CN110299940A - 一种基于折反射式环形镜头的多点激光通信用光学天线 - Google Patents

一种基于折反射式环形镜头的多点激光通信用光学天线 Download PDF

Info

Publication number
CN110299940A
CN110299940A CN201910480924.9A CN201910480924A CN110299940A CN 110299940 A CN110299940 A CN 110299940A CN 201910480924 A CN201910480924 A CN 201910480924A CN 110299940 A CN110299940 A CN 110299940A
Authority
CN
China
Prior art keywords
refraction
subsystem
optical antenna
laser
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910480924.9A
Other languages
English (en)
Inventor
江伦
宋志化
佟首峰
宋延嵩
高亮
安岩
李小明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201910480924.9A priority Critical patent/CN110299940A/zh
Publication of CN110299940A publication Critical patent/CN110299940A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • G02B27/0983Reflective elements being curved
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0799Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及一种基于折反射式环形镜头的多点激光通信用光学天线,属于空间激光通信技术领域。本发明提出的一种基于折反射式环形镜头的多点激光通信用光学天线由折反射式环形镜光学天线分系统、双光楔粗跟踪分系统、入射激光探测分系统和缩束光学分系统组成。该天线利用折反射式环形镜头实现对方位全周、俯仰大角度范围内的目标信号进行接收,利用双光楔组对多个目标进行同时跟踪,采用卡式缩束系统,将大口径光学天线接收到的光束口径进行压缩,减小后续系统的口径,降低加工设计难度并有利于光学系统的轻小型化。本发明可对空间方位很接近的多个通信目标同时进行激光通信,同时有利于提高光学天线的轻小型化程度。

Description

一种基于折反射式环形镜头的多点激光通信用光学天线
技术领域
本发明涉及一种基于折反射式环形镜头的多点激光通信用光学天线,属于空间激光通信技术领域。
背景技术
空间激光通信与其它无线通信相比,具有不需要频率许可证、频率宽、成本低廉、保密性好、抗电磁干扰等优点。世界上许多国家已投入大量资金和人力开展空间激光通信技术研究,并且在理论研究、仿真模拟、关键技术攻关、原理样机研制和多种链路的演示试验方面取得了多项成果。目前已经成功的激光通信演示验证都是点对点的工作模式,发展趋势是一点对多点以及多点间同时激光通信,从而实现空间激光通信组网。日本提出激光与微波通信结合的双层低轨道全球通信组网方案,具体论证了在地球700公里和2000公里的低空中部署两套卫星系统的可行性;卫星之间采用激光互联技术进行信息传递,与地面的关口站的通信链路由上层卫星负责,采用激光链路;下层卫星负责与小型地面站和移动用户的通信,采用微波链路。(参考文献:1、对发展卫星移动通信的几点思考.张乃通、刘会杰、初海彬.电气电子教学学报.2002,第24卷第1期.2、深空测控通信技术发展趋势分析.林墨.2005,第24卷第3期.3、星地光通信多点地面接收方案的初步研究.张诚,顾闻博等.光子学报.2008,第37卷第2期。),另外美国提出两种空间激光通信组网的方法,其中一种方法是在反射元件放置多个收发端,通过调整收发端位置,实现不同点、不同距离的空间激光通信采(美国专利号:6445496 B1),另一种方法是利用R-C望远结构,焦面处放置N×N的光纤阵列,提供较大的焦平面,实现单个光学望远结构的一点对多点空间激光通信采用探测器阵列与焦面耦合扩大接收视场的方案(美国专利号:6912360 B1)。这些关于激光通信组网构建具体系统的初步构想,不能应用于多点间大范围空间激光通信组网,在技术上存在瓶颈,不具备广泛的应用性。还有一篇中国专利“一种基于多元组合旋转抛物面结构的一点对多点激光通信装置”(专利号:ZL201010199217.1)采用旋转抛物面作为光学天线,该种结构能量利用率低,接收口径大,后续光学系统加工排布等实现较困难。另一篇专利“空间激光通信用大视场同心球面装置”(专利申请号:201418004682.4)采用大视场同心球面装置来实现多点同时激光通信,但其发射接收装置需在像面上进行滑动以实现对目标的跟踪,控制比较困难。另外一篇专利“一种多点激光通信用光学天线”(专利号:ZL201110141158.7)采用多反射精拼接光学天线来实现一点对多点激光通信,上述五种专利不能对两个空间方位角很接近的目标同时进行空间激光通信。专利“一种基于广角扩束镜的多点激光通信用光学天线”(专利申请号:201610168447.9)采用广角扩束镜与旋转双光楔组来实现一点对多点激光通信,虽然可对两个空间方位角很接近的多个目标同时进行空间激光通信,但存在广角扩束镜天线体积大、轻量化不足的缺点。
发明内容
为了在多点激光通信系统中,实现对多个空间方位角很接近的目标同时进行空间激光通信,且实现天线体积紧凑、轻量化程度高。本发明提出了一种基于折反射式环形镜头的多点激光通信用光学天线。
一种基于折反射式环形镜头的多点激光通信用光学天线,该装置由折反射式环形镜光学天线分系统(1)、双光楔粗跟踪分系统(2)、入射激光探测分系统(3)、卡式缩束分系统(4)组成;
折反射式环形镜光学天线分系统(1)是由异形折反射式环形镜与一片透镜组成的,方位可达360゜,俯仰方向可达±60゜~±95゜,不同角度的入射光经过折反射式环形镜光学天线分系统(1)后以平行光出射,且在天线出瞳处重叠,但出射方向不同;
双光楔粗跟踪分系统(2)由N个双光楔(7)组成,放置于折反射式环形镜光学天线分系统(1)出瞳处;
入射激光探测分系统(3)由入射激光探测镜头(9)和入射激光探测相机(10)组成,放置于折反射式环形镜光学天线分系统(1)外侧,其光轴与折反射式环形镜光学天线分系统(1)平行;
卡式缩束分系统(4)沿所述天线主轴方向放置于双光楔粗跟踪分系统(2)之后。
一种基于折反射式环形镜头的多点激光通信用光学天线的工作过程如下:
从空间不同方向的入射激光光束入射到折反射式环形镜光学天线分系统(1)和入射激光探测分系统(3)上,经折反射式环形镜与透镜组合(5)扩束后为平行光,并且在镜头出瞳(6)处重叠,然后以不同的角度入射到双光楔粗跟踪分系统(2)中。同时入射激光探测分系统(3)探测出入射激光的方向和光束个数,并将这些信息发送给双光楔粗跟踪分系统(2),根据光束方向信息对相应的双光楔(7)进行控制,让其旋转相应的角度,使得折反射式环形镜光学天线分系统(1)出瞳处的入射光经过双光楔组偏折后,能够平行于天线旋转轴传播进入卡式缩束分系统(4),以完成对目标的粗跟踪。根据光束个数对N个双光楔(7)进行优化控制,使所有双光楔组都能够对与其相对应的入射光束进行适当的偏折,以提高系统的能量利用率。这样就完成了对多个目标信号光的同时跟踪,经双光楔组偏折后的入射光平行于系统光轴进入到卡式缩束分系统(4)中,再由后续光学系统进行分离探测,这样就完成了多点激光通信接收;对于多个空间方位角很接近的通信目标,可利用一个双光楔对一个通信目标进行跟踪与通信,从而实现对多个空间方位角很接近的目标同时进行空间激光通信。
根据光路可逆原理,后续激光通信系统中的发射系统根据待通信目标的方向发射激光束,经过卡式缩束分系统(4)后,入射到双光楔粗跟踪系统(2)中,由相对应的双光楔(7)进行偏折,然后由折反射式环形镜光学天线分系统(1)按照固定方向发射出去,这样就完成了多点激光通信发射。
有益效果
本发明提出基于折反射式环形镜头的多点激光通信用光学天线能够实现在水平方向全周、俯仰方向在设计视场角内的一点对多点的激光通信;与现有技术相比,本发明的有益效果是:由双光楔组来实现对目标的粗跟踪,因此相比于基于抛物面的光学天线,其可实现对空间方位角很近的两个目标同时通信;相比与大视场同心球面装置,其跟踪控制难度更小;同时采用卡式缩束分系统,将大口径光学天线接收到的光束直径进行压缩,减小后续系统的口径,降低加工设计难度并有利于光学系统的轻小型化;另外本光学天线可根据目标多少灵活确定跟踪方案,在目标较少的情况下,可利用多个双光楔跟踪同一目标,提高系统光能利用率,有利于系统资源合理优化配置。采用折反射式环境镜头,利用对光线的多次折射反射,可有效减小光学天线体积、减轻系统重量。
附图说明
图1为一种基于折反射式环形镜头的多点激光通信用光学天线示意图,此图也是说明书摘要附图,其中:1折反射式环形镜光学天线分系统,2双光楔粗跟踪分系统,3入射激光探测)分系统,4卡式缩束分系统。
图2为光学天线分系统示意图,其中5为折反射式环形镜与透镜组合,6为天线出瞳。
图3为双光楔粗跟踪分系统示意图,此图为双光楔粗跟踪分系统的俯视图,其中7为双光楔。
图4为双光楔示意图,此图为双光楔的侧面剖视图,其中8单光楔。
图5位入射激光探测分系统示意图,其中9为激光探测镜头,10为激光探测相机。
具体实施方式
折反射式环形镜光学天线分系统(1)采用折反射式环形镜与透镜组合(5),用来接收不同通信目标发射的通信信号光,其工作范围方位可达360゜,俯仰方向可达±60゜~±95゜。不同通信目标发射的信号光经过折反射式环形镜光学天线分系统(1)中的折反射式环形镜与透镜组合(5)扩束之后,以平行光出射,并且在天线出瞳(6)处重叠,但各信号光出射方向不同。出射光线的入射角度相对较小,由目标范围角的一百多度降为十几度。由于俯仰在小角度范围内变化,因此可采用双光楔粗跟踪分系统(2)实现对多个目标的同时粗跟踪。
双光楔粗跟踪分系统(2)由N对双光楔(7)组成,如图3,是双光楔粗跟踪分系统(2)的俯视图,每一个圆圈代表一对双光楔(7)。图4所示,代表双光楔(7)的侧面剖视图,每一个三角代表一个单光楔(8),当光束入射到每一对双光楔(7)的时候,两个单光楔(8)相对旋转一定的角度来实现对光束的偏转,达到偏转光束的作用。每对双光楔(7)实现对一个目标的跟踪,整个系统可同时实现N个目标的粗跟踪。当每对双光楔(7)对所有的目标都实现了稳定的粗跟踪后,各目标信号光均平行于系统旋转轴向后续系统传播。由于各信号光到双光楔粗跟踪分系统(2)的入射角和目标个数都需要提前确定,因此在光学天线旁平行放置入射激光探测分系统(3)。
入射激光探测分系统(3)由入射激光探测镜头(9)和激光探测相机(10)组成,放置于折反射式环形镜光学天线分系统(1)外侧,其光轴与折反射式环形镜光学天线分系统(1)平行。激光探测相机(10)对所有目标信号光均能响应,根据光斑位置就可以确定信号光入射角度,给双光楔(7)驱动指令使其偏转合适的角度,使信号光平行于系统旋转轴进入卡式缩束分系统(4)的视场内。根据确定的目标个数,给各双光楔(7)分配粗跟踪任务,在目标较少的情况下,可以用两个甚至三个双光楔(7)跟踪同一个目标,以尽可能提高系统光能利用率。
卡式缩束分系统(4)对经过折反射式环形镜光学天线分系统(1)和双光楔粗跟踪分系统(2)的光束进行缩束。然后后续光学系统进行分离探测,这样就完成了多点激光通信接收;
根据光路可逆原理,后续激光通信系统中的发射系统根据待通信目标的方向发射激光束,经过卡式缩束分系统(4)后,入射到双光楔粗跟踪系统(2)中,由相对应的双光楔(7)进行偏折,然后由广角扩束镜光学天线分系统(1)按照固定方向发射出去,这样就完成了多点激光通信发射。

Claims (4)

1.一种基于折反射式环形镜头的多点激光通信用光学天线,包括折反射式环形镜光学天线分系统(1)、双光楔粗跟踪分系统(2)、入射激光探测分系统(3)和卡式缩束分系统(4)。所述折反射式环形镜光学天线分系统(1)是由异形折反射式环形镜与一片透镜组成的,方位可达360゜,俯仰方向可达±60゜~±95゜,不同角度的入射光经过折反射式环形镜光学天线分系统(1)后以平行光出射,且在天线出瞳处重叠,但出射方向不同。所述双光楔粗跟踪分系统(2)由N个双光楔(7)组成,放置于折反射式环形镜光学天线分系统(1)出瞳处。
2.根据权利要求1所述的一种基于折反射式环形镜组的多点激光通信用光学天线,其特征在于,入射激光探测分系统(3)由入射激光探测镜头(9)和入射激光探测相机(10)组成,放置于折反射式环形镜光学天线分系统(1)外侧,其光轴与折反射式环形镜光学天线分系统(1)平行。
3.根据权利要求1所述的一种基于折反射式环形镜头的多点激光通信用光学天线,其特征在于,卡式缩束分系统(4)沿所述天线主轴方向放置于双光楔粗跟踪分系统(2)之后。
4.根据权利要求1所述的一种基于折反射式环形镜头的多点激光通信用光学天线,其特征在于,一种基于折反射式环形镜头的多点激光通信用光学天线的工作过程如下:
从空间不同方向的入射激光光束入射到折反射式环形镜光学天线分系统(1)和入射激光探测分系统(3)上,经折反射式环形镜与透镜组合(5)扩束后为平行光,并且在镜头出瞳(6)处重叠,然后以不同的角度入射到双光楔粗跟踪分系统(2)中。同时入射激光探测分系统(3)探测出入射激光的方向和光束个数,并将这些信息发送给双光楔粗跟踪分系统(2),根据光束方向信息对相应的双光楔(7)进行控制,让其旋转相应的角度,使得折反射式环形镜光学天线分系统(1)出瞳处的入射光经过N个双光楔(7)偏折后,能够平行于天线旋转轴传播进入卡式缩束分系统(4),以完成对目标的粗跟踪。根据光束个数对N个双光楔(7)进行优化控制,使N个双光楔(7)都能够对与其相对应的入射光束进行适当的偏折,以提高系统的能量利用率。这样就完成了对多个目标信号光的同时跟踪,经N个双光楔(7)偏折后的入射光平行于系统光轴进入到卡式缩束分系统(4)中,再由后续光学系统进行分离探测,这样就完成了多点激光通信接收;对于多个空间方位角很接近的通信目标,可利用一个双光楔对一个通信目标进行跟踪与通信,从而实现对多个空间方位角很接近的目标同时进行空间激光通信。根据光路可逆原理,后续激光通信系统中的发射系统根据待通信目标的方向发射激光束,经过卡式缩束分系统(4)后,入射到双光楔粗跟踪分系统(2)中,由相对应的双光楔(7)进行偏折,然后由折反射式环形镜光学天线分系统(1)按照固定方向发射出去,这样就完成了多点激光通信发射。
CN201910480924.9A 2019-06-06 2019-06-06 一种基于折反射式环形镜头的多点激光通信用光学天线 Pending CN110299940A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910480924.9A CN110299940A (zh) 2019-06-06 2019-06-06 一种基于折反射式环形镜头的多点激光通信用光学天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910480924.9A CN110299940A (zh) 2019-06-06 2019-06-06 一种基于折反射式环形镜头的多点激光通信用光学天线

Publications (1)

Publication Number Publication Date
CN110299940A true CN110299940A (zh) 2019-10-01

Family

ID=68027596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910480924.9A Pending CN110299940A (zh) 2019-06-06 2019-06-06 一种基于折反射式环形镜头的多点激光通信用光学天线

Country Status (1)

Country Link
CN (1) CN110299940A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022052431A1 (zh) * 2020-09-11 2022-03-17 中国科学院西安光学精密机械研究所 一种轻量化光学天线及基于其实现捕获跟瞄的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136023A (ja) * 1999-11-09 2001-05-18 Tdk Corp アンテナ装置
CN2810046Y (zh) * 2005-03-29 2006-08-23 北京理工大学 一种自由空间光通信装置
CN105827310A (zh) * 2016-03-23 2016-08-03 长春理工大学 一种基于广角扩束镜的多点激光通信用光学天线
CN106610520A (zh) * 2017-01-19 2017-05-03 吉林省中业光电技术有限公司 一种内反射式折反射全景成像镜头

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136023A (ja) * 1999-11-09 2001-05-18 Tdk Corp アンテナ装置
CN2810046Y (zh) * 2005-03-29 2006-08-23 北京理工大学 一种自由空间光通信装置
CN105827310A (zh) * 2016-03-23 2016-08-03 长春理工大学 一种基于广角扩束镜的多点激光通信用光学天线
CN106610520A (zh) * 2017-01-19 2017-05-03 吉林省中业光电技术有限公司 一种内反射式折反射全景成像镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022052431A1 (zh) * 2020-09-11 2022-03-17 中国科学院西安光学精密机械研究所 一种轻量化光学天线及基于其实现捕获跟瞄的方法

Similar Documents

Publication Publication Date Title
CN105827310B (zh) 一种基于广角扩束镜的多点激光通信用光学天线
CN105487082B (zh) 一种用于远距离目标探测的激光雷达
CN102195717B (zh) 一种兼容激光通信的量子通信系统
CN105157697B (zh) 基于光电扫描的室内移动机器人位姿测量系统及测量方法
CN102830714B (zh) 一种空地激光通信中的超前瞄准方法
CN110233666A (zh) 一种基于双凸面反射镜组的多点激光通信用光学天线
US7657183B2 (en) Method and apparatus for hemispherical retargeting
CN101672642B (zh) 一种基于双金字塔四棱锥的光学精密跟踪探测器
CN108387908A (zh) 激光雷达光学结构以及激光雷达装置
US9954613B1 (en) Methods and devices for space optical communications using laser beams
RU2517800C1 (ru) Способ обзора небесной сферы с космического аппарата для наблюдения небесных объектов и космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения тел солнечной системы, реализующая указанный способ
CN104570146A (zh) 空间碎片探测成像及通信系统
CN107769845A (zh) 星地双光路对准地面验证系统
CN102927982A (zh) 双光谱的自主导航敏感器及其设计方法
JP4976474B2 (ja) 送信方向制御をする光送受信機
CN104197794A (zh) 一种大视场目标探测激光引信收发光学系统
US9774395B1 (en) Space optical communications using laser beams
CN110299940A (zh) 一种基于折反射式环形镜头的多点激光通信用光学天线
CN203827349U (zh) 一对多激光通信端机的光学天线
CN101672641A (zh) 一种基于双四象限探测器的光学精密跟踪探测器
CN104393932B (zh) 一种量子通信地面站望远镜光轴实时修正方法
CN106443638A (zh) 一种激光回波传输特性的分析方法、验证系统及验证方法
CN105393472B (zh) 从光束抽取光学能的方法和装置
CN203772260U (zh) 一种光纤激光测距光机系统
Jiang et al. Optical multiaccess free-space laser communication system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191001

WD01 Invention patent application deemed withdrawn after publication