CN110318465B - 一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法 - Google Patents

一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法 Download PDF

Info

Publication number
CN110318465B
CN110318465B CN201910492621.9A CN201910492621A CN110318465B CN 110318465 B CN110318465 B CN 110318465B CN 201910492621 A CN201910492621 A CN 201910492621A CN 110318465 B CN110318465 B CN 110318465B
Authority
CN
China
Prior art keywords
lower flange
frame beam
energy consumption
frame
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910492621.9A
Other languages
English (en)
Other versions
CN110318465A (zh
Inventor
郁有升
郭亚楠
于德湖
王燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Zhongqing Hangxiao Green Building Technology Co.,Ltd.
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN201910492621.9A priority Critical patent/CN110318465B/zh
Publication of CN110318465A publication Critical patent/CN110318465A/zh
Priority to PCT/CN2020/093957 priority patent/WO2020244509A1/zh
Application granted granted Critical
Publication of CN110318465B publication Critical patent/CN110318465B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2406Connection nodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2415Brackets, gussets, joining plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2418Details of bolting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Architecture (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Computational Mathematics (AREA)
  • Structural Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

本发明涉及一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法,采用如下步骤:基于耗能目标,在XY坐标系绘制节点在循环荷载作用下的荷载‑位移曲线,由曲线计算求得框架梁下翼缘拼接区的耗能系数;确定框架梁下翼缘侧拼接板的长度,根据耗能目标验算拼接板的尺寸;确定悬臂梁下翼缘侧拼接板的长度;最后,确定梁柱上焊下栓节点下翼缘拼接板的长度。在梁柱上焊下栓节点设计过程中,拼接板过短会导致节点承载力不足,拼接板过长会造成焊接应力集中,残余变形加大,下翼缘板及拼接板屈曲失稳,针对以上不足,本发明提出了一种拼接板长度的确定方法,可保证梁柱上焊下栓节点的承载能力、延性及耗能能力,减少焊接应力集中及残余变形。

Description

一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度 的方法
技术领域
本发明属于建筑钢结构框架梁柱节点设计领域,具体涉及一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法。
背景技术
随着经济建设对建筑结构和功能要求的提高,钢结构从过去主要应用于工业厂房领域发展到如今广泛应用于公共建筑和民用建筑等领域。装配式钢结构是将建筑中部分或全部构件在工厂进行生产,然后运输到施工现场进行装配而成的建筑,具有施工周期短、节约劳动力、减少污染和保护环境等优点,是现代化建筑结构的发展方向。
在装配式钢结构中,梁柱节点起到传递结构内力和协调结构变形的作用,是装配式钢结构的关键部位。目前,带悬臂梁段拼接的梁柱节点在世界各国钢结构工程中有着广泛的应用。在钢框架中,节点并不是孤立存在的。在地震作用下,一旦梁柱节点发生破坏,梁柱之间可能因缺少可靠的连接,而导致整个结构失稳从而破坏。并且,对于H型钢梁,下翼缘相对于上翼缘更易发生破坏。对于目前的梁柱节点设计领域,多集中于H型钢梁的设计方面,而实际工程操作中参数的取值缺少理论依据。本专利发明人在专利201710903060.8中提出一种翼缘栓焊混合连接装配式梁柱节点的制作方法,计算了框架梁下翼缘的高强螺栓数量与悬臂梁下翼缘拼接板处的焊缝长度,在工厂对构件进行加工,施工现场吊装就位拼装,但是,未明确说明钢梁下翼缘拼接板尺寸如何确定,未考虑节点耗能问题。专利CN109629684A公开了一种可恢复功能的装配式防屈曲槽型腹板剪切件梁柱节点连接装置,节点为梁端加强及翼缘盖板连接削弱并用型节点,可实现多重耗能机理,震后仅需通过更换连接板即可实现结构的功能恢复,但是,未说明该节点翼缘内盖板、垫板和腹板剪切件的尺寸及其确定方法。
发明内容
本发明针对现有技术的不足,提供了一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法。
本发明通过以下技术方案予以实现:
一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法,包括以下步骤:
第一步,确定框架梁下翼缘拼接区的耗能系数:
框架梁下翼缘拼接区的耗能:
Eci=E1i+E2i+E3i (1)
式中:E1i—地震作用下框架梁下翼缘的高强螺栓滑移引起的耗能;E2i—地震作用下框架梁下翼缘的高强螺栓与孔壁的挤压引起的耗能;E3i—地震作用下框架梁下翼缘拼接板的变形引起的耗能;
框架梁下翼缘产生的位移:
δi=δ12i3i (2)
框架梁下翼缘的高强螺栓滑移产生的位移:
δ1=d0-d (3)
式中:d0—螺栓孔直径;d—高强螺栓的公称直径;
框架梁下翼缘由高强螺栓的滑移引起的耗能:
Figure BDA0002087538490000021
式中:F1i—地震作用引起框架梁下翼缘高强螺栓滑移的内力;
设计拼接板的宽度为bp=bf+4tf,厚度tp=tf+2mm;
高强螺栓与孔壁的挤压产生的位移:
Figure BDA0002087538490000022
式中:tf—框架梁横截面翼缘厚度;tp—拼接板的厚度;F2i—地震作用引起框架梁下翼缘的高强螺栓与孔壁挤压的内力;
框架梁下翼缘拼接板变形产生的位移:
Figure BDA0002087538490000023
式中:F3i—地震作用引起框架梁下翼缘拼接板变形的内力;
不同地震类别下的耗能目标:
表1
Figure BDA0002087538490000031
表中:ET—框架结构在地震作用下的总耗能;N—一个框架结构中梁柱上焊下栓节点的个数;
根据公式(1)~(6)及表1,在XY坐标系绘制节点在循环荷载作用下的荷载-位移曲线;
由荷载-位移曲线求得耗能系数:
Figure BDA0002087538490000032
式中:S—循环荷载作用下滞回环的面积;|S′|—最大正荷载点到X轴的垂线与X轴所组成三角形的面积;|S″|—最大负荷载点到X轴的垂线与X轴所组成三角形的面积;
第二步,根据框架梁的截面尺寸参数及第一步所求结果,计算得出框架梁下翼缘拼接板所需的高强螺栓数目,确定框架梁下翼缘侧拼接板的长度:
由于框架梁下翼缘处的螺栓配置不能确定,近似取框架梁下翼缘的净截面面积为其毛截面面积的85%;
框架梁下翼缘的净截面面积:Anf=0.85bftf (8)
式中:bf—框架梁横截面翼缘宽度;tf—框架梁横截面翼缘厚度;
在受剪连接中,框架梁下翼缘单个高强度螺栓的承载力设计值:
Figure BDA0002087538490000034
式中:nf—传力摩擦面数目;μ—摩擦面的抗滑移系数;P—单个高强度螺栓的预应力;
框架梁下翼缘所需高强螺栓数目:
Figure BDA0002087538490000033
式中:fv—框架梁钢材的抗剪强度;
由公式(8)~(10)计算得出框架梁下翼缘所需高强螺栓数目;
框架梁下翼缘侧拼接板的长度:
l1=(nf′-1)×Δ1+2Δ2 (11)
式中:nf′—框架梁下翼缘每排所需高强螺栓数目;Δ1—高强螺栓的中心间距;Δ2—高强螺栓的中心至构件边缘的距离;
根据耗能目标,验算拼接板的尺寸:
bp×tp×fpv≤k×bf×tf×fv (12)
式中:fpv—拼接板钢材的抗剪强度;
第三步,计算得出悬臂梁下翼缘拼接板处的侧面焊缝长度,确定悬臂梁下翼缘侧拼接板的长度:
悬臂梁下翼缘、框架梁下翼缘所能承受的最大轴力:N′=(bf-2d0)tff (13)
式中:f—悬臂梁、框架梁钢材的抗拉、抗压、抗弯强度设计值;
悬臂梁上翼缘与框架梁上翼缘连接焊缝所能承受的最大轴力:
N″=(bf-2tf)tfft w (14)
式中:ft w—对接焊缝的抗拉强度设计值;
悬臂梁与框架梁的翼缘所能承受的最大轴力:N=min{N′,N″} (15)
悬臂梁下翼缘拼接板处正面角焊缝所能承受的内力:
Figure BDA0002087538490000041
式中:ff w—角焊缝的抗拉、抗压、抗剪强度设计值;he—角焊缝的计算厚度,he=0.7hf;hf为焊脚尺寸;lw—角焊缝的计算长度,对每条焊缝取其实际长度减去2hf
悬臂梁下翼缘拼接板处侧面角焊缝所需承受的内力:
N2=N-N1 (17)
悬臂梁下翼缘拼接板处侧面角焊缝长度:
Figure BDA0002087538490000042
悬臂梁下翼缘拼接板处每条侧面角焊缝的长度:
Figure BDA0002087538490000043
根据计算得出的每条侧面角焊缝的长度,结合构造要求,确定悬臂梁下翼缘侧拼接板的长度l2
第四步,根据以上三个步骤的计算结果,确定梁柱上焊下栓节点下翼缘拼接板的长度:
l=l1+l2+Δ (20)
式中:l1—框架梁下翼缘侧拼接板的长度;l2—悬臂梁下翼缘侧拼接板的长度;Δ—框架梁下翼缘螺栓连接区与悬臂梁下翼缘焊接区之间的距离。
本发明所涉及到的一种梁柱上焊下栓节点:在悬臂梁下翼缘布置拼接板,拼接板与悬臂梁通过三面角焊缝连接;现场安装时,拼接板充当就位耳板,框架梁吊装就位后,通过螺栓实现拼接板与框架梁下翼缘的连接;在悬臂梁腹板和框架梁腹板拼接处布置节点板,通过螺栓实现悬臂梁腹板与框架梁腹板的连接;悬臂梁上翼缘与框架梁上翼缘通过对接焊缝连接。
本发明的有益效果:梁柱上焊下栓节点,在地震作用下,能有效利用拼接区高强螺栓的滑移、高强螺栓与孔壁的挤压以及拼接板的变形来实现耗能,具有良好的滞回性能和耗能能力;在梁柱上焊下栓节点设计过程中,拼接板过短,连接不牢固,承载力不足;拼接板过长,易造成应力集中,焊接残余变形增大,板件屈曲失稳;本发明避其不足,提出了一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法,可保证梁柱上焊下栓节点的延性及耗能能力,减少应力集中及焊接残余变形,保证结构承载能力。
附图说明
图1为本发明的流程图;
图2为梁柱上焊下栓节点结构示意图;
图3为钢梁横截面尺寸图;
图4为节点耗能示意图;
图5为实施例的下翼缘拼接板尺寸图。
具体实施方式
下面结合附图并通过实施例对本发明做进一步说明。
实施例
一种梁柱上焊下栓节点,包括钢柱1、悬臂梁2、框架梁3、腹板拼接螺栓4、悬臂梁下翼缘5、拼接板6、框架梁下翼缘7、拼接板6与悬臂梁下翼缘5连接的角焊缝8、拼接板6与框架梁下翼缘7连接的高强螺栓9、悬臂梁上翼缘与框架梁上翼缘的连接焊缝10,其中,梁柱钢材选用Q345B热轧H型钢,拼接板6钢材选用Q235热轧H型钢,悬臂梁2和框架梁3的截面尺寸均为HN300mm×160mm×8mm×10mm,柱1截面尺寸为HW250mm×250mm×9mm×14mm;采用10.9级M20的摩擦型高强螺栓9,试件螺栓孔的直径为21.5mm;腹板节点板的尺寸为220mm×170mm×8mm,腹板节点板所需的螺栓4个数为6,双排布置,每排3个;一个高强螺栓9的预应力设计值为P=155kN,摩擦面的抗滑移系数为0.45。
一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板6长度的方法包括以下步骤:
第一步,确定框架梁下翼缘7的拼接区的耗能系数:
框架梁下翼缘7的拼接区的耗能:
Eci=E1i+E2i+E3i (1)
式中:E1i—地震作用下框架梁下翼缘7的高强螺栓9滑移引起的耗能;E2i—地震作用下框架梁下翼缘7的高强螺栓9与孔壁的挤压引起的耗能;E3i—地震作用下框架梁下翼缘7拼接板6变形引起的耗能;
框架梁下翼缘7产生的位移:
δi=δ12i3i (2)
框架梁下翼缘7的高强螺栓9滑移产生的位移:
δ1=d0-d=21.5-20=1.5mm (3)
式中:d0—螺栓孔直径;d—高强螺栓9的公称直径;
框架梁下翼缘7由高强螺栓9的滑移引起的耗能:
Figure BDA0002087538490000061
式中:F1i—地震作用引起框架梁下翼缘7高强螺栓9滑移的内力;
设计拼接板6的宽度为bp=bf+4tf=160+4×10=200mm,厚度tp=tf+2mm=12mm;
高强螺栓9与孔壁的挤压产生的位移:
Figure BDA0002087538490000062
式中:tf—框架梁3横截面翼缘厚度;tp—拼接板6的厚度;F2i—地震作用引起框架梁下翼缘7的高强螺栓9与孔壁挤压的内力;
框架梁下翼缘7拼接板6变形产生的位移:
Figure BDA0002087538490000071
式中:F3i—地震作用引起框架梁下翼缘7拼接板6变形的内力;
不同地震类别下的耗能目标:
表1
Figure BDA0002087538490000072
表中:ET—框架结构在地震作用下的总耗能;N—一个框架结构中梁柱上焊下栓节点的个数;
根据公式(1)~(6)及表1,在XY坐标系绘制节点在循环荷载作用下的荷载-位移曲线;
由荷载-位移曲线求得耗能系数:
Figure BDA0002087538490000073
式中:S—循环荷载作用下滞回环的面积,即
Figure BDA0002087538490000074
|S′|—最大正荷载点到X轴的垂线与X轴所组成三角形的面积,即|SΔOBE|;|S″|—最大负荷载点到X轴的垂线与X轴所组成三角形的面积,即|SΔODF|;
由以上步骤计算得出k=1.64;
第二步,根据框架梁3的截面尺寸参数及第一步所求结果,计算得出框架梁下翼缘7拼接板6所需的高强螺栓9数目,确定框架梁下翼缘7侧拼接板6的长度:
由于框架梁下翼缘7处的螺栓9配置不能确定,近似取框架梁下翼缘7的净截面面积为其毛截面面积的85%;
框架梁下翼缘7的净截面面积:
Anf=0.85bftf=0.85×160×10=1360mm2 (8)
式中:bf—框架梁3横截面翼缘宽度;tf—框架梁3横截面翼缘厚度;
在受剪连接中,框架梁下翼缘7单个高强度螺栓9的承载力设计值:
Figure BDA0002087538490000081
式中:nf—传力摩擦面数目;μ—摩擦面的抗滑移系数;P—单个高强度螺栓9的预应力;
框架梁下翼缘7所需高强螺栓9数目:
Figure BDA0002087538490000082
式中:fv—框架梁3钢材的抗剪强度(fv=175N/mm2);
由公式(8)~(10)计算得出框架梁下翼缘7所需高强螺栓9数目为6,双排布置,每排3个;
框架梁下翼缘7侧拼接板6的长度:
l1=(nf′-1)×Δ1+2Δ2=(3-1)×80+2×50=260mm (11)
式中:nf′—框架梁下翼缘7每排所需高强螺栓9数目;Δ1—高强螺栓9的中心间距;Δ2—高强螺栓9的中心至构件边缘的距离;
根据耗能目标,验算拼接板6的尺寸:
bp×tp×fpv=200×12×125=300kN
≤k×bf×tf×fv=1.64×160×10×175=459.2kN (12)
∴拼接板6的尺寸满足耗能要求;
式中:fpv—拼接板6钢材的抗剪强度(fpv=125N/mm2);
第三步,计算得出悬臂梁下翼缘5拼接板6处的侧面焊缝长度,确定悬臂梁下翼缘5侧拼接板6的长度:
Q345钢材焊接选用的焊条型号为E50,对接焊缝的抗拉强度设计值ft w=305N/mm2;角焊缝抗拉、抗压、抗剪强度设计值
Figure BDA0002087538490000083
拼接板6与悬臂梁下翼缘5连接的角焊缝8的焊脚尺寸为hf=10mm;
悬臂梁下翼缘5、框架梁下翼缘7所能承受的最大轴力:
N′=(bf-2d0)tff=(160-2×21.5)×10×305×10-3=356.85kN (13)
式中:f—悬臂梁2、框架梁3钢材的抗拉、抗压、抗弯强度设计值(f=305N/mm2);
悬臂梁上翼缘与框架梁上翼缘连接焊缝10所能承受的最大轴力:
N″=(bf-2tf)tfft w=(160-2×10)×10×305×10-3=427kN (14)
悬臂梁2与框架梁3的翼缘所能承受的最大轴力:
N=min{N′,N″}={356.85,427}=356.85kN (15)
悬臂梁下翼缘5拼接板6处正面角焊缝8所能承受的内力:
Figure BDA0002087538490000091
式中:he—角焊缝的计算厚度,he=0.7hf;hf为焊脚尺寸;lw—角焊缝的计算长度,对每条焊缝取其实际长度减去2hf
悬臂梁下翼缘5拼接板6处侧面角焊缝所需承受的内力:
N2=N-N1=356.85-196=160.85kN (17)
悬臂梁下翼缘5拼接板6处侧面角焊缝长度:
Figure BDA0002087538490000092
悬臂梁下翼缘5拼接板6处每条侧面角焊缝的长度:
Figure BDA0002087538490000093
根据计算得出的每条侧面角焊缝的长度,确定悬臂梁下翼缘5侧拼接板6的长度:
为了避免拼接板6发生刚度突变,将每条侧向角焊缝的实际长度取为155mm,即l2=155mm;
第四步,根据以上三个步骤的计算结果,确定梁柱上焊下栓节点下翼缘拼接板6的长度:
l=l1+l2+Δ=260+155+5=420mm (20)
式中:l1—框架梁下翼缘7侧拼接板6的长度;l2—悬臂梁下翼缘5侧拼接板6的长度;Δ—框架梁下翼缘7螺栓连接区与悬臂梁下翼缘5焊接区之间的距离。

Claims (1)

1.一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法,包括以下步骤:
第一步,确定框架梁下翼缘拼接区的耗能系数:
框架梁下翼缘拼接区的耗能:Eci=E1i+E2i+E3i (1)
框架梁下翼缘产生的位移:δi=δ12i3i (2)
框架梁下翼缘的高强螺栓滑移产生的位移:δ1=d0-d (3)
框架梁下翼缘由高强螺栓的滑移引起的耗能:
Figure FDA0002087538480000011
设计拼接板的宽度为bp=bf+4tf,厚度为tp=tf+2mm;
高强螺栓与孔壁的挤压产生的位移:
Figure FDA0002087538480000012
框架梁下翼缘拼接板变形产生的位移:
Figure FDA0002087538480000013
表1不同地震类别下的耗能目标:
Figure FDA0002087538480000014
根据公式(1)~(6)及表1,在XY坐标系绘制节点在循环荷载作用下的荷载-位移曲线;
由荷载-位移曲线求得耗能系数:
Figure FDA0002087538480000015
式中:E1i—地震作用下框架梁下翼缘的高强螺栓滑移引起的耗能;E2i—地震作用下框架梁下翼缘的高强螺栓与孔壁挤压引起的耗能;E3i—地震作用下框架梁下翼缘拼接板的变形引起的耗能;d0—螺栓孔直径;d—高强螺栓的公称直径;tf—框架梁横截面翼缘厚度;tp—拼接板的厚度;F1i—地震作用引起框架梁下翼缘高强螺栓滑移的内力;F2i—地震作用引起框架梁下翼缘的高强螺栓与孔壁挤压的内力;F3i—地震作用引起框架梁下翼缘拼接板变形的内力;ET—框架结构在地震作用下的总耗能;N—一个框架结构中梁柱上焊下栓节点的个数;S—循环荷载作用下滞回环的面积;|S|—最大正荷载点到X轴的垂线与X轴所组成三角形的面积;|S″|—最大负荷载点到X轴的垂线与X轴所组成三角形的面积;
第二步,根据框架梁的截面尺寸参数及第一步所求结果,计算得出框架梁下翼缘拼接板所需的高强螺栓数目,确定框架梁下翼缘侧拼接板的长度:
由于框架梁下翼缘处的螺栓配置不能确定,近似取框架梁下翼缘的净截面面积为其毛截面面积的85%;
框架梁下翼缘的净截面面积:Anf=0.85bftf (8)
在受剪连接中,框架梁下翼缘单个高强度螺栓的承载力设计值:
Figure FDA0002087538480000021
框架梁下翼缘所需高强螺栓数目:
Figure FDA0002087538480000022
由公式(8)~(10)计算得出框架梁下翼缘所需高强螺栓数目;
框架梁下翼缘侧拼接板的长度l1:l1=(nf′-1)×Δ1+2Δ2 (11)
根据耗能目标,验算拼接板的尺寸:
bp×tp×fpv≤k×bf×tf×fv (12)
式中:bf—框架梁横截面翼缘宽度;tf—框架梁横截面翼缘厚度;nf—传力摩擦面数目;μ—摩擦面的抗滑移系数;P—单个高强度螺栓的预应力;fv—框架梁钢材的抗剪强度;nf′—框架梁下翼缘每排所需高强螺栓数目;Δ1—高强螺栓的中心间距;Δ2—高强螺栓的中心至构件边缘的距离;fpv—拼接板钢材的抗剪强度;
第三步,计算得出悬臂梁下翼缘拼接板处的侧面焊缝长度,确定悬臂梁下翼缘侧拼接板的长度:
悬臂梁下翼缘、框架梁下翼缘所能承受的最大轴力:N′=(bf-2d0)tff (13)
悬臂梁上翼缘与框架梁上翼缘连接焊缝所能承受的最大轴力:N″=(bf-2tf)tfft w (14)
悬臂梁与框架梁的翼缘所能承受的最大轴力:N=min{N′,N″} (15)
悬臂梁下翼缘拼接板处正面角焊缝所能承受的内力:
Figure FDA0002087538480000023
悬臂梁下翼缘拼接板处侧面角焊缝所需承受的内力:N2=N-N1 (17)
悬臂梁下翼缘拼接板处侧面角焊缝长度:
Figure FDA0002087538480000024
悬臂梁下翼缘拼接板处每条侧面角焊缝的长度:
Figure FDA0002087538480000025
式中:f—悬臂梁、框架梁钢材的抗拉、抗压、抗弯强度设计值;ft w—对接焊缝的抗拉强度设计值;ff w—角焊缝的抗拉、抗压、抗剪强度设计值;he—角焊缝的计算厚度;lw—角焊缝的计算长度,对每条焊缝取其实际长度减去2hf
根据计算得出的每条侧面角焊缝的长度,结合构造要求,确定悬臂梁下翼缘侧拼接板的长度l2
第四步,根据以上三个步骤的计算结果,确定梁柱上焊下栓节点下翼缘拼接板的长度:
l=l1+l2+Δ (20)
式中:Δ—框架梁下翼缘螺栓连接区与悬臂梁下翼缘焊接区之间的距离。
CN201910492621.9A 2019-06-06 2019-06-06 一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法 Active CN110318465B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910492621.9A CN110318465B (zh) 2019-06-06 2019-06-06 一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法
PCT/CN2020/093957 WO2020244509A1 (zh) 2019-06-06 2020-06-02 确定梁柱上焊下栓节点下翼缘拼接板长度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910492621.9A CN110318465B (zh) 2019-06-06 2019-06-06 一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法

Publications (2)

Publication Number Publication Date
CN110318465A CN110318465A (zh) 2019-10-11
CN110318465B true CN110318465B (zh) 2021-03-30

Family

ID=68120852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910492621.9A Active CN110318465B (zh) 2019-06-06 2019-06-06 一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法

Country Status (2)

Country Link
CN (1) CN110318465B (zh)
WO (1) WO2020244509A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110318465B (zh) * 2019-06-06 2021-03-30 青岛理工大学 一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法
CN112699448B (zh) * 2021-01-13 2023-07-18 中铁大桥勘测设计院集团有限公司 一种全焊钢桁梁整体节点撕破计算方法
CN113255047A (zh) * 2021-06-23 2021-08-13 合肥量圳建筑科技有限公司 框架梁布设方法、装置、设备及存储介质
CN116240978A (zh) * 2023-03-22 2023-06-09 兰州理工大学 可更换耗能元件自复位装配式梁柱节点及其施工方法
CN116657769A (zh) * 2023-04-27 2023-08-29 广州市越宏膜结构工程有限公司 一种铝合金板式节点抗剪连接件及其构造计算方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7047695B2 (en) * 1995-04-11 2006-05-23 Seismic Structural Design Associates, Inc. Steel frame stress reduction connection
KR100860478B1 (ko) * 2007-04-16 2008-09-26 주식회사 동성진흥 철골구조물의 보
CN105863074B (zh) * 2016-04-17 2018-12-07 北京工业大学 一种装配式波浪腹板梁柱节点连接装置
CN206667470U (zh) * 2017-02-17 2017-11-24 北京工业大学 一种可恢复功能的端板装配式槽钢开洞梁柱节点连接装置
CN109577481A (zh) * 2017-09-29 2019-04-05 青岛理工大学 一种翼缘栓焊混合连接装配式梁柱节点的制作方法
CN109577653A (zh) * 2017-09-29 2019-04-05 青岛理工大学 一种翼缘栓焊混合连接装配式梁柱节点的安装方法
CN110318465B (zh) * 2019-06-06 2021-03-30 青岛理工大学 一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法

Also Published As

Publication number Publication date
CN110318465A (zh) 2019-10-11
WO2020244509A1 (zh) 2020-12-10

Similar Documents

Publication Publication Date Title
CN110318465B (zh) 一种基于耗能目标确定梁柱上焊下栓节点下翼缘拼接板长度的方法
WO2019200727A1 (zh) 装配式自恢复耗能型双钢板开缝剪力墙结构
CN106400954B (zh) 一种基于损伤控制理念的钢梁—钢管混凝土柱节点
CN102444211B (zh) 一种通过端板连接的扩孔型钢结构梁柱节点及其施工方法
CN108978863B (zh) 一种梁下翼缘采用耗能拼接板的装配式梁柱节点的设计制作方法
CN105625585B (zh) 屈曲约束钢结构梁柱连接节点和钢结构建筑
CN109680819B (zh) 一种适用于模块化建筑的自复位节点
CN104805958A (zh) 应用于联肢剪力墙结构的双阶屈服耗能钢连梁
CN203741998U (zh) 一种自复位梁与柱的连接节点
CN110952666A (zh) 一种装配式高延性高强钢梁柱刚性连接节点
CN113175106A (zh) 一种波纹钢腹板梁钢框架梁柱连接节点及装配方法
JP2012057450A (ja) 溶接補強板を用いた高力ボルト継手による鉄骨構造物
CN207727803U (zh) 一种预制装配式防屈曲钢板剪力墙
CN213572461U (zh) 一种装配式建筑的耗能结构
CN211571980U (zh) 一种具有高抗震性的装配式梁柱刚性连接节点
CN211621953U (zh) 一种预制梁柱连接节点结构
CN109537724B (zh) 一种单边螺栓连接梁柱抗连续倒塌加固节点及其施工方法
CN107780564B (zh) 一种装配式加肋钢板-剪力墙
CN209854981U (zh) 一种装配式再生混凝土防屈曲钢板剪力墙
CN210421449U (zh) 一种箱形柱连接节点结构
CN210459526U (zh) 一种侧板连接梁柱节点结构
CN210798070U (zh) 一种钢木组合截面柱
CN112878508A (zh) 可修复装配式钢筋混凝土柱-钢梁梁柱节点及其施工方法
CN207553359U (zh) 装配式加肋钢板剪力墙
CN110083848B (zh) 一种h型及箱型杆件侧面角焊缝简化计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220104

Address after: 266000 77, Xingquan 1st Road, Lancun street, Jimo District, Qingdao City, Shandong Province

Patentee after: Qingdao Zhongqing Hangxiao Green Building Technology Co.,Ltd.

Patentee after: qingdao technological university

Address before: No. 11, Fushun Road, North District, Qingdao, Shandong

Patentee before: QINGDAO TECHNOLOGICAL University