CN110301917B - 一种无接触呼吸检测方法及装置 - Google Patents

一种无接触呼吸检测方法及装置 Download PDF

Info

Publication number
CN110301917B
CN110301917B CN201910513957.9A CN201910513957A CN110301917B CN 110301917 B CN110301917 B CN 110301917B CN 201910513957 A CN201910513957 A CN 201910513957A CN 110301917 B CN110301917 B CN 110301917B
Authority
CN
China
Prior art keywords
detection
respiration
state information
channel state
breath detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910513957.9A
Other languages
English (en)
Other versions
CN110301917A (zh
Inventor
张大庆
曾有为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201910513957.9A priority Critical patent/CN110301917B/zh
Publication of CN110301917A publication Critical patent/CN110301917A/zh
Application granted granted Critical
Publication of CN110301917B publication Critical patent/CN110301917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公布了一种无接触呼吸检测方法及装置,包括:接收设备R从发送设备T接收射频信号,接收设备R包含两根或更多根接收天线;针对任意两根接收天线接收到的射频信号所对应的信道状态信息CSI,取两者之比值,构建每个子载波的新的信道状态信息,可消除相位偏移和振幅噪音;根据一段时间窗口内新的信道状态信息,确定每个子载波的最优呼吸检测特征;根据多个子载波的最优呼吸检测特征,进行融合计算,得到检测目标的呼吸率。采用本发明技术方案,能够极大拓展呼吸检测的感知范围,而且具有非侵扰性、方便、低成本的技术优点。

Description

一种无接触呼吸检测方法及装置
技术领域
本发明涉及无线电应用技术领域,具体涉及了一种远距离无接触呼吸检测方法及装置,通过射频信号来实现无接触的人体呼吸检测。
背景技术
无接触呼吸检测指的是在目标不携带任何设备,也不与设备发生任何接触行为的情况下获得目标的呼吸率。相比于接触式呼吸检测方式,无接触呼吸检测具有非侵扰性、方便、低成本的优点。而商用WiFi设备目前广泛存在于我们的日常生活中,因此实现商用WiFi设备上的无接触呼吸检测技术受到了广泛关注。
最近,我们已经看到基于家庭中广泛可用的WiFi基础设施进行呼吸监测的趋势。2015年,受到观察结果的启发,埃及的Heba Abdelnasser利用WiFi接收信号强度(ReceivedSignal Strength,RSS)模式中的变化来提取呼吸率,这一观察结果表明,WiFi设备上的RSS受到呼吸过程的影响。然而,RSS对微小的胸部运动不敏感,在呼吸过程中,很容易被噪音所淹没。这些缺点阻止了它在自然环境中可靠地检测呼吸。
相比于接收信号强度,信道状态信息(Channel State Information,CSI,描述物理空间状态,是一个复数值)对呼吸更为敏感。2015年,中国的Xuefeng Liu第一个使用WiFiCSI信息在睡眠期间检测呼吸。2016年,中国的Hao Wang引入菲涅尔区概念,首次揭示了使用WiFi CSI振幅呼吸检测的原理,指出呼吸检测时存在一些盲区(使用WiFi CSI振幅无法有效地检测呼吸)。2017年,中国的Xuyu Wang首次使用WiFi两根接收天线上的CSI相位差检测呼吸。2018年,中国的Youwei Zeng利用WiFi CSI振幅、相位信息的正交互补性质解决了基于商用WiFi的呼吸检测盲区问题。但是,上述这些工作只有当人离收发设备非常近时才能可靠工作,限制了其在真实场景下的应用。目前,现有技术无法实现利用商用WiFi设备(无线射频信号(RF))可靠地进行远距离无接触呼吸检测。
发明内容
为了克服上述现有技术的不足,本发明提供一种远距离无接触呼吸检测方法及装置,可基于能发射无线射频信号且提供信道状态信息CSI的设备,如商用WiFi、4G等设备,在人类目标不携带任何设备的情况下,利用无线射频信号(RF)检测得到目标的呼吸率,并且不需要修改设备的任何硬件。
为了便于说明,本文约定:“RF”表示无线射频信号,CSI表示信道状态信息。
本发明的原理是:WiFi CSI是一个复数值,包含振幅和相位。因为商用WiFi设备的不完善,造成CSI相位有漂移,无法获得准确的相位信息,因此现有的基于WiFi CSI的呼吸检测技术大多只使用具有比较高噪音的CSI振幅。和现有技术不同,本发明利用同一接收设备上两根天线CSI的比值,通过取复数CSI比值的操作消除相位上的偏移并消除振幅上大部分的噪音,由此极大地拓展了呼吸检测的感知范围。进一步充分结合多个载波CSI比值的振幅和相位信息,不仅消除呼吸检测的盲区,而且拓展呼吸检测的感知范围,从而实现远距离无接触方便有效地检测呼吸。
本发明的技术方案是:
一种远距离无接触呼吸检测方法,包括如下步骤:
1)接收设备R从发送设备T接收射频信号,所述接收设备R包含两根或更多根接收天线;
发送设备T包含一根或更多根接收天线,发射射频信号,这些射频信号经过不同路径传播到达接收设备R,如直接传播路径、来自墙面以及被检测目标的反射。这些沿不同路径传播的射频信号在接收设备R处叠加并被接收。接收设备R接收到的射频信号携带了人体所处的环境信息,从而被用来感知被检测目标的呼吸。
2)每根接收天线包含多个子载波的信道状态信息CSI,针对任意两根接收天线接收到的射频信号所对应的信道状态信息CSI,取两者之比值,构建每个子载波的新的信道状态信息,可消除相位偏移和振幅噪音;
3)根据一段时间窗口内新的信道状态信息,确定每个子载波的最优呼吸检测特征;
4)根据多个子载波的最优呼吸检测特征,进行融合计算,得到检测目标的呼吸率。
进一步的,所述射频信号为由同一个发送设备或发射装置发出的射频信号。
更进一步的,所述发射装置包括WiFi信号发射装置,此时,所述射频信号为电磁波。
更进一步的,所述取两者之比值包括:根据接收设备R一对接收天线接收的所述射频信号,在接收设备R中计算得到该时刻t的信道状态信息H1(t)和H2(t),系统计算信道状态信息的采样率为Fs,取H1(t)和H2(t)的比值构建新的信道状态信息
Figure GDA0002566202500000021
其中H1(t),H2(t),H3(t)均为复数。
更进一步的,所述对新的信道状态信息H3(t)中的特征进行分析,确定每个子载波的最优呼吸检测特征包括:在接收设备R上,提取所述新的信道状态信息H3(t)的实部I(t)和虚部Q(t);对一段时间窗口W,即这段时间窗口的长度为W(单位是秒,比如W=8),时间窗口W内的采样点即该段时间内的所有数据采样点。对于时刻t的数据采样点为t-W秒到t秒之间(即时间段(t-W,t])的采样点。
对一段时间窗口W内(系统计算信道状态信息的采样率为Fs,因此此段时间窗口内共计W*Fs个采样点)的实部
Figure GDA0002566202500000031
和虚部
Figure GDA0002566202500000032
Figure GDA0002566202500000033
通过赋予不同的权重(权重[cosθ sinθ],其中0≤θ<2π)进行线性组合,以此生成不同的候选呼吸检测特征Y(t,θ)=I cosθ+Q sinθ(其中0≤θ<2π);采用S-G滤波和Z-score标准化方法,对所述的候选呼吸检测特征进行平滑和标准化处理,得到标准化的候选呼吸检测特征;对于第i个子载波,计算所述标准化的不同候选呼吸检测特征的功率谱密度峰值,取其中功率谱密度峰值最大的一个呼吸检测特征作为第i个子载波的最优呼吸检测特征
Figure GDA0002566202500000034
更进一步的,所述功率谱峰值的计算方法包括:通过快速傅里叶变换将为时域信号的所述标准化的候选呼吸检测特征转换成对应的频域信号,得到其对应的功率谱密度,取其功率谱密度的最大值得到候选呼吸检测特征的功率谱密度峰值。
更进一步的,融合多个子载波的最优呼吸检测特征,计算呼吸率,包括:将上述步骤应用于WiFi射频信号的所有子载波,对于第i个子载波,其在时刻t的最优呼吸检测特征为Yi(t);结合多个子载波的最优呼吸检测特征,生成融合的呼吸检测特征;根据所述融合的呼吸检测特征,计算呼吸频率(呼吸率)。
更进一步的,结合多个子载波的最优呼吸检测特征,生成融合的呼吸检测特征,包括:对第i个子载波的最优呼吸检测特征
Figure GDA0002566202500000035
计算其自相关函数,具体为Ri(t)=[ri(0) ri(1) … ri(k) … ri(W*Fs-1)],其中
Figure GDA0002566202500000036
Figure GDA0002566202500000037
yi(t)为第i个子载波在时刻t的最优呼吸检测特征,W*Fs为时间窗口的长度,
Figure GDA0002566202500000038
为yi在此时间窗口内的平均值,k=0,1,…,W*Fs-1为偏移的采样点;从所有子载波中挑选合适的子载波(记这些子载波形成集合D)参与融合;将集合D中所有子载波的所述自相关函数结果通过赋予权重进行线性组合,生成融合的呼吸检测特征Rall(t)=∑i∈DPSDi*Ri(t),其中权重PSDi为第i个子载波的所述最优呼吸检测特征的功率谱密度峰值。
具体实施时,从所有子载波中挑选合适的子载波参与融合,包括:计算所有子载波中,最优呼吸检测特征的功率谱密度峰值的最大值PSDmax=max(PSDi);只挑选最优呼吸检测特征的功率谱密度峰值大于或等于0.7*PSDmax的那些子载波。
更进一步的,根据所述融合的呼吸检测特征,计算呼吸率,包括:对于所述融合的呼吸检测特征,Rall(t)=∑i∈DPSDi*Ri(t),Ri(t)=[ri(0) ri(1) … ri(k) … ri(W*Fs-1)],即Rall(t)=[rall(0) rall(1) … rall(W*Fs-1)],取其第一个峰值对应的采样点K与采样率Fs之比作为呼吸周期
Figure GDA0002566202500000041
单位为秒/次;将呼吸周期转化为呼吸率,具体为,
Figure GDA0002566202500000042
单位为次/分钟。
为了实现上述远距离无接触呼吸检测方法,具体实施时,检测装置包括:
A.发出射频信号的发射设备T;
B.包含两根或更多根接收天线的接收设备R;
C.新射频信号构建模块;
D.CSI分析与特征提取模块,CSI包括振幅和相位,用于对新的信道状态信息中的特征进行分析,确定最优呼吸检测特征包括:提取所述复数值的新的信道状态信息中的实部和虚部特征;
E.候选呼吸检测特征生成模块;
F.功率谱密度峰值获取模块,用于计算一段时间内、不同的候选呼吸检测特征的功率谱密度峰值;
G.呼吸率计算模块,用于融合多个子载波的最优呼吸检测特征并计算得到呼吸率。
H.子载波挑选模块,用于挑选合适的子载波参与多个子载波的最优呼吸检测特征的融合。
其中,接收设备R中的任意两根接收天线接收到的射频信号的信道状态信息分别为H1(t)和H2(t)。
与现有技术相比,本发明的有益效果是:
本发明提供一种无接触呼吸检测方法及装置,利用射频信号发送设备(商用WiFi设备)发射的无线射频信号对目标呼吸率的检测。利用同一接收端两根天线CSI的比值消除商用WiFi的相位偏移问题,并降低了振幅上的噪音,进一步结合其振幅、相位信息,以此极大地拓展了呼吸检测的感知范围。此外,本发明提供的技术方案还具有非侵扰性、方便、低成本的技术优点,除可应用于检测人体呼吸外,也适用于对动物呼吸以及周期性运动物体的检测。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了根据本发明实施方式的无接触呼吸检测方法的流程框图。
图2示出了根据本发明实施方式的呼吸检测过程的示意图。
图3示出了根据本发明实施方式的呼吸检测装置组成示意图;
其中,a为发送设备(其支持包括Wi-Fi信号的射频信号发射,例如Wi-Fi设备);b为接收设备(其支持包括Wi-Fi信号的射频信号接收,例如Wi-Fi设备);c和d为接收设备R的两根天线。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整地传达给本领域的技术人员。
本发明提供了一种无接触呼吸检测方法,具体实施时,实现了在室内环境基于商用WiFi装置,在被检测目标不携带任何装置的情况下,利用无线射频信号(RF)估计目标的呼吸率。现有技术中,由于商用WiFi的信道状态信息具有时变的相位偏移,因此很难利用其相位特征进行呼吸检测,一般是利用其振幅特征进行呼吸检测;然而,由于振幅信息包含较大的噪音,现有的工作只能在人离收发设备非常近的情况下可靠地检测呼吸,限制了其在真实场景下的应用。为此,本发明公开了一种远距离无接触呼吸检测方法,通过利用同一接收端两根天线CSI比值的方法解决了商用WiFi的相位偏移问题,并消除了振幅上大部分的噪音,进一步将多个载波的振幅特征和相位特征精心结合用于呼吸检测,实现了基于商用WiFi的远距离呼吸检测。下面将对本发明方法及系统进行说明:
如图1所示,为根据本发明实施方式的无接触呼吸检测方法框图。本发明的方法包括:
S1、通过至少两根接收天线接收射频信号;
S2、对任意两根接收天线接收到的射频信号所对应的信道状态信息,取两者之比值,构建每个子载波的新的信道状态信息;
S3、根据一段时间窗口内新的信道状态信息,确定每个子载波的最优呼吸检测特征;
S4、结合多个子载波的最优呼吸检测特征,计算呼吸率。
其中,所述射频信号应由同一个射频信号发射源发出,所述射频信号,如WiFi装置发出的电磁波等。下面将以WiFi装置为例进行说明。
具体的,所述接收装置应至少具有两根接收天线,并接收由同一个射频信号发射源发出的射频信号;所述接收装置同发射装置一起形成射频信号的传播路径的两个端点。其中,同一个发射源应当理解为,同一时刻发出具有相同特性的射频信号的发射源,如,发射源可以为具有多根发射天线的WiFi装置。之后,通过对所述接收装置中接收到的射频信号所对应的信道状态信息CSI进行分析,从而获得呼吸率。呼吸检测的实现原理为,信道状态信中包含了其所对应的射频信号的振幅特性和相位特征,并且所述振幅特性和相位特征将随着射频信号的传输路径的不同而改变。当人呼吸时,由人体胸口起伏所引起的信道状态信息CSI的变化呈现相应的类周期性的变化;通过对所述类周期性的变化进行分析,即可获得呼吸率。
所述对同一接收端两根接收天线接收到的射频信号所对应的信道状态信息,取两者之比值的目的是,一方面消除商用WiFi装置获得的信道状态信息的相位存在时变偏移的问题,另一方面是降低振幅上的噪音水平,从而极大地拓展了呼吸检测的感知范围。
所述根据一段时间窗口内新的信道状态信息,确定每个子载波的最优呼吸检测特征,包括,在接收设备R上,提取所述新的信道状态信息的实部和虚部;对一段时间窗口W内的实部特征和虚部特征通过赋予不同的权重进行线性组合,以此生成不同的候选呼吸检测特征;采用S-G滤波和Z-score标准化方法,对所述的候选呼吸检测特征进行平滑和标准化处理,得到标准化的候选呼吸检测特征;计算所述标准化的不同候选呼吸检测特征的功率谱密度峰值,取其中功率谱密度峰值最大的一个呼吸检测特征作为时刻t的最优呼吸检测特征。
所述结合多个子载波的最优呼吸检测特征,生成融合的呼吸检测特征,包括,从所有子载波中挑选合适的子载波参与融合,将这些子载波的自相关函数结果线性组合,其融合权重为所述子载波的最优呼吸检测特征的功率谱密度峰值,从融合的呼吸检测特征中估计呼吸率。
如图2所示,为呼吸检测过程示意图。图2中示出了几种射频信号由发射端到接收端的反射路径,包括,直接路径和反射路径;其中,反射路径又分为由墙体等静态物体的反射以及由人体等动态物体的反射。其各自的特点是,由墙体等静态物体反射的射频信号的信道状态信息是稳定的,而在呼吸过程中由人体反射的射频信号的信道状态信息是变化的。如图3所示,为根据本发明实施例的呼吸检测系统组成示意图。其中,(a)为发送设备(其支持包括Wi-Fi信号的射频信号发射,例如Wi-Fi设备);(b)为接收设备(其支持包括Wi-Fi信号的射频信号接收,例如Wi-Fi设备);(c)和(d)为接收设备R的两根天线。
在图3所示的呼吸检测系统以及在本发明的其他实施例的呼吸检测系统中,根据对系统实时性、实现成本和测量精度等需求,发送设备、接收设备的天线均可增加。例如,在一个实施例中,为实现更好的实时性或测量精度,发送设备或接收设备的天线可选为3根。在另一个实施例中,为节约成本,发送设备或接收设备的天线可选的为2根。需说明的是,为了实施本发明中的呼吸检测方法,在接收设备上需要至少装有两根天线,用于接收射频信号。此外,在一个实施例中,发送设备T和接收设备R,可为笔记本电脑、MiniPC、路由器和/或任何支持RF(射频)信号收发的设备。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种远距离无接触呼吸检测方法,包括如下步骤:
1)发送设备T发射射频信号,射频信号经过不同路径传播到达接收设备R,在接收设备R处叠加并被接收;
接收设备R接收到携带环境信息的射频信号;所述接收设备R包含两根或两根以上接收天线;所述环境信息包括被检测目标;
2)每根接收天线包含多个子载波的信道状态信息CSI,根据任意两根接收天线接收到的射频信号所对应的信道状态信息CSI的比值,构建每个子载波的新的信道状态信息
Figure DEST_PATH_IMAGE001
,消除相位偏移和振幅噪音;
3)根据一段时间窗口内新的信道状态信息
Figure 417001DEST_PATH_IMAGE001
,确定每个子载波的最优呼吸检测特征;包括如下操作:
31)在接收设备R上,提取所述新的信道状态信息
Figure 732576DEST_PATH_IMAGE002
的实部
Figure DEST_PATH_IMAGE003
和虚部
Figure 677529DEST_PATH_IMAGE004
32)计算信道状态信息的采样率记为
Figure DEST_PATH_IMAGE005
;对一段时间窗口
Figure 19167DEST_PATH_IMAGE006
内的
Figure DEST_PATH_IMAGE007
个采样点信道状态信息的实部
Figure 114293DEST_PATH_IMAGE008
和虚部
Figure DEST_PATH_IMAGE009
通过赋予不同的权重进行线性组合,生成不同的候选呼吸检测特征
Figure 235440DEST_PATH_IMAGE010
;所述权重取值为
Figure DEST_PATH_IMAGE011
,其中
Figure 554557DEST_PATH_IMAGE012
;生成不同的候选呼吸检测特征为:
Figure DEST_PATH_IMAGE013
33)对候选呼吸检测特征进行平滑和标准化处理,得到标准化的候选呼吸检测特征;
34)对于第
Figure 114982DEST_PATH_IMAGE014
个子载波,计算不同的标准化的候选呼吸检测特征的功率谱密度峰值;取其中功率谱密度峰值最大相对应的标准化的候选呼吸检测特征作为第
Figure 926382DEST_PATH_IMAGE014
个子载波在时刻
Figure DEST_PATH_IMAGE015
的最优呼吸检测特征;由此确定每个子载波的最优呼吸检测特征;
4)根据多个子载波在时刻
Figure 888653DEST_PATH_IMAGE016
的最优呼吸检测特征进行融合计算,生成融合的呼吸检测特征;对于射频信号的所有子载波,包括如下操作:
41)对第
Figure 768884DEST_PATH_IMAGE014
个子载波的最优呼吸检测特征
Figure DEST_PATH_IMAGE017
,计算自相关函数,具体为:
Figure DEST_PATH_IMAGE019
其中,通项
Figure 223130DEST_PATH_IMAGE020
,
Figure DEST_PATH_IMAGE021
为第
Figure 985025DEST_PATH_IMAGE014
个子载波在时刻
Figure 395278DEST_PATH_IMAGE015
的最优呼吸检测特征,
Figure 446411DEST_PATH_IMAGE007
为时间窗口的长度,
Figure 43745DEST_PATH_IMAGE022
Figure DEST_PATH_IMAGE023
在此时间窗口内的平均值,
Figure 612261DEST_PATH_IMAGE024
为偏移的采样点;
42)从所有子载波中选择参与融合的子载波,形成集合
Figure DEST_PATH_IMAGE025
43)将集合
Figure 286474DEST_PATH_IMAGE026
中所有子载波的自相关函数结果通过赋予权重进行线性组合,生成融合的呼吸检测特征
Figure DEST_PATH_IMAGE027
,其中权重
Figure 915033DEST_PATH_IMAGE028
为第
Figure DEST_PATH_IMAGE029
个子载波的所述最优呼吸检测特征的功率谱密度峰值;
根据所述融合的呼吸检测特征,计算得到检测目标的呼吸率。
2.如权利要求1所述的远距离无接触呼吸检测方法,其特征是,接收设备R接收的射频信号为由同一个发送设备发出的射频信号。
3.如权利要求1所述的远距离无接触呼吸检测方法,其特征是,发送设备采用WiFi 信号发射装置;射频信号为电磁波。
4.如权利要求1所述的远距离无接触呼吸检测方法,其特征是,步骤2)具体包括如下操作:
根据接收设备R中的一对接收天线接收的射频信号,在接收设备R中计算得到该时刻
Figure 937347DEST_PATH_IMAGE015
的信道状态信息,分别记为
Figure 637450DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE031
Figure 425889DEST_PATH_IMAGE030
Figure 553245DEST_PATH_IMAGE031
的比值构建新的信道状态信息,表示为
Figure 125172DEST_PATH_IMAGE032
,其中
Figure 628966DEST_PATH_IMAGE030
,
Figure 337159DEST_PATH_IMAGE031
,
Figure 118906DEST_PATH_IMAGE002
均为复数。
5.如权利要求1所述的远距离无接触呼吸检测方法,其特征是,步骤33)中:
具体采用S-G滤波和Z-score标准化方法,对候选呼吸检测特征进行平滑和标准化处理,得到标准化的候选呼吸检测特征。
6.如权利要求1所述的远距离无接触呼吸检测方法,其特征是,步骤34)中,功率谱密度峰值的计算方法包括:
通过快速傅里叶变换将为时域信号的所述标准化的候选呼吸检测特征转换成对应的频域信号,得到其对应的功率谱密度;
取其功率谱密度的最大值,作为候选呼吸检测特征的功率谱密度峰值。
7.如权利要求1所述的远距离无接触呼吸检测方法,其特征是,步骤43)中,根据融合的呼吸检测特征计算检测目标的呼吸率,包括如下操作:
44)融合的呼吸检测特征
Figure DEST_PATH_IMAGE033
,取第一个峰值对应的采样点
Figure 584654DEST_PATH_IMAGE034
与采样率
Figure 626559DEST_PATH_IMAGE005
之比
Figure DEST_PATH_IMAGE035
作为呼吸周期,单位为秒/次;
45)再将呼吸周期转化为呼吸率,表示为:
Figure 330204DEST_PATH_IMAGE036
,单位为次/分钟。
8.如权利要求1所述的远距离无接触呼吸检测方法,其特征是,步骤42)从所有子载波中选择参与融合的子载波,形成集合
Figure 999695DEST_PATH_IMAGE025
,具体包括如下操作:
421)计算所有子载波中最优呼吸检测特征的功率谱密度峰值的最大值:
Figure 483897DEST_PATH_IMAGE038
422)设置功率谱密度峰值比例的阈值,挑选最优呼吸检测特征的功率谱密度峰值与
Figure DEST_PATH_IMAGE039
的比值大于或等于该阈值的子载波,形成集合
Figure 939281DEST_PATH_IMAGE025
9.如权利要求8所述的远距离无接触呼吸检测方法,其特征是,所述阈值取值为
Figure 359416DEST_PATH_IMAGE040
10.一种实现权利要求1所述的远距离无接触呼吸检测方法的装置,包括:
A.发出射频信号的发射设备T;
B.包含两根或更多根接收天线的接收设备R;
C.新射频信号构建模块;
D.信道状态信息CSI分析与特征提取模块,信道状态信息CSI包括振幅和相位,用于对新的信道状态信息中的特征进行分析,确定最优呼吸检测特征;
E.候选呼吸检测特征生成模块;
F.功率谱密度峰值获取模块,用于计算一段时间内不同的候选呼吸检测特征的功率谱密度峰值;
G.呼吸率计算模块,用于融合多个子载波的最优呼吸检测特征并计算得到呼吸率;
H.子载波挑选模块,用于挑选合适的子载波参与多个子载波的最优呼吸检测特征的融合。
CN201910513957.9A 2019-06-14 2019-06-14 一种无接触呼吸检测方法及装置 Active CN110301917B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910513957.9A CN110301917B (zh) 2019-06-14 2019-06-14 一种无接触呼吸检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910513957.9A CN110301917B (zh) 2019-06-14 2019-06-14 一种无接触呼吸检测方法及装置

Publications (2)

Publication Number Publication Date
CN110301917A CN110301917A (zh) 2019-10-08
CN110301917B true CN110301917B (zh) 2020-09-08

Family

ID=68077184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910513957.9A Active CN110301917B (zh) 2019-06-14 2019-06-14 一种无接触呼吸检测方法及装置

Country Status (1)

Country Link
CN (1) CN110301917B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722347B (zh) * 2018-12-11 2021-03-21 財團法人工業技術研究院 基於通道狀態資訊量測生理狀態資訊的方法、裝置及其系統
CN110974196A (zh) * 2019-12-13 2020-04-10 福州大学 一种运动状态下非接触式的呼吸和心率检测方法
CN111600617B (zh) * 2020-05-12 2021-06-08 中国科学院软件研究所 一种基于物联网LoRa信号的非接触感知方法
CN111568425B (zh) * 2020-06-08 2021-08-03 北京大学 一种非接触式的多人呼吸检测方法
CN111839521A (zh) * 2020-06-11 2020-10-30 华中科技大学 一种基于双天线WiFi信号的人体呼吸监测方法和装置
CN114499745A (zh) * 2020-10-27 2022-05-13 华为技术有限公司 一种通信方法及相关设备
CN112315452B (zh) * 2020-10-29 2021-10-01 中国科学技术大学 基于多路径相位相消的人体呼吸追踪方法、装置及系统
CN113261942B (zh) * 2021-04-02 2022-07-15 浙江工业大学 一种非接触式人体呼吸参数实时测量方法及系统
CN113708784B (zh) * 2021-08-17 2022-10-21 中国电子科技南湖研究院 一种远距离非接触式的呼吸率估计方法、系统和存储介质
CN114469059A (zh) * 2021-12-29 2022-05-13 西安电子科技大学广州研究院 基于无线信道的呼吸检测方法
CN115586581B (zh) * 2022-12-02 2023-05-12 荣耀终端有限公司 一种人员检测的方法和电子设备
CN116035558B (zh) * 2023-03-02 2023-07-18 中国科学技术大学 基于波束形成的抗干扰呼吸检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105232022A (zh) * 2015-09-17 2016-01-13 太原理工大学 基于WiFi中CSI信号强度的非侵入式呼吸心跳检测实现方法
CN106108904A (zh) * 2016-06-23 2016-11-16 华中科技大学 一种非接触式的人体呼吸参数实时测量方法及系统
CN106175767A (zh) * 2016-07-01 2016-12-07 华中科技大学 一种非接触式的多人呼吸参数实时检测方法及系统
CN109171731A (zh) * 2018-09-04 2019-01-11 北京大学(天津滨海)新代信息技术研究院 一种无接触呼吸检测方法
CN109330597A (zh) * 2018-08-30 2019-02-15 电子科技大学 一种基于信道状态信息的人体呼吸追踪方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108778106B (zh) * 2016-03-11 2021-09-07 欧利景无线有限公司 用于生命体征检测和监控的方法、装置、服务器和系统
CN108553108B (zh) * 2018-03-05 2020-04-14 上海百芝龙网络科技有限公司 一种基于Wi-Fi中CSI信号的人体动作与呼吸的检测方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105232022A (zh) * 2015-09-17 2016-01-13 太原理工大学 基于WiFi中CSI信号强度的非侵入式呼吸心跳检测实现方法
CN106108904A (zh) * 2016-06-23 2016-11-16 华中科技大学 一种非接触式的人体呼吸参数实时测量方法及系统
CN106175767A (zh) * 2016-07-01 2016-12-07 华中科技大学 一种非接触式的多人呼吸参数实时检测方法及系统
CN109330597A (zh) * 2018-08-30 2019-02-15 电子科技大学 一种基于信道状态信息的人体呼吸追踪方法
CN109171731A (zh) * 2018-09-04 2019-01-11 北京大学(天津滨海)新代信息技术研究院 一种无接触呼吸检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Contactless Respiration Monitoring Using Ultrasound Signal With Off-the-Shelf Audio Devices;Tianben Wang等;《IEEE INTERNET OF THINGS JOURNAL,》;20190430;第6卷(第2期);第2959-2972页 *

Also Published As

Publication number Publication date
CN110301917A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
CN110301917B (zh) 一种无接触呼吸检测方法及装置
CN109171731B (zh) 一种无接触呼吸检测方法
Zhang et al. BreathTrack: Tracking indoor human breath status via commodity WiFi
Wu et al. Non-invasive detection of moving and stationary human with WiFi
Wang et al. Device-free human activity recognition using commercial WiFi devices
Wang et al. Understanding and modeling of wifi signal based human activity recognition
Di Domenico et al. A trained-once crowd counting method using differential wifi channel state information
Kaltiokallio et al. Non-invasive respiration rate monitoring using a single COTS TX-RX pair
Kaltiokallio et al. A fade level-based spatial model for radio tomographic imaging
Wang et al. SonarBeat: Sonar phase for breathing beat monitoring with smartphones
Holm Ultrasound positioning based on time-of-flight and signal strength
Di Domenico et al. WiFi-based through-the-wall presence detection of stationary and moving humans analyzing the doppler spectrum
US11054511B2 (en) Phasor approach to signal to noise ratio measurement evaluation of physiological signals
Khan et al. Design of software defined radios based platform for activity recognition
Ramadan et al. NLOS identification for indoor localization using random forest algorithm
Bechet et al. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection
Zeng et al. Exploring multiple antennas for long-range WiFi sensing
Liu et al. A research on CSI-based human motion detection in complex scenarios
Wang et al. CSI-based human sensing using model-based approaches: a survey
JP2020096339A (ja) チャネル状態情報に基づいて、生理状態情報を測定する方法、装置およびシステム
Wu Wi-metal: Detecting metal by using wireless networks
Zhou et al. On multipath link characterization and adaptation for device-free human detection
Yiğitler et al. RSS models for respiration rate monitoring
JP2019148428A (ja) 人検出装置及び人検出方法
JP2023549054A (ja) 到達時間ベースの測距のハイブリッド方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant