CN110302756B - Method for removing heavy metal ions by using industrial waste residue modified biochar - Google Patents
Method for removing heavy metal ions by using industrial waste residue modified biochar Download PDFInfo
- Publication number
- CN110302756B CN110302756B CN201910602464.2A CN201910602464A CN110302756B CN 110302756 B CN110302756 B CN 110302756B CN 201910602464 A CN201910602464 A CN 201910602464A CN 110302756 B CN110302756 B CN 110302756B
- Authority
- CN
- China
- Prior art keywords
- industrial waste
- biochar
- pyrolysis
- heavy metal
- metal ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002440 industrial waste Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 33
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 24
- 150000002500 ions Chemical class 0.000 title claims abstract description 15
- 238000000197 pyrolysis Methods 0.000 claims abstract description 39
- 239000010815 organic waste Substances 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 239000002994 raw material Substances 0.000 claims abstract description 3
- 239000002893 slag Substances 0.000 claims description 15
- 230000004913 activation Effects 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- 239000002699 waste material Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000003723 Smelting Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000006228 supernatant Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims description 3
- 239000010796 biological waste Substances 0.000 claims description 2
- 238000005034 decoration Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 238000006116 polymerization reaction Methods 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 abstract description 2
- 230000003213 activating effect Effects 0.000 abstract 2
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 229910001430 chromium ion Inorganic materials 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 238000001994 activation Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 239000002910 solid waste Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 239000002916 wood waste Substances 0.000 description 5
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 4
- 239000012263 liquid product Substances 0.000 description 4
- 238000012502 risk assessment Methods 0.000 description 4
- 239000012190 activator Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000009270 solid waste treatment Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100001234 toxic pollutant Toxicity 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28061—Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/2808—Pore diameter being less than 2 nm, i.e. micropores or nanopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/22—Chromium or chromium compounds, e.g. chromates
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
技术领域technical field
本发明涉及固体废弃物处理及炭材料应用领域,具体是涉及一种利用工业废渣改性生物炭脱除重金属离子的方法。The invention relates to the field of solid waste treatment and carbon material application, in particular to a method for removing heavy metal ions by utilizing industrial waste residue modified biochar.
背景技术Background technique
木质废弃物在无氧或限氧条件下经高温缓慢热解(通常温度<700℃)产生的一类难溶的、稳定的、芳香化的富碳物质,称之为生物炭。生物炭最初被认为是肥力很高的“黑土壤”,其能够帮助植物生长,可应用于农业用途以及碳收集及储存使用。近几年来,国内外研究结果表明生物炭在提高作物产量、改良土壤性质、提高发酵产物肥效,修复重金属污染土壤与控制碳排放等方面均发挥出积极的作用。Biochar is a kind of insoluble, stable and aromatic carbon-rich material produced by slow pyrolysis of wood waste at high temperature (usually temperature <700℃) under anaerobic or oxygen-limited conditions. Biochar was originally thought to be a highly fertile "black soil" that aids plant growth and can be used for agricultural purposes as well as for carbon capture and storage. In recent years, research results at home and abroad have shown that biochar has played an active role in increasing crop yield, improving soil properties, improving fertilizer efficiency of fermentation products, remediating heavy metal-contaminated soil, and controlling carbon emissions.
利用木质废弃物热解制备生物炭,其高温热解气可燃烧供能以满足制备工艺的能量需求,副产物木醋液可作为杀虫剂,同时还可以制备高价值的生物炭产品,以达到木质废弃物减量率为100%的目的。然而,木质废弃物直接热解产生的生物炭与活性炭相比,比表面积和孔容大小差距较大,进而在重金属、有机污染物的吸附功能上也有较大差异。为了能提高生物炭对有毒污染组分的吸附,需要采用不同的活化方法对生物炭进行改性。目前常用的活化方法主要分为物理法与化学法,物理法能耗高,效果欠佳;化学活化法具有活化温度低、效率高的优点,但试剂容易对设备造成腐蚀,产生大量的液态产物,试剂价格也比较昂贵。The pyrolysis of wood waste is used to prepare biochar. The high-temperature pyrolysis gas can be burned to supply energy to meet the energy requirements of the preparation process. The by-product wood vinegar can be used as a pesticide, and high-value biochar products can also be prepared. To achieve the goal of 100% reduction in wood waste. However, compared with activated carbon, the biochar produced by the direct pyrolysis of wood waste has a large difference in specific surface area and pore volume, and also has a large difference in the adsorption function of heavy metals and organic pollutants. In order to improve the adsorption of toxic pollutants by biochar, different activation methods are needed to modify biochar. At present, the commonly used activation methods are mainly divided into physical method and chemical method. The physical method has high energy consumption and poor effect. The chemical activation method has the advantages of low activation temperature and high efficiency, but the reagents are easy to cause corrosion to the equipment and produce a large amount of liquid products. , and the reagents are also more expensive.
工业废渣是指在工业生产中,排放出的有毒的、易燃的、有腐蚀性的、有化学反应性的固体废物,具体包括炼铝废渣、炼钢废渣、炼铜废渣、失效的催化剂等,在现有技术中,对于此类废渣的处理方式一般是直接填埋,但是工业有害废渣的长期堆存,不仅占用大量土地资源,经过雨雪淋溶,堆渣中的可溶成分随水从地表向下渗透,向土壤迁移转化,富集有害物质,使堆场附近土质酸化、碱化、硬化,甚至发生重金属型污染。Industrial waste slag refers to the toxic, flammable, corrosive and chemically reactive solid waste discharged in industrial production, including aluminum smelting slag, steel-making slag, copper smelting slag, failed catalysts, etc. , In the prior art, the treatment method for such waste residues is generally direct landfill, but the long-term storage of industrial hazardous waste residues not only occupies a large amount of land resources, but also after rain and snow leaching, the soluble components in the piled slag will flow with water. It penetrates down from the surface, migrates and transforms into the soil, enriches harmful substances, and makes the soil near the storage yard acidified, alkalized, hardened, and even heavy metal pollution occurs.
为了保护人类生存环境,进一步提高工业废渣的无害化、资源化利用,有必要探寻新的工业废渣处理办法,经检测发现,废渣中富含钙、铝、钾、钠、硅等活性元素,对生物质的裂解反应具有催化作用,将这些工业废渣作为生物炭制备过程的活化剂,在热解过程中,与有机组分形成共融物,可使其中的重金属在生物炭中得以固定,碱性降低;同时,将物理法与化学法相结合,可在热解源头改善生物炭的表面特性。In order to protect the living environment of human beings and further improve the harmless and resourceful utilization of industrial waste residues, it is necessary to explore new treatment methods for industrial waste residues. It has a catalytic effect on the pyrolysis reaction of biomass, and these industrial waste residues are used as activators in the biochar preparation process. The alkalinity is reduced; at the same time, the combination of physical and chemical methods can improve the surface properties of biochar at the source of pyrolysis.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于解决现有技术中的不足,利用廉价的工业废渣作为传热载体与活化剂,降低热解过程中焦油产率,提高能源气体产率,在生物炭形成过程中,提高生物炭中的芳烃聚合程度,改善生物炭物理化学微结构,工业废渣中的污染组分在热解过程中得到固定,碱性降低,实现有机废弃物的能源化、材料化与工业废渣的无害化、资源化利用。The purpose of the present invention is to solve the deficiencies in the prior art, use cheap industrial waste residue as a heat transfer carrier and an activator, reduce the tar yield in the pyrolysis process, improve the energy gas yield, and in the biochar formation process, improve the biological The degree of aromatic hydrocarbon polymerization in the charcoal improves the physical and chemical microstructure of biochar, the polluting components in the industrial waste residue are fixed during the pyrolysis process, and the alkalinity is reduced, realizing the energy and materialization of organic waste and the harmlessness of industrial waste residue. and resource utilization.
本发明的技术方案为:一种利用工业废渣改性生物炭脱除重金属离子的方法,具体步骤如下The technical scheme of the present invention is: a method for removing heavy metal ions by utilizing industrial waste residue modified biochar, the specific steps are as follows
(1)原料的预处理:将水分低于10%的有机废弃物破碎至粒径3 mm以下,保存备用;(1) Pretreatment of raw materials: crush organic wastes with a moisture content of less than 10% to a particle size of less than 3 mm, and store them for future use;
(2)工业废渣的活化:将工业废渣放入加热炉中,在500-700℃条件下,进行热活化2 h;(2) Activation of industrial waste slag: put the industrial waste slag into a heating furnace, and conduct thermal activation for 2 h at 500-700 °C;
(3)将步骤(2)制得的经活化的工业废渣与步骤(1)获得的经处理的有机废弃物按质量比0:1-1:1混合均匀;(3) uniformly mixing the activated industrial waste residue obtained in step (2) and the treated organic waste obtained in step (1) in a mass ratio of 0:1-1:1;
(4)将步骤(3)获得的按比例混合均匀的样品分别放入热解反应器热解,通入一定氮气,载气流速为0.08~0.1 L/min,以8-12℃/min的升温速率升温到400~900℃,热解反应40-90 min;(4) Put the uniformly mixed samples obtained in step (3) into the pyrolysis reactor for pyrolysis, respectively, and pass in a certain amount of nitrogen gas. The flow rate of the carrier gas is 0.08~0.1 L/min. The heating rate is increased to 400-900 °C, and the pyrolysis reaction is performed for 40-90 min;
(5)将热解反应得到的热解残渣置于重金属污染的水溶液中,搅拌60-90 min、离心15-30 min;(5) The pyrolysis residue obtained by the pyrolysis reaction is placed in an aqueous solution contaminated with heavy metals, stirred for 60-90 min, and centrifuged for 15-30 min;
(6)取上清液进行重金属离子分析,与空白试验进行对比,计算脱除率。(6) Take the supernatant for heavy metal ion analysis, compare it with the blank test, and calculate the removal rate.
进一步地,所述有机废弃物具体包括农林废弃物、生物垃圾中的有机组分以及装修垃圾中的木质碎屑中的一种或多种。Further, the organic waste specifically includes one or more of agricultural and forestry waste, organic components in biological waste, and wood debris in decoration waste.
进一步地,所述工业废渣为炼铝废渣、炼钢废渣、炼铜废渣、有色金属炼制厂排放的工业污泥和失效的催化剂中的一种或多种。Further, the industrial waste slag is one or more of aluminum smelting slag, steel smelting slag, copper smelting waste slag, industrial sludge discharged from a non-ferrous metal refinery and an invalid catalyst.
本发明的有益效果为:The beneficial effects of the present invention are:
(1)该方法利用工业废渣,结合物理活化与化学活化的方法,在热解源头改善生物炭的性能,具有节能降耗的优势;(1) This method utilizes industrial waste residues and combines physical activation and chemical activation methods to improve the performance of biochar at the source of pyrolysis, and has the advantages of energy saving and consumption reduction;
(2)工业废渣与有机固废协同处置过程中,工业废渣中的污染组分得到有效抑制,有机固废的能源利用率提高,解决了木质废物随意堆置浪费资源的问题,也解决了工业废渣填埋带来二次污染的问题,使其无害化利用;(2) In the process of co-processing of industrial waste residue and organic solid waste, the polluting components in industrial waste residue are effectively suppressed, the energy utilization rate of organic solid waste is improved, the problem of random stacking of wood waste and wasting resources is solved, and it also solves the problem of industrial waste. The problem of secondary pollution caused by the landfill of waste residue makes it harmless to use;
(3)在热解源头,加入工业废渣作为活化剂,不仅可以降低生物炭活化过程中能耗与成本,且得到的生物炭比表面积增大了50-100%,平均孔径增加了50%以上;(3) At the source of pyrolysis, adding industrial waste residue as an activator can not only reduce energy consumption and cost in the biochar activation process, but also increase the specific surface area of the biochar by 50-100% and the average pore size by more than 50%. ;
(4)热解过程中加入工业废渣后,得到的生物炭应用于水溶液中重金属离子吸附,脱除率可以达到95%以上;(4) After adding industrial waste residue in the pyrolysis process, the obtained biochar is applied to the adsorption of heavy metal ions in the aqueous solution, and the removal rate can reach more than 95%;
(5)吸附重金属离子后的生物炭,经过标准HJ/T 299-2007方法鉴定,重金属在生物炭中可以有效固定。(5) The biochar after adsorption of heavy metal ions was identified by the standard HJ/T 299-2007 method, and the heavy metals could be effectively fixed in the biochar.
附图说明Description of drawings
图1为本发明公开的利用工业废渣改性生物炭脱除重金属离子的方法的实施流程图;Fig. 1 is the implementation flow chart of the method for removing heavy metal ions by utilizing industrial waste residue modified biochar disclosed in the present invention;
其中,1-有机固废,2-破碎,3-工业废渣,4-煅烧,5-预混,6-热解反应器,7-生物炭,8-吸附,9-生态风险评价,10-热解气,11-液态产物。Among them, 1-organic solid waste, 2-crushing, 3-industrial waste residue, 4-calcination, 5-premixing, 6-pyrolysis reactor, 7-biochar, 8-adsorption, 9-ecological risk assessment, 10- Pyrolysis gas, 11-liquid product.
具体实施方式Detailed ways
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。The following examples further illustrate the content of the present invention, but should not be construed as limiting the present invention. Modifications and substitutions made to the methods, steps or conditions of the present invention without departing from the essence of the present invention all belong to the scope of the present invention.
对比例:Comparative ratio:
将水分低于10%的有机固废破碎至粒径为3 mm以下,进入热解反应器中热解,通入氮气作为保护气,载气流速为0.08-0.1 L/min,以8-12℃/min的升温速率升温到700℃,热解加热保持60 min,产生热解气、液态产物和热解炭。其中,气体产率为35%,焦油产率为27%,生物炭产率为23%,热解水产率为15%,生物炭的比表面积在110-140 m2/g,平均孔径在1-3 nm。取1 g生物炭置于3 mg/L的六价铬离子溶液中进行吸附试验,搅拌60-90 min,离心15-30 min,取上层清液进行六价铬分析,经计算,其六价铬离子脱除率为8.04%。吸附铬离子的生物炭经干燥后,经标准HJ/T 299-2007方法进行生态风险评价可知,吸附后的铬离子在生物炭中可以有效固定。The organic solid waste with a moisture content of less than 10% is crushed to a particle size of less than 3 mm, and then enters the pyrolysis reactor for pyrolysis, and nitrogen is introduced as a protective gas. The heating rate of ℃/min was raised to 700 ℃, and the pyrolysis heating was maintained for 60 min to generate pyrolysis gas, liquid products and pyrolysis carbon. Among them, the gas yield is 35%, the tar yield is 27%, the biochar yield is 23%, the pyrolysis water yield is 15%, the specific surface area of the biochar is 110-140 m 2 /g, and the average pore size is 1 -3 nm. Take 1 g of biochar and put it in a 3 mg/L hexavalent chromium ion solution for adsorption test, stir for 60-90 min, centrifuge for 15-30 min, and take the supernatant for hexavalent chromium analysis. The removal rate of chromium ions was 8.04%. After the biochar adsorbed chromium ions was dried, the ecological risk assessment was carried out by the standard HJ/T 299-2007 method, and it was found that the adsorbed chromium ions could be effectively fixed in the biochar.
实施例Example
将水分低于10%的有机固废破碎至粒径为3 mm以下,本实施例中所用工业废渣为炼铝废渣,550℃煅烧2 h后,与有机固废按质量比1:1在预混系统中混合,进入热解反应器中热解,通入氮气作为保护气,载气流速为0.08-0.1 L/min,以8-12℃/min的升温速率升温到700℃,热解加热保持60 min,产生热解气、液态产物和热解炭,气体产率为38%,焦油产率为22%,生物炭产率为29%,热解水产率为11%,生物炭的比表面积在220-280 m2/g,平均孔径在2-10 nm。取1 g生物炭置于3 mg/L的六价铬离子溶液中进行吸附试验,搅拌60-90 min,离心15-30 min,取上层清液进行六价铬分析,经计算,其六价铬离子脱除率为95.11%。吸附铬离子的生物炭经干燥后,经标准HJ/T 299-2007方法进行生态风险评价可知,吸附后的铬离子在生物炭中可以有效固定。The organic solid waste with a moisture content of less than 10% was crushed to a particle size of less than 3 mm. The industrial waste slag used in this example was aluminum smelting waste slag. Mix in the mixing system, enter the pyrolysis reactor for pyrolysis, introduce nitrogen as the protective gas, the carrier gas flow rate is 0.08-0.1 L/min, and the temperature rises to 700 °C at a heating rate of 8-12 °C/min, and the pyrolysis heating Hold for 60 min to generate pyrolysis gas, liquid products and pyrolysis carbon, the gas yield is 38%, the tar yield is 22%, the biochar yield is 29%, the pyrolysis water yield is 11%, and the ratio of biochar The surface area is 220-280 m 2 /g, and the average pore size is 2-10 nm. Take 1 g of biochar and put it in a 3 mg/L hexavalent chromium ion solution for adsorption test, stir for 60-90 min, centrifuge for 15-30 min, and take the supernatant for hexavalent chromium analysis. The removal rate of chromium ions was 95.11%. After the biochar adsorbed chromium ions was dried, the ecological risk assessment was carried out by the standard HJ/T 299-2007 method, and it was found that the adsorbed chromium ions could be effectively fixed in the biochar.
与没有添加工业废渣的对比例相比,本实施例公开的利用工业废渣改性生物炭脱除重金属离子的方法主要包括两个过程,一是工业废渣中的污染组分经过700℃的热解,其重金属大部分由可转移态逐步向残渣态转化,在生物炭形成过程中固定在了生物炭里面,污染组分得到有效抑制,碱性降低,与此同时,产物中的焦油产率下降,能源气体产率提高,且制备的热解生物炭的比表面积和平均孔径均增加;二是利用制备好的改性生物炭去吸附铬离子,使铬离子与生物炭结合并与之发生一系列的物理化学反应,从而固定在生物炭中以计算改性生物炭对重金属的脱除率和重金属离子的固化效果。Compared with the comparative example without adding industrial waste residue, the method for removing heavy metal ions using industrial waste residue modified biochar disclosed in this embodiment mainly includes two processes. , most of its heavy metals are gradually transformed from the transferable state to the residue state, and are fixed in the biochar during the formation process of the biochar, the polluting components are effectively suppressed, the alkalinity is reduced, and at the same time, the tar yield in the product decreases. , the energy gas yield is improved, and the specific surface area and average pore size of the prepared pyrolysis biochar are increased; the second is to use the prepared modified biochar to desorb chromium ions, so that chromium ions are combined with biochar and generate a A series of physical and chemical reactions were used to fix the biochar in the biochar to calculate the removal rate of heavy metals and the solidification effect of heavy metal ions by the modified biochar.
吸附铬离子的生物炭经干燥后,经标准HJ/T 299-2007方法进行生态风险评价可知,吸附后的铬离子在生物炭中可以有效固定。After the biochar adsorbed chromium ions was dried, the ecological risk assessment was carried out by the standard HJ/T 299-2007 method, and it was found that the adsorbed chromium ions could be effectively fixed in the biochar.
以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。The foregoing has shown and described the basic principles, main features and advantages of the present invention. However, the above descriptions are only specific embodiments of the present invention, and the technical features of the present invention are not limited thereto. within the scope of the invention patent.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910602464.2A CN110302756B (en) | 2019-07-05 | 2019-07-05 | Method for removing heavy metal ions by using industrial waste residue modified biochar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910602464.2A CN110302756B (en) | 2019-07-05 | 2019-07-05 | Method for removing heavy metal ions by using industrial waste residue modified biochar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110302756A CN110302756A (en) | 2019-10-08 |
CN110302756B true CN110302756B (en) | 2022-05-24 |
Family
ID=68078869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910602464.2A Active CN110302756B (en) | 2019-07-05 | 2019-07-05 | Method for removing heavy metal ions by using industrial waste residue modified biochar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110302756B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110976487A (en) * | 2019-12-24 | 2020-04-10 | 江苏筑原生物科技研究院有限公司 | Method for improving hydrogen yield by catalytic pyrolysis of organic solid waste by using industrial waste residues |
CN112588261B (en) * | 2020-11-23 | 2021-09-17 | 常州大学 | Preparation method of carbon-aluminum composite material |
CN113842879B (en) * | 2021-09-26 | 2024-04-12 | 北京建工资源循环利用股份有限公司 | Method for preparing organic adsorbent by utilizing decoration garbage sorting waste, application of organic adsorbent and sewage treatment system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105293750A (en) * | 2014-06-29 | 2016-02-03 | 上海梅山钢铁股份有限公司 | Method for reducing industrial wastewater hardness with steelmaking waste slag |
CN107285600A (en) * | 2017-08-10 | 2017-10-24 | 中冶节能环保有限责任公司 | A kind of method that catalyst prepared using industrial and mineral solid waste carries out pyrolyzing sludge preparing active carbon |
CN108654551A (en) * | 2018-05-16 | 2018-10-16 | 青岛理工大学 | Method for preparing adsorbent by co-pyrolysis of steel slag and sludge |
CN109266690A (en) * | 2018-09-11 | 2019-01-25 | 常州大学 | A kind of method of organic waste anaerobism-pyrolysis coupling richness production capacity source gas |
-
2019
- 2019-07-05 CN CN201910602464.2A patent/CN110302756B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105293750A (en) * | 2014-06-29 | 2016-02-03 | 上海梅山钢铁股份有限公司 | Method for reducing industrial wastewater hardness with steelmaking waste slag |
CN107285600A (en) * | 2017-08-10 | 2017-10-24 | 中冶节能环保有限责任公司 | A kind of method that catalyst prepared using industrial and mineral solid waste carries out pyrolyzing sludge preparing active carbon |
CN108654551A (en) * | 2018-05-16 | 2018-10-16 | 青岛理工大学 | Method for preparing adsorbent by co-pyrolysis of steel slag and sludge |
CN109266690A (en) * | 2018-09-11 | 2019-01-25 | 常州大学 | A kind of method of organic waste anaerobism-pyrolysis coupling richness production capacity source gas |
Non-Patent Citations (2)
Title |
---|
"Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry";Piyushi Nautiyal et al.;《Journal of Environmental Management》;20160727;第182卷;第187-197页 * |
"热解含油污泥制备活性炭负载纳米氧化铝";张璇等;《过滤与分离》;20171215;第27卷(第4期);第15-20页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110302756A (en) | 2019-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | A review on the migration and transformation of heavy metals in the process of sludge pyrolysis | |
CN106045002B (en) | Method for catalyzing persulfate degradation of organic matter or ammonia nitrogen in sewage by sludge biochar | |
CN110302756B (en) | Method for removing heavy metal ions by using industrial waste residue modified biochar | |
CN107365593A (en) | A kind of method that antibiotic bacterium dregs prepare charcoal | |
CN104961313B (en) | It is a kind of to strengthen the method for anaerobically digested sludge heavy metal stabilization process | |
WO2017128943A1 (en) | Anaerobic catalytic thermal cracking method for solid waste | |
CN102120575A (en) | A process for preparing activated carbon from chemical sludge | |
CN105038822A (en) | Sludge clean treatment method and device | |
CN102107872A (en) | A process for preparing activated carbon by adding fruit shells to chemical sludge | |
CN110698023A (en) | Method for regulating alkalinity of red mud by pyrolyzing agricultural biomass wastes | |
CN106010542A (en) | Sludge charcoal for repairing heavy metal contaminated soil and preparation method of sludge charcoal | |
CN105688814A (en) | Method for preparing phosphorus-removing adsorbent by utilizing sludge of sewage treatment plant | |
CN107188386A (en) | A kind of method that utilization sewage plant excess sludge prepares charcoal | |
CN108993475B (en) | Ternary composite material heterogeneous light Fenton catalyst and preparation and application thereof | |
CN108654551A (en) | Method for preparing adsorbent by co-pyrolysis of steel slag and sludge | |
Cao et al. | Sludge-based biochar preparation: Pyrolysis and co-pyrolysis methods, improvements, and environmental applications | |
CN101700524B (en) | Fixing agent and method for safely disposing heavy metal polluted soil repairing plant | |
CN110711768A (en) | Organic-inorganic complex generated by catalytic cracking of clay minerals and application thereof | |
CN107099301B (en) | Phosphorus-rich biological coke and preparation method and application thereof | |
CN103936244B (en) | A kind of method utilizing municipal effluent biological sludge to prepare hydro-thermal Jiao | |
CN106744952B (en) | The method that sewage sludge prepares modified active coke | |
CN103739179A (en) | Sludge pre-treatment method | |
CN204918477U (en) | Clean processing apparatus of mud | |
CN113651588A (en) | Efficient phosphorus-removing baking-free ceramsite and preparation method and application thereof | |
WO2024055515A1 (en) | Sludge-based hexavalent chromium composite adsorbent and preparation method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |