CN110311375B - A control method for transient stability of microgrid with multiple virtual synchronous machines - Google Patents
A control method for transient stability of microgrid with multiple virtual synchronous machines Download PDFInfo
- Publication number
- CN110311375B CN110311375B CN201910687024.1A CN201910687024A CN110311375B CN 110311375 B CN110311375 B CN 110311375B CN 201910687024 A CN201910687024 A CN 201910687024A CN 110311375 B CN110311375 B CN 110311375B
- Authority
- CN
- China
- Prior art keywords
- virtual
- vsgi
- microgrid
- energy function
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开一种含多虚拟同步机的微电网暂态稳定性控制方法,属于微电网暂态稳定性分析与控制技术领域。该方法充分考虑了虚拟惯量、虚拟阻尼、虚拟调速器下垂系数和无功控制环下垂系数,构建了含有多台虚拟同步机并联运行的微电网的能量函数模型,基于能量函数来分析判断系统的稳定性。并采用基于能量函数的自适应控制方法,对VSG中虚拟惯量、虚拟阻尼、虚拟调速器下垂系数和无功控制环下垂系数分别进行自适应实时调整,减小系统故障后的系统能量,增大系统的吸引域,减缓了系统能量达到临界能量的进程,为故障切除争取了有效时间,提高系统的暂态稳定性。
The invention discloses a micro-grid transient stability control method with multiple virtual synchronous machines, belonging to the technical field of micro-grid transient stability analysis and control. This method fully considers the virtual inertia, virtual damping, virtual governor droop coefficient and reactive power control loop droop coefficient, constructs an energy function model of a microgrid with multiple virtual synchronous machines running in parallel, and analyzes and judges the system based on the energy function stability. And the self-adaptive control method based on energy function is adopted to adjust the virtual inertia, virtual damping, virtual governor droop coefficient and reactive control loop droop coefficient in VSG respectively in real time, so as to reduce the system energy after system failure and increase The attraction domain of the large system slows down the process of the system energy reaching the critical energy, buys effective time for fault removal, and improves the transient stability of the system.
Description
技术领域technical field
本发明涉及微电网暂态稳定性分析与控制技术领域,尤其涉及一种含多虚拟同步机的微电网暂态稳定性控制方法。The invention relates to the technical field of micro-grid transient stability analysis and control, in particular to a micro-grid transient stability control method with multiple virtual synchronous machines.
背景技术Background technique
近些年来,化石能源的枯竭和环境危机的加剧促进了分布式发电技术迅速发展。作为分布式电源(DG)、储能设备、电力电子变换器和负载等组成的系统,微电网在现代电力网络中越发普及。虚拟同步机控制策略(VSG)通过在电力电子变换器的控制环节中引入类似于传统同步发电机SG的机电暂态方程,分布式电源不仅能够模拟SG的有功调频、无功调压特性等运行外特性,还具有惯量特性和阻尼特性等动态特性。当微电网或大电网受到扰动或发生故障时,VSG可以有效地进行频率和电压调节,维持系统的稳定性。此外在其有功控制环(APCM)中的虚拟惯量、虚拟阻尼系数和VG中的下垂系数以及无功控制环(QPCM)中的下垂系数都可以根据实际需要灵活调整,以改善系统的稳定性,而传统SG的相应参数都是固定的。In recent years, the depletion of fossil energy and the intensification of the environmental crisis have promoted the rapid development of distributed power generation technology. As a system composed of distributed generation (DG), energy storage devices, power electronic converters and loads, microgrids are becoming more and more popular in modern power networks. The virtual synchronous machine control strategy (VSG) introduces the electromechanical transient equation similar to the traditional synchronous generator SG in the control link of the power electronic converter, and the distributed power supply can not only simulate the operation of the SG's active power frequency modulation and reactive power voltage regulation characteristics It also has dynamic characteristics such as inertia characteristics and damping characteristics. When the microgrid or large grid is disturbed or fails, the VSG can effectively regulate the frequency and voltage to maintain the stability of the system. In addition, the virtual inertia, virtual damping coefficient in the active power control loop (APCM), the droop coefficient in the VG and the droop coefficient in the reactive power control loop (QPCM) can be flexibly adjusted according to actual needs to improve the stability of the system. The corresponding parameters of the traditional SG are all fixed.
现有的含VSG微电网的暂态稳定性分析基本都是根据系统发生扰动后的频率变化率和频率变化量这两个指标进行分析,暂态稳定性控制基本是通过调整虚拟惯量或者虚拟阻尼这两个参数,改善系统频率和有功功率输出。虽方便直接,但分析方法较为单一,对于电压骤降,短路等故障情况的分析略显不足,而且仅靠频率无法解释系统的变化机理、反应变化本质。对于VSG而言,除了虚拟惯量和阻尼系数,VG中的下垂系数以及QPCM的下垂系数也可以影响其暂态稳定性。另外,基于频率的暂态稳定性分析需要时域仿真验证VSG对微电网暂态稳定性的作用,难以判断系统的稳定裕度,无法定量衡量系统受扰程度,而且当微电网中含有多台VSG并联运行时,不同VSG之间的频率偏差也容易影响分析的准确性。The existing transient stability analysis of the VSG microgrid is basically based on the frequency change rate and the frequency change amount after the system is disturbed. The transient stability control is basically by adjusting the virtual inertia or virtual damping. These two parameters improve system frequency and active power output. Although it is convenient and direct, the analysis method is relatively simple, and the analysis of fault conditions such as voltage sags and short circuits is slightly insufficient, and frequency alone cannot explain the change mechanism of the system and the nature of response changes. For VSG, in addition to the virtual inertia and damping coefficient, the droop coefficient in VG and QPCM can also affect its transient stability. In addition, frequency-based transient stability analysis requires time-domain simulation to verify the effect of VSG on the transient stability of the microgrid. It is difficult to judge the stability margin of the system, and it is impossible to quantitatively measure the degree of system disturbance. When VSGs are running in parallel, the frequency deviation between different VSGs is also likely to affect the accuracy of the analysis.
发明内容Contents of the invention
针对上述现有技术的不足,本发明提供一种含多虚拟同步机的微电网暂态稳定性控制方法。Aiming at the deficiencies of the above-mentioned prior art, the present invention provides a method for controlling the transient stability of a microgrid with multiple virtual synchronous machines.
为解决上述技术问题,本发明所采取的技术方案是一种含多虚拟同步机的微电网暂态稳定性控制方法,其流程如图1所示,包括如下步骤:In order to solve the above-mentioned technical problems, the technical solution adopted by the present invention is a microgrid transient stability control method with multiple virtual synchronous machines, the process of which is shown in Figure 1, including the following steps:
步骤1:构建含多台VSG并联运行的并网微电网的功率平衡模型,该模型包括包括VSG等效输出功率模型、联络线路等效传输功率模型和并网微电网的功率平衡方程;Step 1: Construct a power balance model of a grid-connected microgrid with multiple VSGs running in parallel, which includes the equivalent output power model of the VSG, the equivalent transmission power model of the tie line, and the power balance equation of the grid-connected microgrid;
步骤1.1:构建VSG等效输出功率模型,其中包含参数虚拟调速器VG、虚拟惯量、虚拟阻尼系数,包含有功控制模块APCM和无功控制模块QPCM两个部分;Step 1.1: Construct the VSG equivalent output power model, which includes the parameters virtual governor VG, virtual inertia, and virtual damping coefficient, including two parts: active power control module APCM and reactive power control module QPCM;
步骤1.1.1:有功控制模块APCM由VG和虚拟机械转动模块两部分组成,分别模拟SG的调速器和转子的机械运动方程,具体如下:Step 1.1.1: The active power control module APCM is composed of VG and virtual mechanical rotation module, which respectively simulate the mechanical motion equations of the governor and rotor of SG, as follows:
其中,Pei、Prefi分别为微电网中第i台VSG(VSGi,i=1,2,...,N)的输出有功功率和控制器设置的有功功率参考值;分别为VSGi的虚拟转动惯量和虚拟阻尼系数,用于模拟SG的转子运动特性;ωn、ωi分别为VSGi的额定角速度和VSGi的虚拟转子角速度,ωni=ωn-ωi代表两者之差;δni表示VSGi虚拟转子的相对位移角,同时也是QPCM中输出电压与额定电压的相角差;和表示VSGi中VG输出的虚拟机械功率和虚拟下垂系数。Among them, P ei and P refi are respectively the output active power of the i-th VSG (VSGi,i=1,2,...,N) in the microgrid and the active power reference value set by the controller; are the virtual moment of inertia and virtual damping coefficient of VSGi , which are used to simulate the rotor motion characteristics of SG; The difference; δ ni represents the relative displacement angle of the VSGi virtual rotor, and is also the phase angle difference between the output voltage and the rated voltage in QPCM; and Indicates the virtual mechanical power and virtual droop coefficient of VG output in VSGi.
步骤1.1.2:无功控制模块QPCM,在于模拟VSG的无功-电压调节特性,具体如下:Step 1.1.2: The reactive power control module QPCM is to simulate the reactive power-voltage regulation characteristics of VSG, as follows:
其中,Qei,Qrefi分别为VSGi的输出无功功率和控制器设置的无功功率参考值;Ei、En分别代表VSGi输出的电压幅值和额定电压幅值;为QPCM下垂系数。Among them, Q ei and Q refi are the output reactive power of VSGi and the reference value of reactive power set by the controller; E i and En represent the voltage amplitude and rated voltage amplitude of VSGi output respectively; is the QPCM droop coefficient.
步骤1.2:构建联络线路等效传输功率模型:Step 1.2: Construct the equivalent transmission power model of the tie line:
其中,分别代表微电网中VSGi与电网连接的等效有功和无功传输功率;分别代表传输线路阻抗和感抗;in, represent the equivalent active and reactive transmission power of VSGi connected to the grid in the microgrid, respectively; represent the transmission line impedance and inductive reactance respectively;
步骤1.3:考虑系统负载情况,建立并网微电网的功率平衡方程:Step 1.3: Considering the system load, establish the power balance equation of the grid-connected microgrid:
其中,PLi、QLi分别代表微电网所连接负载的有功功率和无功功率;Among them, P Li and Q Li respectively represent the active power and reactive power of the load connected to the microgrid;
步骤2:利用首次积分法构建考虑VG、虚拟惯量、虚拟阻尼系数的多台VSG并联运行的并网微电网的李雅普诺夫能量函数,计算微电网系统中的总能量VTOT;Step 2: Use the first integral method to construct the Lyapunov energy function of the grid-connected microgrid with multiple VSGs running in parallel considering VG, virtual inertia, and virtual damping coefficient, and calculate the total energy V TOT in the microgrid system;
步骤2.1:构建考虑权重关系的动能总能量函数VKE:Step 2.1: Construct the kinetic energy total energy function V KE considering the weight relationship:
步骤2.1.1:设置各动能项的权重因子其中Mki为动能能量函数的阈值,i=1,2,3;Step 2.1.1: Set the weight factor of each kinetic energy item Where M ki is the threshold value of the kinetic energy function, i=1,2,3;
步骤2.1.2:构建微电网中所有VSG的虚拟惯量模拟的虚拟转子加/减速所引起的动能,具体如下:Step 2.1.2: Construct the kinetic energy caused by the virtual rotor acceleration/deceleration simulated by the virtual inertia of all VSGs in the microgrid, as follows:
其中,Mk1为动能能量函数VKE1的阈值;Among them, M k1 is the threshold value of kinetic energy energy function V KE1 ;
步骤2.1.3:构建虚拟阻尼系数和虚拟调速器的下垂系数所消耗的系统动能函数,具体如下:Step 2.1.3: Construct the system kinetic energy function consumed by the virtual damping coefficient and the droop coefficient of the virtual governor, as follows:
其中,ts为故障发生时间,表示故障后系统的稳定平衡点处的转动角频率,Mk2为动能能量函数VKE2的阈值;Among them, t s is the fault occurrence time, Indicates the rotational angular frequency at the stable equilibrium point of the system after a fault, and M k2 is the threshold value of the kinetic energy function V KE2 ;
步骤2.1.4:构建进行频率和功率的一次调节时所消耗的动能,具体如下:Step 2.1.4: Construct the kinetic energy consumed by one adjustment of frequency and power, as follows:
其中,χ=dω/dt,Mk3为动能能量函数VKE3的阈值;Wherein, χ=dω/dt, M k3 is the threshold value of kinetic energy energy function V KE3 ;
步骤2.1.5:根据步骤2.1.1-2.14构建动能总能量函数VKE:Step 2.1.5: Construct the total kinetic energy function V KE according to steps 2.1.1-2.14:
VKE=(VKE1+VKE2+VKE3) (8)V KE =(V KE1 +V KE2 +V KE3 ) (8)
步骤2.2:构建考虑权重关系的势能能量函数VPE:Step 2.2: Construct the potential energy function V PE considering the weight relationship:
步骤2.2.1:设置不同势能项的权重因子其中Mpi为势能能量函数的阈值,i=1,2,3,4;Step 2.2.1: Set weight factors for different potential energy items Where M pi is the threshold value of the potential energy function, i=1,2,3,4;
步骤2.2.2:构建微电网系统中所有VSG的有功参考功率和有功负载引起的势能能量函数,具体如下:Step 2.2.2: Construct the active reference power of all VSGs in the microgrid system and the potential energy function caused by the active load, as follows:
其中,Mp1为势能能量函数VPE1的阈值;Among them, M p1 is the threshold of potential energy function V PE1 ;
步骤2.2.3:构建VSG的无功参考功率和无功负载引起的势能能量函数,具体如下:Step 2.2.3: Construct the reactive reference power of the VSG and the potential energy function caused by the reactive load, as follows:
其中,为故障后系统电压的幅值,Mp2为势能能量函数VPE2的阈值;in, is the magnitude of the system voltage after the fault, and M p2 is the threshold of the potential energy function V PE2 ;
步骤2.2.4:构建VSG与电网之间联络线路上传输的有功功率所代表的势能能量函数,具体如下:Step 2.2.4: Construct the potential energy function represented by the active power transmitted on the connection line between the VSG and the grid, as follows:
其中, 为故障后系统电压的相角,Mp3为势能能量函数VPE3的阈值;in, is the phase angle of the system voltage after the fault, M p3 is the threshold of the potential energy function V PE3 ;
步骤2.2.5:构建VSG与电网之间联络线路上传输的无功功率所代表的势能能量函数,具体如下:Step 2.2.5: Construct the potential energy function represented by the reactive power transmitted on the connection line between the VSG and the grid, as follows:
其中,Mp4为势能能量函数VPE4的阈值;Among them, M p4 is the threshold value of potential energy energy function V PE4 ;
步骤2.2.6:根据步骤2.2.1-2.2.5,构建势能总能量函数,具体如下:Step 2.2.6: According to steps 2.2.1-2.2.5, construct the potential energy total energy function, as follows:
VPE=VPE1+VPE2+VPE3+VPE4 (13)V PE =V PE1 +V PE2 +V PE3 +V PE4 (13)
步骤2.3:计算并网微电网的总能量函数VTOT:Step 2.3: Calculate the total energy function V TOT of the grid-connected microgrid:
VTOT=VPE+VKE。 (14)V TOT =V PE +V KE . (14)
步骤3:根据现场需求设置能量函数的阈值,判断系统的运行状态;Step 3: Set the threshold of the energy function according to the site requirements, and judge the operating status of the system;
其中,MAVE为系统稳定运行时能量函数的阈值,VTOT为微电网系统中的总能量。Among them, M AVE is the threshold value of the energy function when the system is running stably, and V TOT is the total energy in the microgrid system.
步骤4:若系统稳定运行,执行步骤2继续计算;Step 4: If the system runs stably, perform
步骤5:若系统发生故障,则采用主导不稳定平衡点法,计算系统的临界能量Vcr;Step 5: If the system fails, use the dominant unstable equilibrium point method to calculate the critical energy V cr of the system;
步骤5.1:计算系统故障轨线至故障清除时刻以及出口点,具体如下:Step 5.1: Calculate the system fault trajectory to the fault clearing time and exit point, as follows:
步骤5.2:以出口点为初值,采用Gear方法计算故障后梯度系统的最小梯度点,具体如下:Step 5.2: Take the exit point as the initial value, and use the Gear method to calculate the minimum gradient point of the gradient system after the fault, as follows:
其中,为最小梯度点;in, is the minimum gradient point;
步骤5.3:以最小梯度点为初值,求解系统的功率平衡方程得到系统的稳定平衡点和主导不稳定平衡点,具体如下:Step 5.3: Take the minimum gradient point As the initial value, solve the power balance equation of the system to obtain the stable equilibrium point and dominant unstable equilibrium point of the system, as follows:
步骤5.4:根据系统主导不稳定平衡点处的状态量,计算出微电网并网系统的临界能量Step 5.4: Calculate the critical energy of the microgrid grid-connected system according to the state quantity at the dominant unstable equilibrium point of the system
其中,分别为系统故障后微电网中VSGi的稳定平衡点和不稳定平衡点;分别为微电网稳定运行时VSGi的虚拟惯量、虚拟阻尼系数、VG下垂系数和QPCM下垂系数;分别表示故障后系统的稳定平衡点处的转动角频率,电压的相角和幅值,χ=dω/dt,ts为故障发生时间。in, are the stable equilibrium point and unstable equilibrium point of VSGi in the microgrid after system failure, respectively; are the virtual inertia, virtual damping coefficient, VG droop coefficient and QPCM droop coefficient of VSGi when the microgrid is in stable operation; respectively represent the rotational angular frequency at the stable equilibrium point of the system after the fault, the phase angle and amplitude of the voltage, χ=dω/dt, and t s is the fault occurrence time.
步骤6:启动基于能量函数的VSG虚拟惯量、虚拟阻尼系数、VG下垂系数和QPCM下垂系数自适应控制方法;Step 6: Start the adaptive control method of VSG virtual inertia, virtual damping coefficient, VG droop coefficient and QPCM droop coefficient based on energy function;
步骤6.1:基于能量函数的VSG虚拟惯量自适应控制方法:Step 6.1: VSG virtual inertia adaptive control method based on energy function:
其中,分别为微电网稳定运行时VSGi的虚拟惯量和虚拟惯量最大值,MAVE为总能量函数的阈值。in, are the virtual inertia and the maximum value of the virtual inertia of VSGi when the microgrid is in stable operation, and MAVE is the threshold of the total energy function.
步骤6.2:基于能量函数的VSG虚拟阻尼系数的自适应控制方法:Step 6.2: Adaptive control method of VSG virtual damping coefficient based on energy function:
其中,分别表示微电网稳定运行时VSGi的虚拟阻尼系数和虚拟阻尼系数最大值。in, Respectively represent the virtual damping coefficient and the maximum value of the virtual damping coefficient of VSGi when the microgrid is running stably.
步骤6.3:基于能量函数设计VG下垂系数的自适应控制方法:Step 6.3: Design an adaptive control method for the VG droop coefficient based on the energy function:
其中,分别代表微电网稳定运行时VSGi的VG下垂系数和VG下垂系数最小值。in, Represent the VG droop coefficient and the minimum value of VG droop coefficient of VSGi when the microgrid runs stably, respectively.
步骤6.4:基于能量函数设计QPCM下垂系数的自适应控制方法:Step 6.4: Design the adaptive control method of QPCM droop coefficient based on the energy function:
式中,分别代表微电网稳定运行时VSGi的QPCM下垂系数和QPCM下垂系数最大值。In the formula, Represent the QPCM droop coefficient and the maximum value of QPCM droop coefficient of VSGi when the microgrid runs stably, respectively.
步骤7:判断故障是否清除;Step 7: Determine whether the fault is cleared;
步骤8:执行步骤2计算故障清除时刻,微电网系统中的总能量Vcl;Step 8: Perform
步骤9:将故障清除时刻微电网系统中的总能量Vcl与临界能量Vcr作比较,分析判断微电网的稳定性。Step 9: Compare the total energy V cl in the microgrid system at the moment of fault clearing with the critical energy V cr to analyze and judge the stability of the microgrid.
采用上述技术方案所产生的有益效果在于:The beneficial effects produced by adopting the above-mentioned technical scheme are:
1、本发明中考虑了虚拟惯量、虚拟阻尼、虚拟调速器下垂系数和无功控制环下垂系数,构建了含有多台虚拟同步机并联运行的微电网的能量函数模型,不仅可以分析扰动对微电网系统的影响,也可以反映发生故障后系统能量的变化。1. In the present invention, virtual inertia, virtual damping, virtual governor droop coefficient and reactive power control loop droop coefficient are considered, and an energy function model of a microgrid with multiple virtual synchronous machines running in parallel is constructed, which can not only analyze the effect of disturbance on The impact of the microgrid system can also reflect the change of system energy after a fault occurs.
2、本发明中基于能量函数来分析判断系统的稳定性,系统发生故障时,系统能量的变化远远大于频率的变化,便于检测和计算,对故障的敏感度高,有利于在故障初期阶段进行及时有效的控制,降低故障对系统的损害,提高系统的暂态稳定性。2. In the present invention, the stability of the system is analyzed and judged based on the energy function. When the system breaks down, the change of the system energy is far greater than the change of the frequency, which is convenient for detection and calculation, and has high sensitivity to the fault, which is beneficial to the initial stage of the fault. Carry out timely and effective control, reduce the damage to the system caused by faults, and improve the transient stability of the system.
3、本发明中在多台虚拟同步机并联运行的微电网中首次采用基于能量函数的4个VSG参数自适应控制方法,根据VSG中虚拟惯量、虚拟阻尼、虚拟调速器下垂系数和无功控制环下垂系数对系统能量的影响,分别设计了此4个参数的自适应控制方法,通过VSG参数的实时自适应调整,减小系统故障后的系统能量,增大系统的吸引域,减缓了系统能量达到临界能量的进程,为故障切除争取了有效时间,提高系统的暂态稳定性。3. In the present invention, the self-adaptive control method of 4 VSG parameters based on the energy function is adopted for the first time in the microgrid with multiple virtual synchronous machines running in parallel. According to the virtual inertia, virtual damping, virtual governor droop coefficient and reactive power The influence of the droop coefficient of the control loop on the system energy, the adaptive control method of these four parameters is designed respectively, through the real-time adaptive adjustment of the VSG parameters, the system energy after the system failure is reduced, the attraction area of the system is increased, and the The process in which the system energy reaches the critical energy wins effective time for fault removal and improves the transient stability of the system.
4、本发明中利用故障后的暂态能量来分析含多台虚拟同步机并联运行的微电网暂态稳定性,不仅可以判断系统的暂态稳定性,还可以定量的衡量系统的稳定裕度。4. In the present invention, the transient energy after the fault is used to analyze the transient stability of the microgrid with multiple virtual synchronous machines running in parallel, which can not only judge the transient stability of the system, but also quantitatively measure the stability margin of the system .
附图说明Description of drawings
图1为本发明一种含多虚拟同步机的微电网暂态稳定性控制方法的流程图;Fig. 1 is a flow chart of a microgrid transient stability control method containing multiple virtual synchronous machines of the present invention;
图2为本发明实施例的系统结构示意图以及虚拟同步机的控制结构示意图;Fig. 2 is a schematic diagram of a system structure and a schematic diagram of a control structure of a virtual synchronous machine according to an embodiment of the present invention;
图3为本发明实施例的等效电路图;Fig. 3 is the equivalent circuit diagram of the embodiment of the present invention;
图4为本发明实施例的微电网系统能量变化图;Fig. 4 is the diagram of the energy change of the microgrid system according to the embodiment of the present invention;
图5为本发明实施例中VSG的虚拟惯量、虚拟阻尼系数、VG下垂系数和QPCM下垂系数根据能量函数的自适应控制变化示意图;5 is a schematic diagram of the adaptive control changes of the virtual inertia, virtual damping coefficient, VG droop coefficient and QPCM droop coefficient of the VSG according to the energy function in the embodiment of the present invention;
图6为本发明实施例的VSG的虚拟惯量、虚拟阻尼系数、VG下垂系数和QPCM下垂系数的实际取值示意图。FIG. 6 is a schematic diagram of actual values of virtual inertia, virtual damping coefficient, VG droop coefficient and QPCM droop coefficient of the VSG according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
本实施例以某含有三台虚拟同步机并联运行的并网微电网进行分析,实施例的系统结构示意图和VSG的控制框图如图2所示。三台VSG并联运行,给负载供电,并通过联络线路与电网相连,其等效电路图如图3所示,三台VSG的额定容量相同,有功额定功率均为6kW,无功额定功率均为1kVA,额定电压380V,额定角速度为314rad/s,VSG和电网共同给负载(20kW 4kVA)供能。In this embodiment, a grid-connected microgrid with three virtual synchronous machines operating in parallel is analyzed. The system structure diagram of the embodiment and the control block diagram of the VSG are shown in FIG. 2 . Three VSGs run in parallel to supply power to the load and connect to the power grid through the contact line. The equivalent circuit diagram is shown in Figure 3. The rated capacity of the three VSGs is the same, the rated active power is 6kW, and the rated reactive power is 1kVA. , the rated voltage is 380V, and the rated angular velocity is 314rad/s. The VSG and the grid jointly supply energy to the load (20kW 4kVA).
步骤1:构建含三台VSG并联运行的并网微电网的功率平衡模型,该模型包括包括VSG等效输出功率模型、联络线路等效传输功率模型和并网微电网的功率平衡方程;Step 1: Construct the power balance model of the grid-connected microgrid with three VSGs running in parallel, which includes the VSG equivalent output power model, the equivalent transmission power model of the tie line and the power balance equation of the grid-connected microgrid;
步骤1.1:构建VSG等效输出功率模型,其中包含参数虚拟调速器VG、虚拟惯量、虚拟阻尼系数,包含有功控制模块APCM和无功控制模块QPCM两个部分;Step 1.1: Construct the VSG equivalent output power model, which includes the parameters virtual governor VG, virtual inertia, and virtual damping coefficient, including two parts: active power control module APCM and reactive power control module QPCM;
步骤1.1.1:有功控制模块APCM由VG和虚拟机械转动模块两部分组成,分别模拟SG的调速器和转子的机械运动方程,具体如下:Step 1.1.1: The active power control module APCM is composed of VG and virtual mechanical rotation module, which respectively simulate the mechanical motion equations of the governor and rotor of SG, as follows:
其中,Pei、Prefi分别为微电网中第i台VSG(VSGi,i=1,2,3)的输出有功功率和控制器设置的有功功率参考值;分别为VSGi的虚拟转动惯量和虚拟阻尼系数,用于模拟SG的转子运动特性;ωn、ωi分别为VSGi的额定角速度和VSGi的虚拟转子角速度,ωni=ωn-ωi代表两者之差;δni表示VSGi虚拟转子的相对位移角,同时也是QPCM中输出电压与额定电压的相角差;和表示VSGi中VG输出的虚拟机械功率和虚拟下垂系数。本实施例中三台VSG的额定容量相同,有功功率参考值Prefi均为6kW,额定角速度ωn=314rad/s;Among them, P ei and P refi are respectively the output active power of the i-th VSG (VSGi,i=1,2,3) in the microgrid and the active power reference value set by the controller; are the virtual moment of inertia and virtual damping coefficient of VSGi, which are used to simulate the rotor motion characteristics of SG; The difference; δ ni represents the relative displacement angle of the VSGi virtual rotor, and is also the phase angle difference between the output voltage and the rated voltage in QPCM; and Indicates the virtual mechanical power and virtual droop coefficient of VG output in VSGi. In this embodiment, the rated capacity of the three VSGs is the same, the active power reference value P refi is 6kW, and the rated angular velocity ω n =314rad/s;
步骤1.1.2:无功控制模块QPCM,在于模拟VSG的无功-电压调节特性,具体如下:Step 1.1.2: The reactive power control module QPCM is to simulate the reactive power-voltage regulation characteristics of VSG, as follows:
其中,Qei,Qrefi分别为VSGi的输出无功功率和控制器设置的无功功率参考值;Ei、En分别代表VSGi输出的电压幅值和额定电压幅值;为QPCM下垂系数。本实施例中三台VSG的无功功率参考值Qrefi均为1kVA,微电网的额定电压幅值En=380V;Among them, Q ei and Q refi are the output reactive power of VSGi and the reference value of reactive power set by the controller; E i and En represent the voltage amplitude and rated voltage amplitude of VSGi output respectively; is the QPCM droop coefficient. In this embodiment, the reactive power reference values Q refi of the three VSGs are all 1kVA, and the rated voltage amplitude of the microgrid E n =380V;
步骤1.2:构建联络线路等效传输功率模型:Step 1.2: Construct the equivalent transmission power model of the tie line:
其中,分别代表微电网中VSGi与电网连接的等效有功和无功传输功率;分别代表传输线路阻抗和感抗;本实施例中传输线路阻抗和感抗分别为0.64Ω/km和0.10Ω/km,微电网的额定电压的幅值En=380V,相角δn=0°;in, represent the equivalent active and reactive transmission power of VSGi connected to the grid in the microgrid, respectively; Represent transmission line impedance and inductive reactance respectively; Transmission line impedance and inductive reactance in this embodiment 0.64Ω/km and 0.10Ω/km respectively, the amplitude of the rated voltage of the microgrid E n =380V, and the phase angle δ n =0°;
步骤1.3:考虑系统负载情况,建立并网微电网的功率平衡方程:Step 1.3: Considering the system load, establish the power balance equation of the grid-connected microgrid:
其中,PLi、QLi分别代表微电网所连接负载的有功功率和无功功率;本实施例中微电网所连接负载的有功功率PLi无功功率QLi分别为20kW和4kVA;Wherein, P Li and Q Li respectively represent the active power and reactive power of the load connected to the microgrid; the active power P Li and the reactive power Q Li of the load connected to the microgrid in this embodiment are 20kW and 4kVA respectively;
步骤2:利用首次积分法构建考虑VG、虚拟惯量、虚拟阻尼系数的多台VSG并联运行的并网微电网的李雅普诺夫能量函数,计算微电网系统中的总能量VTOT;Step 2: Use the first integral method to construct the Lyapunov energy function of the grid-connected microgrid with multiple VSGs running in parallel considering VG, virtual inertia, and virtual damping coefficient, and calculate the total energy V TOT in the microgrid system;
步骤2.1:构建考虑权重关系的动能总能量函数VKE:Step 2.1: Construct the kinetic energy total energy function V KE considering the weight relationship:
步骤2.1.1:设置各动能项的权重因子其中Mki为动能能量函数的阈值,i=1,2,3;Step 2.1.1: Set the weight factor of each kinetic energy item Where M ki is the threshold value of the kinetic energy function, i=1,2,3;
步骤2.1.2:构建微电网中所有VSG的虚拟惯量模拟的虚拟转子加/减速所引起的动能,具体如下:Step 2.1.2: Construct the kinetic energy caused by the virtual rotor acceleration/deceleration simulated by the virtual inertia of all VSGs in the microgrid, as follows:
其中,Mk1=140;Among them, M k1 =140;
步骤2.1.3:构建虚拟阻尼系数和虚拟调速器的下垂系数所消耗的系统动能函数,具体如下:Step 2.1.3: Construct the system kinetic energy function consumed by the virtual damping coefficient and the droop coefficient of the virtual governor, as follows:
其中,ts=6s,Mk2=170,表示故障后系统的稳定平衡点处的转动角频率;Among them, t s =6s, M k2 =170, Indicates the rotational angular frequency at the stable equilibrium point of the system after the fault;
步骤2.1.4:构建进行频率和功率的一次调节时所消耗的动能,具体如下:Step 2.1.4: Construct the kinetic energy consumed by one adjustment of frequency and power, as follows:
其中,χ=dω/dt,Mk3=500;Wherein, χ=dω/dt, M k3 =500;
步骤2.1.5:根据步骤2.1.1-2.14构建动能总能量函数VKE:Step 2.1.5: Construct the total kinetic energy function V KE according to steps 2.1.1-2.14:
VKE=(VKE1+VKE2+VKE3) (8)V KE =(V KE1 +V KE2 +V KE3 ) (8)
步骤2.2:构建考虑权重关系的势能能量函数VPE:Step 2.2: Construct the potential energy function V PE considering the weight relationship:
步骤2.2.1:设置不同势能项的权重因子其中Mpi为势能能量函数的阈值,i=1,2,3,4;Step 2.2.1: Set weight factors for different potential energy items Where M pi is the threshold value of the potential energy function, i=1,2,3,4;
步骤2.2.2:构建微电网系统中所有VSG的有功参考功率和有功负载引起的势能能量函数,具体如下:Step 2.2.2: Construct the active reference power of all VSGs in the microgrid system and the potential energy function caused by the active load, as follows:
其中,MP1=1.8×103;Among them, M P1 =1.8×10 3 ;
步骤2.2.3:构建VSG的无功参考功率和无功负载引起的势能能量函数,具体如下:Step 2.2.3: Construct the reactive reference power of the VSG and the potential energy function caused by the reactive load, as follows:
其中,为故障后系统电压的幅值,MP2=5×103;in, is the magnitude of the system voltage after the fault, M P2 =5×10 3 ;
步骤2.2.4:构建VSG与电网之间联络线路上传输的有功功率所代表的势能能量函数,具体如下:Step 2.2.4: Construct the potential energy function represented by the active power transmitted on the connection line between the VSG and the grid, as follows:
其中, 为故障后系统电压的相角,MP3=1.12×103;in, is the phase angle of the system voltage after the fault, M P3 =1.12×10 3 ;
步骤2.2.5:构建VSG与电网之间联络线路上传输的无功功率所代表的势能能量函数,具体如下:Step 2.2.5: Construct the potential energy function represented by the reactive power transmitted on the connection line between the VSG and the grid, as follows:
其中,MP4=7.33×103;Among them, M P4 =7.33×10 3 ;
步骤2.2.6:根据步骤2.2.1-2.2.5,构建势能总能量函数,具体如下:Step 2.2.6: According to steps 2.2.1-2.2.5, construct the potential energy total energy function, as follows:
VPE=VPE1+VPE2+VPE3+VPE4 (13)V PE =V PE1 +V PE2 +V PE3 +V PE4 (13)
步骤2.3:计算并网微电网的总能量函数VTOT:Step 2.3: Calculate the total energy function V TOT of the grid-connected microgrid:
VTOT=VPE+VKE。 (14)V TOT =V PE +V KE . (14)
本实施例中,设计多台VSG并联运行的微电网稳定运行到6s时,在并网处发生短路故障,6.1s时故障切除。微电网稳定运行时,微电网的总能量为1kJ,发生故障后,总能量的变化如图4所示。In this embodiment, when a microgrid with multiple VSGs in parallel is designed to run stably for 6s, a short-circuit fault occurs at the grid-connected point, and the fault is removed at 6.1s. When the microgrid is running stably, the total energy of the microgrid is 1kJ. After a fault occurs, the change of the total energy is shown in Figure 4.
步骤3:根据现场需求设置能量函数的阈值,判断系统的运行状态;Step 3: Set the threshold of the energy function according to the site requirements, and judge the operating status of the system;
其中,MAVE为系统稳定运行时能量函数的阈值,VTOT为微电网系统中的总能量。Among them, M AVE is the threshold value of the energy function when the system is running stably, and V TOT is the total energy in the microgrid system.
本实施例中为了使系统对故障的反应更灵敏,设置总能量函数的阈值MAVE=VTOT=1kJ,在图4中5.8s至6s这段时间,计算到的系统总能量小于等于1kJ,判断系统处于稳定状态;In this embodiment, in order to make the system respond more sensitively to faults, the threshold of the total energy function M AVE =V TOT =1kJ is set. During the period from 5.8s to 6s in Figure 4, the calculated total system energy is less than or equal to 1kJ. Judging that the system is in a stable state;
步骤4:若系统稳定运行,执行步骤2继续计算;Step 4: If the system runs stably, perform
当6s时计算到系统总能量VTOT>1kJ时,根据上述方法可判断系统出现故障。When the total system energy V TOT >1kJ is calculated at 6s, it can be judged that the system is faulty according to the above method.
步骤5:若系统发生故障,则采用主导不稳定平衡点法,计算系统的临界能量Vcr;Step 5: If the system fails, use the dominant unstable equilibrium point method to calculate the critical energy V cr of the system;
步骤5.1:计算系统故障轨线至故障清除时刻以及出口点,具体如下:Step 5.1: Calculate the system fault trajectory to the fault clearing time and exit point, as follows:
步骤5.2:以出口点为初值,采用Gear方法计算故障后梯度系统的最小梯度点,具体如下:Step 5.2: Take the exit point as the initial value, and use the Gear method to calculate the minimum gradient point of the gradient system after the failure, as follows:
其中,为最小梯度点;in, is the minimum gradient point;
步骤5.3:以最小梯度点为初值,求解系统的功率平衡方程得到系统的稳定平衡点和主导不稳定平衡点,具体如下:Step 5.3: Take the minimum gradient point As the initial value, solve the power balance equation of the system to obtain the stable equilibrium point and dominant unstable equilibrium point of the system, as follows:
步骤5.4:根据系统主导不稳定平衡点处的状态量,计算出微电网并网系统的临界能量Vcr:Step 5.4: Calculate the critical energy V cr of the microgrid grid-connected system according to the state quantity at the dominant unstable equilibrium point of the system:
其中,分别为系统故障后微电网中VSGi的稳定平衡点和不稳定平衡点;分别为微电网稳定运行时VSGi的虚拟惯量、虚拟阻尼系数、VG下垂系数和QPCM下垂系数;分别表示故障后系统的稳定平衡点处的转动角频率,电压的相角和幅值,χ=dω/dt,ts为故障发生时间。in, are the stable equilibrium point and unstable equilibrium point of VSGi in the microgrid after system failure, respectively; are the virtual inertia, virtual damping coefficient, VG droop coefficient and QPCM droop coefficient of VSGi when the microgrid is in stable operation; respectively represent the rotational angular frequency at the stable equilibrium point of the system after the fault, the phase angle and amplitude of the voltage, χ=dω/dt, and t s is the fault occurrence time.
本实施例中当故障发生时间ts=6s时,计算得到系统临界能量Vcr=3.25kJ。In this embodiment, when the fault occurrence time t s =6s, the system critical energy V cr =3.25kJ is calculated.
步骤6:启动基于能量函数的VSG虚拟惯量、虚拟阻尼系数、VG下垂系数和QPCM下垂系数自适应控制方法;Step 6: Start the adaptive control method of VSG virtual inertia, virtual damping coefficient, VG droop coefficient and QPCM droop coefficient based on energy function;
步骤6.1:基于能量函数的VSG虚拟惯量自适应控制方法:Step 6.1: VSG virtual inertia adaptive control method based on energy function:
其中,微电网稳定运行时VSGi的虚拟惯量最大值能量函数的阈值MAVE=1kJ;Among them, the maximum value of the virtual inertia of VSGi when the microgrid is running stably The threshold MAVE of the energy function = 1kJ;
步骤6.2:基于能量函数的VSG虚拟阻尼系数的自适应控制方法:Step 6.2: Adaptive control method of VSG virtual damping coefficient based on energy function:
其中,微电网稳定运行时VSGi的虚拟阻尼系数最大值 Among them, the maximum value of the virtual damping coefficient of VSGi when the microgrid is running stably
步骤6.3:基于能量函数设计VG下垂系数的自适应控制方法:Step 6.3: Design an adaptive control method for the VG droop coefficient based on the energy function:
其中,微电网稳定运行时VSGi的VG下垂系数最小值 Among them, the minimum value of the VG droop coefficient of VSGi when the microgrid is running stably
步骤6.4:基于能量函数设计QPCM下垂系数的自适应控制方法:Step 6.4: Design the adaptive control method of QPCM droop coefficient based on the energy function:
其中,微电网稳定运行时VSGi的QPCM下垂系数最大值 Among them, the maximum value of the QPCM droop coefficient of VSGi when the microgrid is running stably
本实施例中VSG的虚拟惯量、虚拟阻尼系数、VG下垂系数和QPCM下垂系数根据能量函数的自适应控制变化如图5所示,其具体取值如图6所示。In this embodiment, the changes of the virtual inertia, virtual damping coefficient, VG droop coefficient and QPCM droop coefficient according to the energy function of the adaptive control of the VSG are shown in FIG. 5 , and their specific values are shown in FIG. 6 .
步骤7:在6.1s时故障清除;Step 7: The fault is cleared at 6.1s;
步骤8:执行步骤2计算故障清除时刻,微电网系统中的总能量Vcl;Step 8: Perform
步骤9:将故障清除时刻微电网系统中的总能量Vcl与临界能量Vcr作比较,分析判断微电网的稳定性。Step 9: Compare the total energy V cl in the microgrid system at the moment of fault clearing with the critical energy V cr to analyze and judge the stability of the microgrid.
本实施例中,因应用了自适应控制方法,故障清除后微电网系统中的总能量Vcl低于临界能量Vcr,根据上述方法可判断系统稳定。In this embodiment, due to the application of the adaptive control method, the total energy V cl in the microgrid system is lower than the critical energy V cr after the fault is cleared, and the system can be judged to be stable according to the above method.
如图4所示,若没有虚拟惯量、虚拟阻尼系数、VG下垂系数和QPCM下垂系数的自适应控制,则系统的能量在6.08s左右将越过系统临界能量Vcr,根据上述方法可判断系统失稳,此时若不及时切除故障,必定给微电网系统带来巨大的损害,当6.1s故障切除之后,系统总能量在6.12s时降到临界能量Vcr之下,可判断系统恢复稳定。而加入了虚拟惯量、虚拟阻尼系数、VG下垂系数和QPCM下垂系数的自适应控制之后,系统在故障期间的总能量相对较小,而且增长趋势与不加入自适应控制的增长趋势比较更加缓慢,为故障切除争取了有效的时间,在6.1s故障切除时,系统总能量VTOT没有超出临界能量Vcr的值,系统没有出现失稳状态,保持了良好的暂态稳定性。As shown in Fig. 4, if there is no adaptive control of virtual inertia, virtual damping coefficient, VG droop coefficient and QPCM droop coefficient, the energy of the system will exceed the system critical energy V cr at about 6.08s. According to the above method, the system failure can be judged At this time, if the fault is not removed in time, it will definitely bring huge damage to the microgrid system. When the 6.1s fault is removed, the total energy of the system drops below the critical energy V cr at 6.12s, and the system can be judged to be stable. After adding the adaptive control of virtual inertia, virtual damping coefficient, VG droop coefficient and QPCM droop coefficient, the total energy of the system during the fault period is relatively small, and the growth trend is slower than that without adaptive control. The effective time was gained for the fault removal. When the fault was removed at 6.1s, the total system energy V TOT did not exceed the value of the critical energy V cr , and the system did not appear in an unstable state, maintaining good transient stability.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910687024.1A CN110311375B (en) | 2019-07-29 | 2019-07-29 | A control method for transient stability of microgrid with multiple virtual synchronous machines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910687024.1A CN110311375B (en) | 2019-07-29 | 2019-07-29 | A control method for transient stability of microgrid with multiple virtual synchronous machines |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110311375A CN110311375A (en) | 2019-10-08 |
CN110311375B true CN110311375B (en) | 2022-11-29 |
Family
ID=68082423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910687024.1A Active CN110311375B (en) | 2019-07-29 | 2019-07-29 | A control method for transient stability of microgrid with multiple virtual synchronous machines |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110311375B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111245014B (en) * | 2020-02-27 | 2022-03-29 | 上海电力大学 | Virtual inertia-based power system control method |
CN111600293B (en) * | 2020-07-01 | 2021-09-10 | 华北电力大学(保定) | Transient electric quantity-based method for evaluating stability margin of direct current power distribution network |
CN112186767B (en) * | 2020-10-21 | 2022-05-13 | 国网福建省电力有限公司 | Optimization control method for frequency stability of island microgrid containing high-proportion renewable energy |
CN113552430B (en) * | 2021-06-22 | 2023-06-20 | 南方电网科学研究院有限责任公司 | Method and device for judging transient stability of converter based on critical index |
CN113437761B (en) * | 2021-07-20 | 2022-04-15 | 湖南大学 | Island microgrid transient stability improving method considering mode switching |
CN113792481B (en) * | 2021-09-01 | 2022-05-31 | 湖南大学 | VSG multi-machine system transient stability evaluation method based on artificial neural network |
CN114614478B (en) * | 2022-01-24 | 2024-12-31 | 湖南大学 | A transient power angle stability analysis method for virtual synchronous generator with virtual speed regulator |
CN114268100B (en) * | 2022-03-01 | 2022-07-12 | 国网江西省电力有限公司电力科学研究院 | A method and device for analyzing transient stability performance of an AC-DC hybrid power system |
CN116454910B (en) * | 2023-01-17 | 2024-03-01 | 国网江苏省电力有限公司 | Virtual synchronous machine inertia and primary frequency modulation cooperative self-adaptive control method and system |
CN116231720B (en) * | 2023-03-28 | 2023-10-27 | 山东大学 | Method and system for improving transient stability of new energy via flexible DC grid-connected system |
CN116914757B (en) * | 2023-07-20 | 2024-05-07 | 国网上海市电力公司 | Method and device for determining the maximum estimated attraction domain of a flexible interconnection system in a distribution station area |
CN119109014A (en) * | 2024-08-07 | 2024-12-10 | 国网湖北省电力有限公司电力科学研究院 | A virtual impedance parameter setting method and related device for a grid-type converter |
CN118713123B (en) * | 2024-08-29 | 2024-12-06 | 湖北工业大学 | Method and system for enhancing power recovery of PV-ESS-VSG system |
CN119298099B (en) * | 2024-10-08 | 2025-03-28 | 浙江大学 | Virtual synchronous machine-based micro-grid distributed secondary control method and system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2950809A1 (en) * | 2013-11-12 | 2015-05-21 | State Grid Corporation Of China | Automatic droop control method for microgrid inverters based on small-signal stability analysis |
CN109149605A (en) * | 2018-10-12 | 2019-01-04 | 燕山大学 | A kind of micro-capacitance sensor transient state adaptive parameter control strategy based on VSG |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10177574B2 (en) * | 2016-09-28 | 2019-01-08 | Nec Corporation | Dynamic frequency control scheme for microgrids using energy storage |
-
2019
- 2019-07-29 CN CN201910687024.1A patent/CN110311375B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2950809A1 (en) * | 2013-11-12 | 2015-05-21 | State Grid Corporation Of China | Automatic droop control method for microgrid inverters based on small-signal stability analysis |
CN109149605A (en) * | 2018-10-12 | 2019-01-04 | 燕山大学 | A kind of micro-capacitance sensor transient state adaptive parameter control strategy based on VSG |
Also Published As
Publication number | Publication date |
---|---|
CN110311375A (en) | 2019-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110311375B (en) | A control method for transient stability of microgrid with multiple virtual synchronous machines | |
Pizano-Martianez et al. | Global transient stability-constrained optimal power flow using an OMIB reference trajectory | |
CN110397548B (en) | A multi-model predictive control method for a doubly-fed variable-speed pumped-storage unit | |
CN102035203B (en) | Fast calculation method of tie-line transient state stable limiting transmission power | |
CN107994588A (en) | Lift the idle control strategy of wind power plant of wind power integration light current net transient stability | |
He et al. | An adaptive VSG control strategy of battery energy storage system for power system frequency stability enhancement | |
CN108923460A (en) | The method for parameter configuration that microgrid virtual synchronous machine multi-machine parallel connection dynamic unanimously responds | |
CN108736519A (en) | A kind of the virtual synchronous generator self-adaptation control method and device of photovoltaic plant | |
CN116402017B (en) | A Simplified Modeling Method for Doubly-fed Wind Turbines Used in Power System Frequency Dynamic Analysis | |
CN111313435A (en) | Photovoltaic power station multi-machine system low-frequency oscillation suppression strategy based on VSG technology | |
CN115800296A (en) | Voltage and frequency coordinated support method of offshore wind power grid-connected system via VSC-MTDC | |
CN109638871B (en) | Main network dividing method of large-scale alternating current-direct current hybrid system considering wind power access | |
Chung et al. | Novel Frequency Control Strategy by Wind Turbines Considering Wind Speed Fluctuations and Optimized Power Point Tracking | |
CN104505827B (en) | Complicated electric power system closed loop control method based on response message | |
Sarayrah et al. | A study of a damping control based predictive strategy on an inter-area power system | |
CN104240151A (en) | Transient stability optimal correcting and control system and method for power system | |
CN117375086A (en) | Main power supply type double-fed wind field damping control method based on multi-machine parameter adjustment | |
Zhang et al. | Model Prediction-Based Virtual Synchronous Machine Control for Improving Transient Frequency Security and Stability of Wind Power Interconnected Power Systems | |
Agber et al. | Effect of power system parameters on transient stability studies | |
CN116885733A (en) | A power system optimization operation method and device based on inertia demand assessment | |
CN116111646A (en) | Frequency response control method of grid-connected inverter based on multi-parameter cooperative self-adaptation | |
Hou et al. | A review on dynamic analysis methods of power system frequency | |
Fu et al. | An Extended SFR Model of Offshore Wind Farm Integrated by VSC-HVDC for Frequency Support | |
Sun et al. | Secondary Control of Islanded Microgrids With Variable Topology | |
Li et al. | Dynamic estimation of load-side equivalent inertia by using clustering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |