉降高度为1.5cm),调节pH至9,曝氮气5min后封口。通过导线将电池的阴极电极、阳极电极和外接电阻串联起来,用万用表测定电阻两端的电压。
(4)待电压稳定后,开路运行一夜,然后将电阻值依次调至40Ω、80Ω、120Ω、400Ω、600Ω、2000Ω、4000Ω和6000Ω,记录下对应的电压值。之后根据公式I=V/(R×A)和P=V2/(R×A)的计算结果绘制功率密度曲线,结果如图2所示。当外接电阻值为400Ω时,使用NF-rGO电极的藻阴极微生物燃料电池获得最大功率密度,该值为36.4mW/m。
(5)维持电阻值(1000Ω)不变的前提下,待藻阴极微生物燃料电池的电压稳定后,向阴极添加一定量的镉离子储备液(模拟污水),2h后取样测定阴极溶液中的镉离子浓度,根据测定结果调整镉离子储备液的加入量,使得阴极镉离子浓度为某确定值(逐渐递增,依次为8mg/L、12mg/L、16mg/L、20mg/L、30mg/L、40mg/L、50mg/L)。
根据公式qe=(Co-Ce)·V/A计算吸附量绘制阴极镉离子吸附动力学曲线,结果如图3所示。由图3可知,使用NF-rGO电极的藻阴极MFC对Cd(II)的饱和吸附量是115g/m2
实施例2
(1)制备改性电极:将泡沫镍依次浸泡在稀盐酸、无水乙醇溶液中,以便去除表面的杂质与氧化膜,室温下真空干燥后,再将泡沫镍浸泡在高氧化度的氧化石墨烯溶液(4g/L)中12h,之后利用水合肼溶液在95℃条件下还原0min、40min,最后经过冷冻干燥24h以及真空干燥24h,分别得到代号为NF-GO-0和NF-GO-4的改性电极。
(2)利用钛丝将电极固定在双室微生物燃料电池的阴、阳两室。然后将整套装置、培养液、枪头等放入高压灭菌锅内,于121℃条件下灭菌20min。将阳离子交换膜(CEM,Nafion 117)依次置于30%H2O2、0.5M的H2SO4中煮30min,然后保存在去离子水中备用。之后将上述装置、培养液、枪头、空气滤膜、阳离子交换膜等置于超净台上紫外灭菌15min,最后组装好。
(3)向阴极加入250mL已活化多次的小球藻(sp.QB-102)悬浮液(680nm波长下紫外分光光度计测定的吸光度为2),用空气滤膜封口。向阳极加入250mL厌氧活性污泥悬浮液(静置1h的沉降高度为2cm),调节其pH为9,曝氮气5min后封口。通过导线将电池的阴极电极、阳极电极和外接电阻串联起来,用万用表测定电阻两端的电压。
(4)待电压稳定后,开路运行一夜,然后依次将电阻值调至40Ω、100Ω、200Ω、400Ω、600Ω、800Ω、1000Ω、2000Ω、3000Ω、4000Ω、5000Ω、6000Ω、7000Ω、8000Ω,记录下对应的电压。之后根据公式I=V/(R×A)和P=V2/(R×A)计算结果绘制功率密度曲线,结果如图2所示。连接NF-GO-0电极的藻阴极微生物燃料电池在外接200Ω的外部电阻时,获得最大功率密度为209.07mW/m2;连接NF-GO-4电极的藻阴极微生物燃料电池在外接2000Ω的外部电阻时,获得最大功率密度为32.90mW/m2
(5)在维持电阻值(1000Ω)不变的前提下,待藻阴极微生物燃料电池的电压稳定后,向阴极滴加镉离子储备液(模拟污水),控制阴极镉离子浓度为1mg/L,2h后取样测定阴极溶液中的镉离子浓度,之后再补充镉离子使得阴极镉离子浓度恢复到1mg/L,然后不断重复以上步骤。
根据公式qe=(Co-Ce)·V/A计算吸附量绘制藻阴极镉离子吸附动力学曲线,结果如图4所示。由图4可知,连接NF-GO-0电极的藻阴极微生物燃料电池对镉离子的最大吸附量为6.039g/m2,连接NF-GO-4电极的藻阴极微生物燃料电池对镉离子的最大吸附量约为3.198g/m2,连接NF-GO-0电极的藻阴极微生物燃料电池对镉离子的最大吸附量是连接NF-GO-4电极的电池吸附量的2倍。

Claims (10)

1.利用藻阴极微生物燃料电池同时进行除镉产电的方法,其特征在于该方法包括以下步骤:
(a)制备改性电极;
(b)将改性电极固定在双室微生物燃料电池的阳极室、阴极室中,再向阴极室注入微藻悬浮液,向阳极室注入厌氧活性污泥悬浮液,密封后在光照条件下运行一段时间,最后向阴极室注入含镉废水。
2.如权利要求1所述的方法,其特征在于:所述双室微生物燃料电池的阳极室、阴极室通过阳离子交换膜分隔开,固定在阳极室和阴极室中的改性电极通过导线与用电设备相连,形成完整闭合电路。
3.如权利要求1所述的方法,其特征在于:所述改性电极具体为表面附着有石墨烯基材料的泡沫镍,所述石墨烯基材料包括还原石墨烯、氧化石墨烯。
4.如权利要求1或3所述的方法,其特征在于:改性电极的制备方法具体如下:用酸溶液、醇溶液、水中的至少一种将泡沫镍清洗干净,然后将其浸泡在一定浓度的氧化石墨烯悬浮液中,接着向溶液中加入抗坏血酸或水合肼进行还原,最后冷冻干燥或真空干燥即可。
5.如权利要求1所述的方法,其特征在于:选用的微藻为水生藻,具体为小球藻、绿藻、蓝藻中的一种。
6.如权利要求1或5所述的方法,其特征在于:借助紫外分光光度计测定微藻悬浮液在680nm波长处的吸光度从而确定其浓度,微藻悬浮液的吸光度取值范围为0.9-3。
7.如权利要求1所述的方法,其特征在于:所述厌氧活性污泥悬浮液取自污水处理厂厌氧池,使用前需调节pH至8.5-10,然后曝氮气5-10min。
8.如权利要求1或7所述的方法,其特征在于:厌氧活性污泥悬浮液的浓度通过沉降高度来控制,静置1h后污泥高度范围为1-3cm。
9.如权利要求1所述的方法,其特征在于:所述含镉废水中镉离子浓度不超过50mg/L。
10.如权利要求1所述的方法,其特征在于:组装好的双室微生物燃料电池在使用前需进行灭菌处理,阳离子交换膜使用前也需进行预处理;加入微藻悬浮液和厌氧活性污泥悬浮液后,密封运行至藻阴极微生物燃料电池电压稳定,再注入含镉废水。
CN201910324629.4A 2019-04-22 2019-04-22 利用藻阴极微生物燃料电池同时进行除镉产电的方法 Pending CN110330095A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910324629.4A CN110330095A (zh) 2019-04-22 2019-04-22 利用藻阴极微生物燃料电池同时进行除镉产电的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910324629.4A CN110330095A (zh) 2019-04-22 2019-04-22 利用藻阴极微生物燃料电池同时进行除镉产电的方法

Publications (1)

Publication Number Publication Date
CN110330095A true CN110330095A (zh) 2019-10-15

Family

ID=68139812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910324629.4A Pending CN110330095A (zh) 2019-04-22 2019-04-22 利用藻阴极微生物燃料电池同时进行除镉产电的方法

Country Status (1)

Country Link
CN (1) CN110330095A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130130334A1 (en) * 2010-03-17 2013-05-23 Board Of Trustees Of Michigan State University Biofuel and electricity producing fuel cells and systems and methods related to same
CN103427102A (zh) * 2013-08-30 2013-12-04 华南理工大学 一种藻菌微生物燃料电池及其制备方法和应用
CN104386826A (zh) * 2014-09-19 2015-03-04 浙江大学 基于微生物燃料电池的含铬电镀废水的处理和检测方法
CN107887628A (zh) * 2017-11-10 2018-04-06 荣成市熠欣海洋生物科技有限公司 一种处理含铅污水的藻阴极微生物燃料电池
CN109052620A (zh) * 2018-07-12 2018-12-21 江苏理工学院 一种去除重金属废水中镉离子的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130130334A1 (en) * 2010-03-17 2013-05-23 Board Of Trustees Of Michigan State University Biofuel and electricity producing fuel cells and systems and methods related to same
CN103427102A (zh) * 2013-08-30 2013-12-04 华南理工大学 一种藻菌微生物燃料电池及其制备方法和应用
CN104386826A (zh) * 2014-09-19 2015-03-04 浙江大学 基于微生物燃料电池的含铬电镀废水的处理和检测方法
CN107887628A (zh) * 2017-11-10 2018-04-06 荣成市熠欣海洋生物科技有限公司 一种处理含铅污水的藻阴极微生物燃料电池
CN109052620A (zh) * 2018-07-12 2018-12-21 江苏理工学院 一种去除重金属废水中镉离子的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU ZHANG: ""Algae cathode microbial fuel cells for cadmium removal with simultaneous electricity production using nickel foam/graphene electrode"", 《BIOCHEMICAL ENGINEERING JOURNAL》 *

Similar Documents

Publication Publication Date Title
CN102263279A (zh) 一种人工湿地水生植物电极的微生物燃料电池装置
CN105152351A (zh) 一种光电人工湿地及其应用
CN101710626B (zh) 一种单室微生物燃料电池及其在废水处理中的应用
CN102531181A (zh) 应用微生物燃料电池净化湖泊水体的组合生态浮床的装置
CN112573667A (zh) 一种基于藻菌共生电化学体系的污水处理装置及其方法
CN103123976B (zh) 基于微生物燃料电池的Fe(II)EDTA再生方法
Huang et al. Advanced carbon sequestration by the hybrid system of photobioreactor and microbial fuel cell with novel photocatalytic porous framework
CN109179938A (zh) 一种基于阳极促进污泥厌氧消化和阴极二氧化碳还原的厌氧微生物电化学处理工艺
CN110510715A (zh) 一种光驱动电容去离子的装置和方法
CN106986501B (zh) 一种电动渗透反应墙和人工湿地耦合处理污水的方法及装置
CN204569509U (zh) 景观水杀菌除藻装置
Jadhav et al. Plant microbial fuel cell as a biomass conversion technology for sustainable development
CN110330095A (zh) 利用藻阴极微生物燃料电池同时进行除镉产电的方法
CN202400905U (zh) 应用微生物燃料电池净化湖泊水体的组合生态浮床的装置
CN109867420B (zh) 一体式微生物脱盐电池-人工湿地装置
CN107720970B (zh) 封闭阳极微生物燃料电池与沉水植物人工湿地耦合系统
CN104773924B (zh) 一种微电流强化染料类废水生物降解的装置和方法
Cheng et al. Continuous electricity generation and pollutant removal from swine wastewater using a single-chambered air-cathode microbial fuel cell
CN210825887U (zh) 一种处理污泥重金属的系统
CN215711918U (zh) 适用于处理海水养殖废水的太阳光协同电化学处理设备
CN111342100B (zh) 一种微生物燃料电池系统
CN204375849U (zh) 一种设有外加磁场的高效除磷硝化微生物燃料电池
Amrutha et al. Bioelectricity production from seafood processing wastewater using microbial fuel cell
CN207645910U (zh) 一种微生物燃料电池与生态浮床结合的一体化水体修复装置
CN111704243A (zh) 一种人工湿地微生物燃料电池耦合装置及污水处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191015