CN110327874B - Core-shell structure composite iron-cerium oxide dearsenic adsorbent and preparation method and application thereof - Google Patents
Core-shell structure composite iron-cerium oxide dearsenic adsorbent and preparation method and application thereof Download PDFInfo
- Publication number
- CN110327874B CN110327874B CN201910599654.3A CN201910599654A CN110327874B CN 110327874 B CN110327874 B CN 110327874B CN 201910599654 A CN201910599654 A CN 201910599654A CN 110327874 B CN110327874 B CN 110327874B
- Authority
- CN
- China
- Prior art keywords
- arsenic
- adsorbent
- flue gas
- sample
- cerium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003463 adsorbent Substances 0.000 title claims abstract description 68
- 239000002131 composite material Substances 0.000 title claims abstract description 32
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- ZDLWJJXASOHEAJ-UHFFFAOYSA-N cerium(3+) iron(2+) oxygen(2-) Chemical compound [O-2].[Ce+3].[Fe+2] ZDLWJJXASOHEAJ-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 239000011258 core-shell material Substances 0.000 title claims abstract description 15
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 72
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 70
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 18
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 13
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims abstract description 10
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011259 mixed solution Substances 0.000 claims abstract description 9
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229940018564 m-phenylenediamine Drugs 0.000 claims abstract description 7
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims abstract description 7
- 238000011065 in-situ storage Methods 0.000 claims abstract description 6
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 6
- 238000005470 impregnation Methods 0.000 claims abstract description 4
- 238000010000 carbonizing Methods 0.000 claims abstract description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 45
- 239000003546 flue gas Substances 0.000 claims description 45
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 238000003763 carbonization Methods 0.000 claims description 6
- -1 iron ions Chemical class 0.000 claims description 6
- 238000007598 dipping method Methods 0.000 claims description 4
- 239000000428 dust Substances 0.000 claims description 4
- 238000010907 mechanical stirring Methods 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 239000003575 carbonaceous material Substances 0.000 claims description 2
- 238000011068 loading method Methods 0.000 claims description 2
- 238000007885 magnetic separation Methods 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims 4
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 16
- ZGMCLEXFYGHRTK-UHFFFAOYSA-N [Fe].[Ce] Chemical compound [Fe].[Ce] ZGMCLEXFYGHRTK-UHFFFAOYSA-N 0.000 description 9
- 238000003723 Smelting Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000003795 desorption Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- BMWMWYBEJWFCJI-UHFFFAOYSA-K iron(3+);trioxido(oxo)-$l^{5}-arsane Chemical compound [Fe+3].[O-][As]([O-])([O-])=O BMWMWYBEJWFCJI-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000005200 wet scrubbing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种核壳结构复合铁铈氧化物脱砷吸附剂,是以磁性纳米Fe3O4为内核,在磁性纳米Fe3O4表面包覆有复合铁铈氧化物层;铁铈氧化物层中铁元素和铈元素的摩尔比为1:(0.04~0.12)。本发明的脱砷吸附剂的制备方法:将磁性纳米Fe3O4、间苯二胺和甲醛加入到溶液中,进行原位聚合反应,得到样品A;将样品A进行高温碳化,得到样品B;将硝酸铁和硝酸铈混合溶液通过浸渍法负载在样品B上,得到样品C;将样品C进行氧化焙烧,得到脱砷吸附剂。本发明的核壳结构复合铁铈氧化物脱砷吸附剂可在较大温度区间内实现对气态砷的直接捕获,且对砷的吸附效率可达80%以上,且吸附后砷的稳定性较高,减少了砷的二次污染。The invention discloses a core-shell structure composite iron-cerium oxide dearsenic adsorbent. The magnetic nano-Fe 3 O 4 is used as the core, and the surface of the magnetic nano-Fe 3 O 4 is covered with a composite iron-cerium oxide layer; The molar ratio of iron element and cerium element in the oxide layer is 1:(0.04-0.12). The preparation method of the arsenic removal adsorbent of the present invention: adding magnetic nano-Fe 3 O 4 , m-phenylenediamine and formaldehyde into the solution, performing in-situ polymerization reaction to obtain sample A; carbonizing sample A at high temperature to obtain sample B ; The mixed solution of ferric nitrate and cerium nitrate is loaded on the sample B by the impregnation method to obtain the sample C; the sample C is subjected to oxidative roasting to obtain the dearsenic adsorbent. The core-shell structure composite iron-cerium oxide dearsenic adsorbent of the invention can directly capture gaseous arsenic in a large temperature range, and the adsorption efficiency of arsenic can reach more than 80%, and the stability of arsenic after adsorption is relatively high. High, reducing the secondary pollution of arsenic.
Description
技术领域technical field
本发明属于吸附剂领域,尤其涉及一种适合于处理有色金属冶炼火法熔炼过程产生的含砷烟气的吸附剂。The invention belongs to the field of adsorbents, and in particular relates to an adsorbent suitable for treating arsenic-containing flue gas generated in the non-ferrous metal smelting pyro-smelting process.
背景技术Background technique
由于砷具有剧毒,如何实现砷污染排放的高效控制已经成为亟需解决的问题。我国出台的《国家砷污染防治技术政策》、《重金属污染综合防治“十二五”规划》、《重金属污染防治综合规划(2011-2015)》、《“十三五”生态环境保护规划》等一系列的文件中已明确将砷列为主要的防控对象,砷污染防治已成为国内外关注焦点及我国重大的民生问题。在金属矿物冶炼过程中,矿石中大部分砷元素被氧化并以三氧化二砷的形成挥发进入烟气中,进而形成含砷烟气。Because arsenic is highly toxic, how to achieve efficient control of arsenic pollution has become an urgent problem to be solved. my country's "National Arsenic Pollution Prevention and Control Technology Policy", "Twelfth Five-Year Plan for Comprehensive Prevention and Control of Heavy Metal Pollution", "Comprehensive Plan for Heavy Metal Pollution Prevention and Control (2011-2015)", "Thirteenth Five-Year Plan for Ecological Environmental Protection", etc. A series of documents have clearly listed arsenic as the main prevention and control object, and the prevention and control of arsenic pollution has become the focus of attention at home and abroad and a major livelihood issue in my country. In the smelting process of metal minerals, most of the arsenic in the ore is oxidized and volatilized into the flue gas in the form of arsenic trioxide, thereby forming arsenic-containing flue gas.
目前冶炼烟气中砷主要在除尘和湿法洗涤过程中脱除,砷从烟气中转移到烟灰和污酸中,仍存在着砷污染风险,因此,从烟气中捕获气态砷的直接捕获和选择性分离成为控制砷污染的主要研究方向。中国专利201711220671.9公开了一种烟气脱砷吸附剂的制备方法,利用氧化钙、冶金炉渣、沸石和粉煤灰混合均匀、制粒、加热等流程制备得到吸附剂;中国专利201810285567.6公开一种砷吸附剂及其制备方法和应用,其以有氧化铝载体使用铁元素浸渍并高温焙烧,制备成气态砷吸附剂。上述吸附剂虽然可以实现对气态砷的吸附,但吸附砷后的吸附剂仍与烟尘或污酸混合,难以可控分离,且面临着砷二次污染的问题。此外,传统吸附材料对气态砷的吸附容量和吸附速率都不高,难以满足实际工业上的需求。因此亟需开发稳定、高效和易回收的吸附材料。At present, arsenic in smelting flue gas is mainly removed in the process of dust removal and wet scrubbing. Arsenic is transferred from flue gas to soot and polluted acid, and there is still a risk of arsenic pollution. Therefore, the direct capture of gaseous arsenic from flue gas And selective separation has become the main research direction to control arsenic pollution. Chinese Patent No. 201711220671.9 discloses a preparation method of a flue gas dearsenic adsorbent. The adsorbent is prepared by uniformly mixing calcium oxide, metallurgical slag, zeolite and fly ash, granulating, heating, etc.; Chinese Patent No. 201810285567.6 discloses an arsenic An adsorbent and its preparation method and application, which are impregnated with an alumina carrier with iron element and calcined at high temperature to prepare a gaseous arsenic adsorbent. Although the above-mentioned adsorbents can realize the adsorption of gaseous arsenic, the adsorbents after adsorbing arsenic are still mixed with soot or polluted acid, which is difficult to controllable separation, and faces the problem of secondary arsenic pollution. In addition, the adsorption capacity and adsorption rate of gaseous arsenic for traditional adsorption materials are not high, which is difficult to meet the actual industrial demand. Therefore, there is an urgent need to develop stable, efficient and easy-to-recycle adsorbents.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种可回收高效脱砷吸附剂的制备方法以及吸附剂捕获气态砷的应用方法,适合高温高硫冶炼烟气中气态砷的高效捕获和分离。The technical problem to be solved by the present invention is to overcome the deficiencies and defects mentioned in the above background technology, and to provide a preparation method of a recyclable high-efficiency dearsenic adsorbent and an application method for the adsorbent to capture gaseous arsenic, which is suitable for high-temperature and high-sulfur smelting smoke Efficient capture and separation of gaseous arsenic in gas.
为解决上述技术问题,本发明提出的技术方案为:In order to solve the above-mentioned technical problems, the technical scheme proposed by the present invention is:
一种核壳结构复合铁铈氧化物脱砷吸附剂,是以磁性纳米Fe3O4为内核,在磁性纳米Fe3O4表面包覆有复合铁铈氧化物层;铁铈氧化物层中铁元素和铈元素的摩尔比为1:(0.04~0.12)。A core-shell structure composite iron-cerium oxide dearsenic adsorbent, which uses magnetic nanometer Fe 3 O 4 as a core, and a composite iron-cerium oxide layer is coated on the surface of the magnetic nano-Fe 3 O 4 ; The molar ratio of the element and the cerium element is 1:(0.04-0.12).
本发明还提供一种上述的脱砷吸附剂的制备方法,包括以下步骤:The present invention also provides a method for preparing the above-mentioned dearsenic adsorbent, comprising the following steps:
(1)将磁性纳米Fe3O4、间苯二胺和甲醛加入到溶液中,超声混合均匀,在机械搅拌下进行原位聚合反应,得到样品A;(1) adding magnetic nanometer Fe 3 O 4 , m-phenylenediamine and formaldehyde into the solution, ultrasonically mixing uniformly, and performing in-situ polymerization under mechanical stirring to obtain sample A;
(2)将样品A进行高温碳化,得到多孔炭材料包裹的样品B;(2) carbonizing sample A at high temperature to obtain sample B wrapped with porous carbon material;
(3)将硝酸铁和硝酸铈混合溶液通过浸渍法负载在样品B上,干燥处理,得到负载铁铈的样品C;(3) the mixed solution of ferric nitrate and cerium nitrate is loaded on the sample B by the dipping method, and dried to obtain the sample C loaded with ferric cerium;
(4)将样品C在氧化气氛下进行氧化焙烧,即得到所述脱砷吸附剂。(4) The sample C is oxidatively roasted in an oxidizing atmosphere to obtain the arsenic removal adsorbent.
上述的制备方法,优选的,所述步骤(1)中,磁性纳米Fe3O4的粒径为50~200nm。In the above preparation method, preferably, in the step (1), the particle size of the magnetic nano Fe 3 O 4 is 50-200 nm.
上述的制备方法,优选的,所述步骤(1)中,间苯二胺和甲醛的摩尔比为1:(1.5~3),混合溶液pH为8~9,原位聚合反应时间为18~30h。In the above preparation method, preferably, in the step (1), the molar ratio of m-phenylenediamine and formaldehyde is 1:(1.5~3), the pH of the mixed solution is 8~9, and the in-situ polymerization reaction time is 18~ 30h.
上述的制备方法,优选的,所述步骤(2)中,高温碳化的焙烧温度为600~700℃,保温时间为1.5~3小时;高温碳化在氮气的保护下进行,氮气流速为0.5~1L/min。In the above-mentioned preparation method, preferably, in the step (2), the calcination temperature of the high-temperature carbonization is 600-700 ° C, and the holding time is 1.5-3 hours; the high-temperature carbonization is carried out under the protection of nitrogen, and the nitrogen flow rate is 0.5-1L /min.
上述的制备方法,优选的,所述步骤(3)中,铁离子与铈离子的摩尔比为1:(0.04~0.12),硝酸铁和硝酸铈混合溶液与样品B体积比为1:(1~1.5),浸渍温度为25~50℃,浸渍时间为30~60min。In the above preparation method, preferably, in the step (3), the molar ratio of iron ions to cerium ions is 1:(0.04~0.12), and the volume ratio of the mixed solution of ferric nitrate and cerium nitrate to sample B is 1:(1 ~1.5), the immersion temperature is 25~50℃, and the immersion time is 30~60min.
上述的制备方法,优选的,所述步骤(4)中,氧化焙烧的温度为600~800℃,焙烧时间为20~40min,氧气浓度为20~40%。In the above preparation method, preferably, in the step (4), the temperature of oxidative roasting is 600-800° C., the roasting time is 20-40 min, and the oxygen concentration is 20-40%.
作为一个总的发明构思,本发明还提供一种上述的或者由上述制备方法制备的脱砷吸附剂在高温高硫烟气中的应用,在烟气收尘工艺前端将脱砷吸附剂直接均匀地喷入烟气中,吸附砷后的吸附剂和烟气一起在除尘系统中进入烟尘,得到含砷混合烟尘,然后通过磁选分离从含砷混合烟尘中回收复合磁性吸附剂。As a general inventive concept, the present invention also provides the application of the above-mentioned dearsenic adsorbent or prepared by the above preparation method in high-temperature and high-sulfur flue gas. The arsenic is sprayed into the flue gas, the adsorbent after adsorbing arsenic and the flue gas enter the flue gas together in the dust removal system to obtain the arsenic-containing mixed flue gas, and then the composite magnetic adsorbent is recovered from the arsenic-containing mixed flue gas through magnetic separation.
上述的应用,优选的,脱砷吸附剂进行脱砷时烟气的温度为400~1200℃,烟气中二氧化硫浓度不高于10%。In the above application, preferably, the temperature of the flue gas is 400-1200° C. when the arsenic-removing adsorbent performs the de-arsenic removal, and the concentration of sulfur dioxide in the flue gas is not higher than 10%.
本发明的核壳结构复合铁铈氧化物脱砷吸附剂是以磁性Fe3O4微粒为内核,通过表面原位聚合在Fe3O4微粒表面形成包裹一层树脂,经过高温碳化后形成表面疏松多孔的碳壳,高温碳化过程形成氨基、羧基等多种官能团,对金属离子有一定的吸附能力,保证通过浸渍法实现铁铈的有效负载,最后通过氧化焙烧,将多孔碳层氧化分解,且吸附的铁铈转化成多孔的高活性x(CeO2)·y(Fe2O3)(其中x/y为(0.08~0.24):1)复合氧化物,即最终产物为以Fe3O4为内核和以多孔x(CeO2)·y(Fe2O3)复合氧化物为外壳的复合吸附材料,烟气中气态As2O3可被CeO2高效氧化成As2O5,并与Fe2O3形成稳定砷酸铁,从而实现气态砷的高效捕获。复合吸附剂小尺寸和富含孔洞物理特征保证了砷的吸附速率,高活性铁铈复合氧化物保证砷的高效捕获,复合吸附材料的磁性内核保证了吸附剂的可回收性。The core-shell structure composite iron-cerium oxide dearsenic adsorbent of the present invention uses magnetic Fe 3 O 4 particles as the core, forms a layer of resin wrapped on the surface of the Fe 3 O 4 particles through surface in-situ polymerization, and forms a surface after high temperature carbonization The loose and porous carbon shell forms various functional groups such as amino groups and carboxyl groups during the high-temperature carbonization process, which has a certain adsorption capacity for metal ions, ensuring the effective loading of iron and cerium through the impregnation method. Finally, the porous carbon layer is oxidized and decomposed by oxidative roasting. And the adsorbed iron-cerium is converted into a porous and highly active x(CeO 2 )·y(Fe 2 O 3 ) (where x/y is (0.08~0.24):1) composite oxide, that is, the final product is Fe 3 O 4 is the composite adsorption material with the inner core and the porous x(CeO 2 )·y(Fe 2 O 3 ) composite oxide as the outer shell. The gaseous As 2 O 3 in the flue gas can be efficiently oxidized to As 2 O 5 by CeO 2 . Forms stable ferric arsenate with Fe2O3 , enabling efficient capture of gaseous arsenic. The small size of the composite adsorbent and the physical characteristics of rich pores ensure the adsorption rate of arsenic, the high-activity iron-cerium composite oxide ensures the efficient capture of arsenic, and the magnetic core of the composite adsorbent ensures the recyclability of the adsorbent.
与现有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:
(1)本发明的核壳结构复合铁铈氧化物脱砷吸附剂可在较大温度区间内实现对气态砷的直接捕获,且对砷的吸附效率可达80%以上,且吸附后砷的稳定性较高,减少了砷的二次污染。(1) The core-shell structure composite iron-cerium oxide dearsenic adsorbent of the present invention can realize the direct capture of gaseous arsenic in a relatively large temperature range, and the adsorption efficiency of arsenic can reach more than 80%, and the adsorption of arsenic can reach more than 80%. High stability, reducing the secondary pollution of arsenic.
(2)本发明的核壳结构复合铁铈氧化物脱砷吸附剂可以广泛应于冶炼和燃煤烟气脱砷领域,适用范围广,同时可直接应用于现有烟气处理设备中,不需要改变现有处理工艺。(2) The core-shell structure composite iron-cerium oxide dearsenic adsorbent of the present invention can be widely used in the fields of smelting and coal-fired flue gas dearsenic removal, and has a wide range of applications. Existing treatment processes need to be changed.
(3)本发明的核壳结构复合铁铈氧化物脱砷吸附剂在解吸后可以循环使用,降低了脱砷的成本。(3) The core-shell structure composite iron-cerium oxide dearsenic adsorbent of the present invention can be recycled after desorption, thereby reducing the cost of dearsenic.
(4)本发明具有制备工艺简单、吸附效率高、对环境友好等优点。(4) The present invention has the advantages of simple preparation process, high adsorption efficiency, and environmental friendliness.
具体实施方式Detailed ways
为了便于理解本发明,下文将结合较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。In order to facilitate the understanding of the present invention, the present invention will be described more comprehensively and in detail below with reference to the preferred embodiments, but the protection scope of the present invention is not limited to the following specific embodiments.
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。Unless otherwise defined, all technical terms used hereinafter have the same meaning as commonly understood by those skilled in the art. The technical terms used herein are only for the purpose of describing specific embodiments, and are not intended to limit the protection scope of the present invention.
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。Unless otherwise specified, various raw materials, reagents, instruments and equipment used in the present invention can be purchased from the market or can be prepared by existing methods.
实施例1:Example 1:
本发明的核壳结构复合铁铈氧化物脱砷吸附剂的制备方法,包括以下步骤:The preparation method of the core-shell structure composite iron-cerium oxide dearsenic adsorbent of the present invention comprises the following steps:
(1)取30mg粒径为100nm的Fe3O4颗粒物,将其置于含有0.02mol间苯二胺和0.04mol甲醛的溶液中,使用氨水条件混合溶液至pH为8.5,并在连续机械搅拌下反应24小时,真空干燥箱中烘干后,置于管式炉中,在氮气保护气氛下于650℃下碳化3h,得到多孔炭包裹的Fe3O4@C吸附剂。(1) Take 30 mg of Fe 3 O 4 particles with a particle size of 100 nm, place it in a solution containing 0.02 mol of m-phenylenediamine and 0.04 mol of formaldehyde, use ammonia water to mix the solution to pH 8.5, and in continuous mechanical stirring The reaction was carried out for 24 hours, dried in a vacuum drying oven, placed in a tube furnace, and carbonized at 650 °C for 3 hours under a nitrogen protective atmosphere to obtain Fe 3 O 4 @C adsorbent wrapped in porous carbon.
(2)配制不同铁铈摩尔比的混合溶液20mL,并将其与制备好的Fe3O4@C混合,将铁铈离子浸渍到Fe3O4@C上,烘干去除水分,最终得到不同铁铈浸渍量的复合吸附剂;(2) 20 mL of mixed solutions with different molar ratios of iron and cerium were prepared, mixed with the prepared Fe 3 O 4 @C, immersed in Fe 3 O 4 @C with iron and cerium ions, dried to remove moisture, and finally obtained Composite adsorbents with different iron and cerium impregnation amounts;
(3)将复合吸附剂材料放置于管式炉中,通入氧气含量为30%的气体,以升温速率为10℃/min加热到650℃,然后保温时间为30min,最终得到不同铁铈比的核壳结构的Fe3O4@x(CeO2)·y(Fe2O3)吸附剂。(3) The composite adsorbent material was placed in a tube furnace, and a gas with an oxygen content of 30% was introduced, heated to 650°C at a heating rate of 10°C/min, and then the holding time was 30min, and finally different iron-cerium ratios were obtained. The core-shell structured Fe 3 O 4 @x(CeO 2 )·y(Fe 2 O 3 ) adsorbent.
分别取20mg不同铁铈比的Fe3O4@x(CeO2)·y(Fe2O3)吸附剂,将吸附剂和模拟含砷烟气一起喷入到马弗炉内的石英管中,在石英管末端安装滤布收集吸附剂。实验过程中条件为:模拟烟气中砷含量为0.2mg,烟气流速为0.1L/min,烟气温度为600℃,烟气中气体成为20%O2+5%SO2+55%N2,合成的不同吸附剂对砷的捕获效率如表1所示。Take 20 mg of Fe 3 O 4 @x(CeO 2 )·y(Fe 2 O 3 ) adsorbents with different iron-cerium ratios respectively, and inject the adsorbent and simulated arsenic-containing flue gas into the quartz tube in the muffle furnace , install a filter cloth at the end of the quartz tube to collect the adsorbent. The conditions during the experiment are: the arsenic content in the simulated flue gas is 0.2mg, the flue gas flow rate is 0.1L/min, the flue gas temperature is 600°C, and the gas in the flue gas becomes 20%O 2 +5%SO 2 +55%N 2. The arsenic capture efficiencies of the synthesized different adsorbents are shown in Table 1.
表1不同铁铈比的复合吸附剂对砷吸附效率对比Table 1 Comparison of arsenic adsorption efficiency of composite adsorbents with different iron-cerium ratios
表1为不同铁铈比复合吸附剂对砷捕获效率的对比。从表中可以看出,吸附剂中铈含量较低时(铁铈比为1:0.02),砷的捕获效率仅为30.6%,适量的铈可以促进砷的氧化和吸附,提高铈含量可以显著提高砷的捕获效率。当铁铈比为1:0.16时,此时砷捕获效率反而下降,这说明合适的铁铈比对复合吸附剂对砷的捕获效率起关键作用。Table 1 shows the comparison of the arsenic capture efficiency of the composite adsorbents with different iron-cerium ratios. It can be seen from the table that when the content of cerium in the adsorbent is low (the ratio of iron to cerium is 1:0.02), the capture efficiency of arsenic is only 30.6%. Improve the capture efficiency of arsenic. When the iron-cerium ratio is 1:0.16, the arsenic capture efficiency decreases, which indicates that the appropriate iron-cerium ratio plays a key role in the capture efficiency of the composite adsorbent for arsenic.
实施例2:Example 2:
本发明的核壳结构复合铁铈氧化物脱砷吸附剂的制备方法,包括以下步骤:The preparation method of the core-shell structure composite iron-cerium oxide dearsenic adsorbent of the present invention comprises the following steps:
(1)取30mg粒径为100nm的Fe3O4颗粒物,将其置于含有0.02mol间苯二胺和0.04mol甲醛的溶液中,使用氨水条件混合溶液至pH为8.5,并在连续机械搅拌下反应24小时,在真空干燥箱中烘干后,置于管式炉中,在氮气保护气氛下于650℃下碳化3h,得到多孔炭包裹的Fe3O4@C吸附剂;(1) Take 30 mg of Fe 3 O 4 particles with a particle size of 100 nm, place it in a solution containing 0.02 mol of m-phenylenediamine and 0.04 mol of formaldehyde, use ammonia water to mix the solution to pH 8.5, and in continuous mechanical stirring The reaction was carried out for 24 hours, dried in a vacuum drying oven, placed in a tube furnace, and carbonized at 650 °C for 3 hours under a nitrogen protective atmosphere to obtain Fe 3 O 4 @C adsorbent wrapped in porous carbon;
(2)配置铁铈摩尔比为1:0.06的混合溶液20mL,并将其与制备好的Fe3O4@C混合,将铁铈离子浸渍到Fe3O4@C上,烘干去除水分,得到复合材料;(2) Prepare 20 mL of a mixed solution with a molar ratio of iron-cerium 1:0.06, mix it with the prepared Fe 3 O 4 @C, impregnate iron-cerium ions on Fe 3 O 4 @C, and dry it to remove moisture , to obtain a composite material;
(3)将复合材料放置于管式炉中,通入氧气含量为30%的气体,以升温速率为10℃/min加热到650℃,然后保温时间为30min,最终得到核壳结构的Fe3O4@0.12(CeO2)·(Fe2O3)吸附剂。取20mg Fe3O4@0.12(CeO2)·(Fe2O3)吸附剂。(3) The composite material was placed in a tube furnace, and a gas with an oxygen content of 30% was introduced, heated to 650°C at a heating rate of 10°C/min, and then the holding time was 30min, and finally Fe 3 with a core-shell structure was obtained. O 4 @0.12(CeO 2 )·(Fe 2 O 3 ) adsorbent. Take 20mg Fe 3 O 4 @0.12(CeO 2 )·(Fe 2 O 3 ) adsorbent.
取本实施例中制备的Fe3O4@0.12(CeO2)·(Fe2O3)20mg,将吸附剂和模拟含砷烟气喷入到马弗炉内的石英管中,在石英管末端安装滤布收集吸附剂。实验过程中条件为:模拟烟气中砷含量为0.2mg,烟气流速为0.1L/min,烟气温度为600℃,通过改变烟气成分和反应温度,考察不同条件下Fe3O4@0.12(CeO2)·(Fe2O3)对砷的捕获效率,具体结果如表2所示。Take 20 mg of Fe 3 O 4 @0.12(CeO 2 )·(Fe 2 O 3 ) prepared in this example, and spray the adsorbent and simulated arsenic-containing flue gas into the quartz tube in the muffle furnace. A filter cloth is installed at the end to collect the adsorbent. The conditions during the experiment were: the arsenic content in the simulated flue gas was 0.2 mg, the flue gas flow rate was 0.1 L/min, and the flue gas temperature was 600 °C. By changing the flue gas composition and reaction temperature, Fe 3 O 4 @ under different conditions was investigated. The capture efficiency of 0.12(CeO 2 )·(Fe 2 O 3 ) for arsenic is shown in Table 2.
表2不同工艺条件对砷吸附效率对比Table 2 Comparison of arsenic adsorption efficiency under different process conditions
表2为不同气氛和捕获温度下砷的捕获性能对比,从表中可以看出,烟气中氧气和二氧化硫的存在都对砷的捕获起到促进作用,而实际冶炼烟气中均存在氧气和二氧化硫,因此核壳结构Fe3O4@0.12(CeO2)·(Fe2O3)复合吸附剂十分适合于冶炼烟气中砷的捕获。捕获温度也是实际应用中重要的一个参数,烟气温度较低和较高时都不利于砷的捕获,最佳的砷捕获温度为600~800℃,砷的捕获效率均在80%以上。但反应温度在400~1200℃之间砷的捕获效率仍维持在60%以上,即仍具备实际应用价值。Table 2 shows the comparison of arsenic capture performance under different atmospheres and capture temperatures. It can be seen from the table that the presence of oxygen and sulfur dioxide in the flue gas both promote the capture of arsenic, while the actual smelting flue gas contains both oxygen and arsenic. Therefore, the core-shell structure Fe 3 O 4 @0.12(CeO 2 )·(Fe 2 O 3 ) composite adsorbent is very suitable for capturing arsenic in smelting flue gas. The capture temperature is also an important parameter in practical applications. The lower and higher flue gas temperatures are not conducive to the capture of arsenic. The optimal arsenic capture temperature is 600-800 °C, and the capture efficiency of arsenic is above 80%. However, the capture efficiency of arsenic remains above 60% when the reaction temperature is between 400 and 1200°C, that is, it still has practical application value.
取40mg制备的Fe3O4@0.12(CeO2)·(Fe2O3),将吸附剂和模拟含砷烟气喷入到其装在放置于马弗炉内的石英管中,在石英管末端安装滤布收集吸附剂。实验过程中条件为:模拟烟气中砷含量为0.2mg,烟气流速为0.1L/min,烟气温度为600℃,二氧化硫浓度为5%,氧气浓度为20%。在此吸附实验后,采用碱解吸脱附砷和热活化方法对吸附剂进行再生,并在相同条件下测量吸附剂对气相砷的捕获效率,如此循环5次,其具体结果如表3所示。从表3中可以看出,虽然随着循环次数的增加,复合吸附剂对砷的捕获效率有一定下降,但经过5次循环后,吸附剂对砷的吸附效率仍可保持为64.23%,这也说明本发明制备的核壳结构复合铁铈氧化物吸附剂具有优异的循环使用性能。Take 40 mg of prepared Fe 3 O 4 @0.12(CeO 2 )·(Fe 2 O 3 ), and inject the adsorbent and simulated arsenic-containing flue gas into the quartz tube placed in the muffle furnace. A filter cloth is installed at the end of the tube to collect the adsorbent. The experimental conditions were as follows: the arsenic content in the simulated flue gas was 0.2 mg, the flue gas flow rate was 0.1 L/min, the flue gas temperature was 600 °C, the sulfur dioxide concentration was 5%, and the oxygen concentration was 20%. After this adsorption experiment, the adsorbent was regenerated by alkali desorption and desorption of arsenic and thermal activation, and the capture efficiency of the adsorbent for gas phase arsenic was measured under the same conditions. This cycle was repeated 5 times. The specific results are shown in Table 3. . It can be seen from Table 3 that although the capture efficiency of the composite adsorbent for arsenic decreases with the increase of the number of cycles, after 5 cycles, the adsorption efficiency of the adsorbent for arsenic can still be maintained at 64.23%. It also shows that the core-shell structure composite iron-cerium oxide adsorbent prepared by the present invention has excellent recycling performance.
表3磁性复合Fe3O4@0.12(CeO2)·(Fe2O3)吸附剂循环性能Table 3 Cycling performance of magnetic composite Fe 3 O 4 @0.12(CeO 2 )·(Fe 2 O 3 ) adsorbent
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910599654.3A CN110327874B (en) | 2019-07-04 | 2019-07-04 | Core-shell structure composite iron-cerium oxide dearsenic adsorbent and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910599654.3A CN110327874B (en) | 2019-07-04 | 2019-07-04 | Core-shell structure composite iron-cerium oxide dearsenic adsorbent and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110327874A CN110327874A (en) | 2019-10-15 |
CN110327874B true CN110327874B (en) | 2022-06-10 |
Family
ID=68143115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910599654.3A Active CN110327874B (en) | 2019-07-04 | 2019-07-04 | Core-shell structure composite iron-cerium oxide dearsenic adsorbent and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110327874B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111135785A (en) * | 2020-01-07 | 2020-05-12 | 华北电力大学(保定) | Modified iron-based gas-phase arsenic adsorbent and preparation method and application thereof |
CN118324175B (en) * | 2024-06-12 | 2024-08-23 | 之江实验室 | Carbon-coated superfine CeO2/Fe3O4Heterojunction wave-absorbing material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102600790A (en) * | 2011-01-20 | 2012-07-25 | 中国科学院金属研究所 | Nanometer cerium oxide hydrate-based arsenic removing material, preparation method thereof and application in arsenic removing |
CN106390990A (en) * | 2016-08-31 | 2017-02-15 | 国家电投集团远达环保催化剂有限公司 | Method for modifying special exhaust gas denitrification catalyst |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1295598C (en) * | 1986-07-29 | 1992-02-11 | Makoto Imanari | Process for removing nitrogen oxides from exhaust gases |
JP6495316B2 (en) * | 2014-03-07 | 2019-04-03 | セキュア ナチュラル リソーシズ エルエルシーSecure Natural Resources Llc | Cerium (IV) oxide with excellent arsenic removal properties |
CN103964538B (en) * | 2014-05-23 | 2015-11-18 | 南京晓庄学院 | A kind of magnetic Fe of cerium oxide modification 3o 4SiO 2granular absorption removes phosphatic method in water body |
CN104368240B (en) * | 2014-11-18 | 2016-06-08 | 昆明理工大学 | A kind of magnetic helps method and the device of gas-solid phase reaction flue |
CN105964673B (en) * | 2016-03-30 | 2019-06-28 | 中国科学院地理科学与资源研究所 | A kind of Modified Iron cerium hydroxide and preparation method for stabilizing rehabilitating soil arsenic pollution and its application |
CN108236957A (en) * | 2016-12-27 | 2018-07-03 | 中国科学院宁波城市环境观测研究站 | A kind of iron cerium titanium oxide catalyst and its application |
CA3081437A1 (en) * | 2017-11-03 | 2019-05-09 | Basf Corporation | Arsine adsorbents |
CN107913680B (en) * | 2017-11-29 | 2020-09-04 | 安徽工业大学 | Preparation method of flue gas dearsenic adsorbent |
-
2019
- 2019-07-04 CN CN201910599654.3A patent/CN110327874B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102600790A (en) * | 2011-01-20 | 2012-07-25 | 中国科学院金属研究所 | Nanometer cerium oxide hydrate-based arsenic removing material, preparation method thereof and application in arsenic removing |
CN106390990A (en) * | 2016-08-31 | 2017-02-15 | 国家电投集团远达环保催化剂有限公司 | Method for modifying special exhaust gas denitrification catalyst |
Non-Patent Citations (1)
Title |
---|
用于地下水中砷去除的铈铁复合材料的制备和作用机制;张煜等;《中国科学(B辑)》;20030430;第33卷(第2期);第127-133页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110327874A (en) | 2019-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yao et al. | Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: Adsorption performances and mechanisms | |
Shan et al. | Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas | |
CN103623772B (en) | A kind of adsorbent for removing and reclaim liquid phase mercury and preparation method thereof and using method | |
CN110252255B (en) | Preparation method and application of gaseous mercury adsorbent | |
Li et al. | Efficient removal of uranium using a melamine/trimesic acid-modified hydrothermal carbon-based supramolecular organic framework | |
CN103521164B (en) | Flue gas demercuration, desulfurization and denitrification adsorbent and preparation method thereof | |
CN106378092A (en) | Method for preparing peanut shell activated carbon-based magnetic Cr(VI) adsorbent | |
CN110975415B (en) | Integrated filter material, preparation method and application | |
CN102614854A (en) | Method for preparaing dephosphorized and ferrum-carried activated carbon adsorbent | |
CN110327874B (en) | Core-shell structure composite iron-cerium oxide dearsenic adsorbent and preparation method and application thereof | |
CN106902742A (en) | A kind of porous activated carbon supported magnesium oxide composite and its preparation method and application | |
WO2022088675A1 (en) | Carbon dioxide adsorbent, and preparation method and use method therefor | |
CN104525093B (en) | A magnetic adsorbent for removing Hg0 in flue gas and its preparation and application | |
Huo et al. | Coal-based sulfur hybrid sorbent for removal of Hg0 from flue gas. Part 1. High inorganic sulfur coal | |
CN111111615B (en) | A kind of preparation method of coral-like biochar/hydrated iron oxide composite arsenic remover | |
CN108421523A (en) | A kind of preparation method for inhaling mercury porous ceramics block materials | |
Wu et al. | SO2 resistance of CeO2-and Co3O4-supported activated carbon during removal of mercury from flue gas: A comparative study | |
CN107999024B (en) | Preparation method and application of efficient sulfur-resistant copper-based demercuration adsorbent | |
CN112675817B (en) | Porous magnetic Fe/C mixture and preparation method and application thereof | |
CN114272896A (en) | Preparation and application of iron-based biochar for removing hexavalent chromium and dye through mediated oxalic acid | |
CN110280213B (en) | A nano-magnetic composite iron-copper oxide dearsenic adsorbent and its preparation method and application | |
CN109200792B (en) | Comprehensive treatment method and system for sintering flue gas of iron and steel plant | |
CN114100592B (en) | A method for regenerating flue gas mercury removal materials and recovering elemental mercury | |
CN111282540A (en) | Preparation process of renewable and sulfur-resistant Fe-Mn-Ce magnetic adsorbent for mercury removal from flue gas | |
WO2022267335A1 (en) | Filter material, preparation method therefor, and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |