CN110323993A - 一种多目标约束下平面电机的控制方法及终端设备 - Google Patents

一种多目标约束下平面电机的控制方法及终端设备 Download PDF

Info

Publication number
CN110323993A
CN110323993A CN201910385648.8A CN201910385648A CN110323993A CN 110323993 A CN110323993 A CN 110323993A CN 201910385648 A CN201910385648 A CN 201910385648A CN 110323993 A CN110323993 A CN 110323993A
Authority
CN
China
Prior art keywords
motor
model
moment
planar motor
lower plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910385648.8A
Other languages
English (en)
Other versions
CN110323993B (zh
Inventor
黄苏丹
胡智勇
曹广忠
郭晋昌
陈龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201910385648.8A priority Critical patent/CN110323993B/zh
Publication of CN110323993A publication Critical patent/CN110323993A/zh
Application granted granted Critical
Publication of CN110323993B publication Critical patent/CN110323993B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明公开了一种多目标约束下平面电机的控制方法及终端设备,所述方法包括:根据平面电机的动力学模型建立用于预测第一预设数量时刻的预测位置的预测模型;根据所述预测模型确定的预测位置建立多目标约束的代价函数,根据所述代价函数计算平面电机的推力指令信号,并将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动。本发明根据平面电机的动力学模型建立预测模型,并基于预测模型计算平面电机的推力指令信号,并通过将所述推力指令信号作用到平面电机,以提高平面电机下一时刻位置准确性,从而提供了平面电机的精确性。

Description

一种多目标约束下平面电机的控制方法及终端设备
技术领域
本发明涉及平面电机技术领域,特别涉及一种多目标约束下平面电机的控制方法及终端设备。
背景技术
平面电机具有结构简单、安装方便、精度高、速度快、成本低、可靠性高等优点,在集成电路等精密制造领域极具应用前景。目前平面电机的高精度位置控制使其迫切需要解决的问题,特别是多维目标约束下的高精度位置控制是急需解决的关键技术。目前平面电机的位置控制方法主要包括:比例微分积分控制、鲁棒控制、自适应控制、迭代解耦前馈控制、滑模控制、数据驱动控制等,但仍未见平面电机模型预测控制方法的相关报道。
发明内容
鉴于现有技术的不足,本发明旨在提供一种多目标约束下平面电机的控制方法及终端设备。
本发明所采用的技术方案如下:
一种多目标约束下平面电机的控制方法,其包括:
根据平面电机的动力学模型建立用于预测第一预设数量时刻的预测位置的预测模型;
根据所述预测模型确定的预测位置建立多目标约束的代价函数,其中,所述多目标约束包括参考位置与预测位置的误差、水平推力控制量以及预测位置与实际位置的误差;
根据所述代价函数计算平面电机的推力指令信号,并将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动。
所述多目标约束下平面电机的控制方法,其中,所述根据平面电机的动力学模型建立用于预测第一预设数量时刻的预测位置的预测模型具体包括:
根据平面电机的动力学模型建立其对应的状态空间模型,其中,所述状态空间模型以水平推力为输入控制量、位置为输出变量;
利用欧拉方法将所述状态空间模型离散化,并根据离散化的状态空间模型确定用于预测第一预设数量时刻的预测位置的预测模型。
所述多目标约束下平面电机的控制方法,其中,所述利用欧拉方法将所述状态空间模型离散化,并根据离散化的状态空间模型确定用于预测第一预设数量时刻的预测位置的预测模型具体包括:
利用欧拉方法将所述状态空间模型离散化,以得到离散状态空间模型;
根据所述离散状态空间模型确定预测第一预设数量时刻的预测位置的预测模型,其中,所述第一预设数量时刻中第二预设数量时刻内有控制输入。
所述多目标约束下平面电机的控制方法,其中,所述状态空间模型为连续时间状态空间模型。
所述多目标约束下平面电机的控制方法,其中,所述多目标约束的代价函数的表达式为:
J=||Q1(R(k)-Y(k))||2+||Q2U(k)||2+||Q3(y1L-Y(k))||2
其中,R为参考输入,y1为当前时刻的电机位置,L为系数矩阵,Q1为误差的权值矩阵,Q2为输入的权值矩阵,Q3为实际位置偏差的权值矩阵,Y(k)为k时刻预测模型的预测位置,U(k)为k时刻的输入控制量。
所述多目标约束下平面电机的控制方法,其中,所述根据所述代价函数计算平面电机的推力指令信号,并将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动具体包括:
根据所述代价函数计算所述平面电机的输入控制量序列;
根据所述输入控制量序列确定下一时刻的水平推力,根据所述水平推力确定推力指令信号;
将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动。
所述多目标约束下平面电机的控制方法,其中,所述根据所述输入控制量序列确定下一时刻的水平推力,根据所述水平推力确定推力指令信号具体为:
选取所述输入控制量序列的第一分量,并将所述第一分量作为下一刻的水平推力,根据所述水平推力确定推力指令信号。
一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如上任一所述的多目标约束下平面电机的控制方法中的步骤。
一种终端设备,其包括:处理器、存储器及通信总线;所述存储器上存储有可被所述处理器执行的计算机可读程序;
所述通信总线实现处理器和存储器之间的连接通信;
所述处理器执行所述计算机可读程序时实现如上任一所述的多目标约束下平面电机的控制方法中的步骤。
有益效果:与现有技术相比,本发明提供了一种多目标约束下平面电机的控制方法及终端设备,所述方法包括:根据平面电机的动力学模型建立用于预测第一预设数量时刻的预测位置的预测模型;根据所述预测模型确定的预测位置建立多目标约束的代价函数,根据所述代价函数计算平面电机的推力指令信号,并将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动。本发明根据平面电机的动力学模型建立预测模型,并基于预测模型计算平面电机的水平推力,并通过将所述水平推力作用到平面电机,以提高平面电机下一时刻位置准确性,从而提供了平面电机的精确性。
附图说明
图1为本发明提供的多目标约束下平面电机的控制方法的流程示意图。
图2为本发明提供的多目标约束下平面电机的控制方法的流程图。
图3为本发明提供的多目标约束下平面电机的控制方法中步骤S10的流程图。
图4为本发明提供的多目标约束下平面电机的控制方法中步骤S30的流程图。
图5为本发明提供的一种终端设备的结构原理图。
具体实施方式
本发明提供一种多目标约束下平面电机的控制方法及终端设备,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
下面结合附图,通过对实施例的描述,对发明内容作进一步说明。
本实施例提供了一种多目标约束下平面电机的控制方法,如图1-2所示,所述方法包括:
S10、根据平面电机的动力学模型建立用于预测第一预设数量时刻的预测位置的预测模型。
具体地,所述平面电机可以为平面开关磁阻电机(PSRM),所述平面开关磁阻电机的动力学模型可以为:
其中,ml为l轴运动平台的总质量,Bl为l轴运动平台的阻尼系数,kt=1000是将米转换为毫米的单位变换系数。
进一步,在建立预测模型的过程中,需要根据平面电机的动力学模型建立平面电机的状态空间模型,在根据状态空间模型生成预测模型。相应的,如图3所示,所述根据平面电机的动力学模型建立用于预测第一预设数量时刻的预测位置的预测模型具体包括:
S11、根据平面电机的动力学模型建立其对应的状态空间模型,其中,所述状态空间模型以水平推力为输入控制量、位置为输出变量;
S12、利用欧拉方法将所述状态空间模型离散化,并根据离散化的状态空间模型确定用于预测第一预设数量时刻的预测位置的预测模型。
具体地,所述状态空间方程为平面电机的连续时间状空间态模型,所述空间状态模型以水平推力为输入控制量,以位置为输出变量。在本实施例中,以平面开关磁阻电机(PSRM)为例,所述状态空间模型的表达式为:
其中,sl为l轴运动平台的位置,vl为l轴运动平台的速度,fl为电机l轴推力,y为预测位置,l轴为x轴或者y轴。
在本实施例的变形实施例中,所述状态空间模型的表达式还可以为:
其中,各符号表示的意义与本实施例中各符号表达的意思一致。
进一步,在确定平面电机的状态空间模型后,将所述状态空间模型离散化,并根据离散后的状态空间模型确定预测模型。相应的,所述利用欧拉方法将所述状态空间模型离散化,并根据离散化的状态空间模型确定用于预测第一预设数量时刻的预测位置的预测模型具体包括:
利用欧拉方法将所述状态空间模型离散化,以得到离散状态空间模型;
根据所述离散状态空间模型确定预测第一预设数量时刻的预测位置的预测模型,其中,所述第一预设数量时刻中第二预设数量时刻内有控制输入。
具体地,所述离散状态空间模型是利用欧拉方法对状态空间模型进行离散化得到,其中,所述离散状态空间模型的表达式为:
其中,T为采样周期。
进一步,所述第一预设数量为预先设定,这里用P表示第一预设数量。也就是说,所述预测模型可以预测未来P个时刻的电机位置并输出电机位置对应的水平推力。在设置第一预设数量P后,假设所述未来P个时刻内有第二预设数量M个时刻内平面电机的控制系统有控制输入,所述第二预设数量M小于等于第一预设数量P。
同时在本实施例中,所述用于预设未来P个时刻的预测位置的预测模型可以为:
Y(k)=Sxx(k)+SuU(k),
其中,
进一步,所述y(k+1|k)的表达式为:
y(k+1|k)=Cx(k+1|k)
=CAx(k)+CBu(k)
其中,所述符号“|”后面表示当前时刻,前面表示预测时刻,y(k+1|k)代表k时刻对k+1时刻输出位置的预测值。
S20、根据所述预测模型确定的预测位置建立多目标约束的代价函数,其中,所述多目标约束包括参考位置与预测位置的误差、水平推力控制量以及预测位置与实际位置的误差。
具体地,所述多目标约束包括三个目标约束,分为参考位置与预测位置的误差,水平推力控制量,以及预测位置与实际位置的误差。相应的,所述多目标约束的代价函数的表达式为:
J=||Q1(R(k)-Y(k))||2+||Q2U(k)||2+||Q3(y1L-Y(k))||2
其中,R(k)为k时刻平面电机的参考位置,y1为k时刻的电机位置,L为系数矩阵,Q1为误差的权值矩阵,Q2为输入的权值矩阵,Q3为实际位置偏差的权值矩阵,Y(k)为k时刻预测模型的预测位置,U(k)为k时刻的输入控制量。
进一步,所述Y(k)表示通过预测模型预测得到的平面电机k时刻的预测位置,那么通过R(k)与Y(k)确定参考位置与预测位置的误差,y1与Y(k)确定实际位置与预测位置的误差,从而可以根据参考位置与预测位置的误差,水平推力控制量,以及预测位置与实际位置的误差确定代价函数,并根据所述代价函数预测下一时刻的水平推力。在本实施例中,所述代价函数中:
其中,r(k+1|k)代表k时刻下k+1时刻参考输入的值。
S30、根据所述代价函数计算平面电机的推力指令信号,并将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动。
具体,根据所述代价函数计算平面电机的推力指令信号为求解所述代价函数以得到水平推力的最优输入控制序列,并根据所述最优输入控制序列确定下一时刻的水平推力。另外,为了求解所述代价函数,根据预设的辅助变量将所述代价函数转换为:
其中,ρ=[Q1(R(k)-Y(k)) Q2U(k) Q3(yL-Y(k))]T
进一步,在将代价函数转换后,分别计算转换后的代价函数的一阶导数和二阶导数,其中,所述J′的一阶导数和二阶导数分别为
dJ'/dU=2[Su TQ1 TQ1Su+Q2 TQ2+Su TQ3 TQ3Su]U(k)-2Su TQ1 TQ1(R(k)-Sxx(k))
-2Su TQ3 TQ3(yL-Sxx(k))
d2J'/dU2=Su TQ1 TQ1Su+Q2 TQ2+Su TQ3 TQ3Su=||Q1Su||2+||Q2||2+||Q3Su||2>0。
由J′的二阶导数的计算结果可以得到,J′的二阶导数大于0,即当dJ'/dU=0时所得到的解是一个极小值。在本实施例中,所述dJ'/dU=0的极小值记为:
U(k)=Kmpc1(R(k)-Sxx(k))+Kmpc2(y1L-Sxx(k))
Kmpc1=[Su TQ1 TQ1Su+Q2 TQ2+Su TQ3 TQ3Su]-1Su TQ1 TQ1
Kmpc2=[Su TQ1 TQ1Su+Q2 TQ2+Su TQ3 TQ3Su]-1Su TQ3 TQ3
进一步,在根据代价函数计算得到输入控制量序列,可以根据所述输入控制量序列确定下一时刻的水平推力。相应的,如图4所示,所述根据所述代价函数计算平面电机的推力指令信号,并将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动具体包括:
S31、根据所述代价函数计算所述平面电机的输入控制量序列;
S32、根据所述输入控制量序列确定下一时刻的水平推力,根据所述水平推力确定推力指令信号;
S33、将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动。
具体地,所述下一时刻的水平推力为输入控制量序列的第一分量,即在计算得到输入控制量序列时,选取所述输入控制量序列的第一分量,并将所述第一分量作为下一刻的水平推力;将所述水平推力转换为推力指令信号,并将所述推力指令信号作为输入控制量作用于平面电机的驱动装置,以控制所述平面电机运动,这样可以提供平面电机运动的精确性。当然,在k+1时刻重复上述过程可以获取k+2时刻的输入控制量,依次类推直至k+p时刻。此外在实际应用中,在k+1时刻获取k+2时刻的输入控制量之前,可以先判断所述k+1时刻是否为最后时刻,当k+1不为最后时刻时,执行上步骤获取k+2时刻的输入控制量,当k+1为最后时刻时,则完成输入控制量获取操作。
基于上述多目标约束下平面电机的控制方法,本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如上任一所述的多目标约束下平面电机的控制方法中的步骤。
基于上述多目标约束下平面电机的控制方法,本发明还提供了一种终端设备,如图5所示,其包括至少一个处理器(processor)20;显示屏21;以及存储器(memory)22,还可以包括通信接口(Communications Interface)23和总线24。其中,处理器20、显示屏21、存储器22和通信接口23可以通过总线24完成相互间的通信。显示屏21设置为显示初始设置模式中预设的用户引导界面。通信接口23可以传输信息。处理器20可以调用存储器22中的逻辑指令,以执行上述实施例中的方法。
此外,上述的存储器22中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器22作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器20通过运行存储在存储器22中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述实施例中的方法。
存储器22可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器22可以包括高速随机存取存储器,还可以包括非易失性存储器。例如,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
此外,上述存储介质以及终端设备中的多条指令处理器加载并执行的具体过程在上述方法中已经详细说明,在这里就不再一一陈述。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

1.一种多目标约束下平面电机的控制方法,其特征在于,其包括:
根据平面电机的动力学模型建立用于预测第一预设数量时刻的预测位置的预测模型;
根据所述预测模型确定的预测位置建立多目标约束的代价函数,其中,所述多目标约束包括参考位置与预测位置的误差、水平推力控制量以及预测位置与实际位置的误差;
根据所述代价函数计算平面电机的推力指令信号,并将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动。
2.根据权利要求1所述多目标约束下平面电机的控制方法,其特征在于,所述根据平面电机的动力学模型建立用于预测第一预设数量时刻的预测位置的预测模型具体包括:
根据平面电机的动力学模型建立其对应的状态空间模型,其中,所述状态空间模型以水平推力为输入控制量、位置为输出变量;
利用欧拉方法将所述状态空间模型离散化,并根据离散化的状态空间模型确定用于预测第一预设数量时刻的预测位置的预测模型。
3.根据权利要求2所述多目标约束下平面电机的控制方法,其特征在于,所述利用欧拉方法将所述状态空间模型离散化,并根据离散化的状态空间模型确定用于预测第一预设数量时刻的预测位置的预测模型具体包括:
利用欧拉方法将所述状态空间模型离散化,以得到离散状态空间模型;
根据所述离散状态空间模型确定预测第一预设数量时刻的预测位置的预测模型,其中,所述第一预设数量时刻中第二预设数量时刻内有控制输入。
4.根据权利要求2所述多目标约束下平面电机的控制方法,其特征在于,所述状态空间模型为连续时间状态空间模型。
5.根据权利要求1所述多目标约束下平面电机的控制方法,其特征在于,所述多目标约束的代价函数的表达式为:
J=||Q1(R(k)-Y(k))||2+||Q2U(k)||2+||Q3(y1L-Y(k))||2
其中,R为参考输入,y1为当前时刻的电机位置,L为系数矩阵,Q1为误差的权值矩阵,Q2为输入的权值矩阵,Q3为实际位置偏差的权值矩阵,Y(k)为k时刻预测模型的预测位置,U(k)为k时刻的输入控制量。
6.根据权利要求1所述多目标约束下平面电机的控制方法,其特征在于,所述根据所述代价函数计算平面电机的推力指令信号,并将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动具体包括:
根据所述代价函数计算所述平面电机的输入控制量序列;
根据所述输入控制量序列确定下一时刻的水平推力,根据所述水平推力确定推力指令信号;
将所述推力指令信号作用于平面电机的驱动装置,以控制所述平面电机运动。
7.根据权利要求6所述多目标约束下平面电机的控制方法,其特征在于,所述根据所述输入控制量序列确定下一时刻的水平推力,根据所述水平推力确定推力指令信号具体为:
选取所述输入控制量序列的第一分量,并将所述第一分量作为下一刻的水平推力,根据所述水平推力确定推力指令信号。
8.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1~7任意一项所述的多目标约束下平面电机的控制方法中的步骤。
9.一种终端设备,其特征在于,包括:处理器、存储器及通信总线;所述存储器上存储有可被所述处理器执行的计算机可读程序;
所述通信总线实现处理器和存储器之间的连接通信;
所述处理器执行所述计算机可读程序时实现如权利要求1-7任意一项所述的多目标约束下平面电机的控制方法中的步骤。
CN201910385648.8A 2019-05-09 2019-05-09 一种多目标约束下平面电机的控制方法及终端设备 Active CN110323993B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910385648.8A CN110323993B (zh) 2019-05-09 2019-05-09 一种多目标约束下平面电机的控制方法及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910385648.8A CN110323993B (zh) 2019-05-09 2019-05-09 一种多目标约束下平面电机的控制方法及终端设备

Publications (2)

Publication Number Publication Date
CN110323993A true CN110323993A (zh) 2019-10-11
CN110323993B CN110323993B (zh) 2021-06-15

Family

ID=68118889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910385648.8A Active CN110323993B (zh) 2019-05-09 2019-05-09 一种多目标约束下平面电机的控制方法及终端设备

Country Status (1)

Country Link
CN (1) CN110323993B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111665723A (zh) * 2020-06-19 2020-09-15 深圳大学 一种基于轨迹梯度软约束的平面电机的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032009A (ja) * 2007-07-26 2009-02-12 Yokogawa Electric Corp リニアアクチュエータ
CN108415252A (zh) * 2018-02-13 2018-08-17 南京理工大学 基于扩张状态观测器的电液伺服系统模型预测控制方法
CN109245640A (zh) * 2018-09-19 2019-01-18 北方工业大学 一种异步电机模型预测控制方法及装置
CN109639192A (zh) * 2018-12-12 2019-04-16 西安交通大学 一种表贴式永磁同步电机分时控制系统及分时控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032009A (ja) * 2007-07-26 2009-02-12 Yokogawa Electric Corp リニアアクチュエータ
CN108415252A (zh) * 2018-02-13 2018-08-17 南京理工大学 基于扩张状态观测器的电液伺服系统模型预测控制方法
CN109245640A (zh) * 2018-09-19 2019-01-18 北方工业大学 一种异步电机模型预测控制方法及装置
CN109639192A (zh) * 2018-12-12 2019-04-16 西安交通大学 一种表贴式永磁同步电机分时控制系统及分时控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
彦宁 等: "基于直接转矩控制的开关磁阻电机模型预测控制方法", 《中国电机工程学报》 *
黄苏丹: "平面开关磁阻电机的高精度运动机理及其控制方法", 《万方学位论文》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111665723A (zh) * 2020-06-19 2020-09-15 深圳大学 一种基于轨迹梯度软约束的平面电机的控制方法
CN111665723B (zh) * 2020-06-19 2022-09-20 深圳大学 一种基于轨迹梯度软约束的平面电机的控制方法

Also Published As

Publication number Publication date
CN110323993B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
Foumani et al. A cross-entropy method for optimising robotic automated storage and retrieval systems
CN106372329B (zh) 材料基因工程高通量集成计算与数据管理的方法及系统
CN108357848A (zh) 基于多层穿梭车自动仓储系统的建模优化方法
CN103970587B (zh) 一种资源调度的方法、设备和系统
CN108269040B (zh) 自动化存取系统作业调度优化方法及装置
US20210011438A1 (en) Control device, control method, and control program
CN113157422A (zh) 基于深度强化学习的云数据中心集群资源调度方法及装置
CN108664729A (zh) 一种gromacs云计算流程控制方法
CN109459933A (zh) 一种基于异步状态观测器的马尔科夫跳变系统控制方法
CN104615071A (zh) 基于Petri网的自动化立体仓库系统的PLC程序设计方法
CN110323993A (zh) 一种多目标约束下平面电机的控制方法及终端设备
CN109656567A (zh) 异质化业务数据处理逻辑的动态方法和系统
CN112231863B (zh) 太阳翼电池阵基板建模方法、装置、设备及存储介质
CN100565393C (zh) 一种自动化码头设备的全仿真模拟系统及方法
CN105818370B (zh) 立体打印装置
CN110334386A (zh) 一种基于参数回归的平面电机控制方法及终端设备
CN103439964B (zh) 一种ocsvm监控模型的在线更新系统及方法
CN113673742B (zh) 配电变压器台区负荷预测方法、系统、装置及介质
CN115130985A (zh) 生产控制方法和相关装置、存储介质和程序产品
CN111475947B (zh) 用于3d打印的仿真方法、装置、存储介质及服务器
CN106982246A (zh) 智能设备
CN102063308A (zh) 一种用于地震勘探资料处理流程控制的方法
CN111274667A (zh) 一种跨尺度材料计算软件集成计算系统及方法
CN101762312A (zh) 电子秤电子天平称量自定义通讯协议的方法
CN115829629B (zh) 一种畅滞销状态的确定方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant