CN110298857A - A kind of celadon glazed thickness method for automatic measurement based on SD-OCT image - Google Patents
A kind of celadon glazed thickness method for automatic measurement based on SD-OCT image Download PDFInfo
- Publication number
- CN110298857A CN110298857A CN201910576067.2A CN201910576067A CN110298857A CN 110298857 A CN110298857 A CN 110298857A CN 201910576067 A CN201910576067 A CN 201910576067A CN 110298857 A CN110298857 A CN 110298857A
- Authority
- CN
- China
- Prior art keywords
- glaze layer
- celadon
- image
- pixel
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000005259 measurement Methods 0.000 title claims abstract description 23
- 230000000877 morphologic effect Effects 0.000 claims abstract description 24
- 238000000926 separation method Methods 0.000 claims abstract description 6
- 239000012634 fragment Substances 0.000 claims description 11
- 230000003628 erosive effect Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000003708 edge detection Methods 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 2
- 230000010339 dilation Effects 0.000 claims 2
- 230000008602 contraction Effects 0.000 claims 1
- 238000000691 measurement method Methods 0.000 claims 1
- 238000011946 reduction process Methods 0.000 claims 1
- 238000007788 roughening Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012014 optical coherence tomography Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/0209—Low-coherence interferometers
- G01B9/02091—Tomographic interferometers, e.g. based on optical coherence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明公开一种基于SD‑OCT图像的青瓷釉层厚度自动测量方法。对青瓷釉层的SD‑OCT图像进行降噪和二值化处理,检测图像中包含像素最多的目标定位釉层上边界并通过拉格朗日插值法优化所定位的釉层上边界;对图像的背景及目标进行分离并进行图像扁平化处理;通过形态学操作定位釉层下边界;通过SD‑OCT系统测量釉层厚度定标不同类型青瓷釉层SD‑OCT图像的像素轴向分辨率;计算釉层上下边界之间的像素距离并结合所对应的像素轴向分辨率,计算釉层厚度。本发明通过定标不同类型青瓷釉层SD‑OCT图像的像素轴向分辨率,实现了对各种类型青瓷釉层厚度的测量,具有较强的鲁棒性和适用性,有效的提高了对青瓷釉层厚度测量的效率。
The invention discloses a method for automatically measuring the thickness of a celadon glaze layer based on an SD-OCT image. Carry out noise reduction and binarization processing on the SD-OCT image of the celadon glaze layer, detect the upper boundary of the glaze layer that contains the most pixels in the image, and optimize the upper boundary of the glaze layer by Lagrangian interpolation method; Separation of the background and target and image flattening; Locate the lower boundary of the glaze layer through morphological operations; Calibrate the pixel axial resolution of SD-OCT images of different types of celadon glaze layers by measuring the thickness of the glaze layer through the SD-OCT system; Calculate the pixel distance between the upper and lower boundaries of the glaze layer and combine the corresponding pixel axial resolution to calculate the thickness of the glaze layer. The present invention realizes the measurement of the thickness of various types of celadon glaze layers by calibrating the pixel axial resolution of SD‑OCT images of different types of celadon glaze layers, has strong robustness and applicability, and effectively improves the Efficiency of celadon glaze layer thickness measurement.
Description
技术领域technical field
本发明属于青瓷釉层厚度的自动化测量领域,具体涉及一种基于SD-OCT图像的青瓷釉层厚度测量方法。The invention belongs to the field of automatic measurement of the thickness of celadon glaze layer, in particular to a method for measuring the thickness of celadon glaze layer based on SD-OCT images.
背景技术Background technique
青瓷的制作工艺是我国制瓷史上的最高境界,拥有巨大的市场价值。近现代以来,在青瓷制作工艺的发展中也遇到了不同程度的停滞,高品质作品少,成品率低阻碍了龙泉青瓷的发展。在实际生产中,釉层厚度影响陶瓷的品质,随着釉层厚度的增加,釉色饱和度增大,同时釉层厚度影响釉层与胎体之间的釉应力。控制釉层厚度,可有效改善和防止釉层龟裂,提高青瓷的品质,因此在青瓷生产中,釉层厚度的测量则成为一种检测青瓷品质的有效方法。The craftsmanship of celadon is the highest state in the history of porcelain making in my country, and it has huge market value. Since modern times, the development of celadon production technology has also encountered stagnation to varying degrees. There are few high-quality works and low yields hinder the development of Longquan celadon. In actual production, the thickness of the glaze layer affects the quality of the ceramics. As the thickness of the glaze layer increases, the saturation of the glaze color increases, and the thickness of the glaze layer affects the glaze stress between the glaze layer and the carcass. Controlling the thickness of the glaze layer can effectively improve and prevent cracking of the glaze layer and improve the quality of celadon. Therefore, in the production of celadon, the measurement of the thickness of the glaze layer has become an effective method to detect the quality of celadon.
谱域光学相干层析成像(SD-OCT)技术是一种基于共焦显微镜和迈克尔逊干涉原理的新型光学成像技术,可以通过检测青瓷的背向散射光来展现出釉层的近表面结构,具有高分辨率及无损检测的特点。目前,SD-OCT成像技术已经成功应用于陶瓷的结构研究、陶瓷分类及定性鉴定。通过结合SD-OCT成像技术与图像处理技术可是实现对青瓷釉层厚度的实时、无损及精确测量,且测量位置不受限定。因此对青瓷制作工艺的发展有着重要的研究与参考价值。Spectrum-domain optical coherence tomography (SD-OCT) technology is a new optical imaging technology based on confocal microscope and Michelson interference principle, which can reveal the near-surface structure of the glaze layer by detecting the backscattered light of celadon. It has the characteristics of high resolution and non-destructive testing. At present, SD-OCT imaging technology has been successfully applied to the structural research, classification and qualitative identification of ceramics. By combining SD-OCT imaging technology and image processing technology, the real-time, non-destructive and accurate measurement of the thickness of the celadon glaze layer can be realized, and the measurement position is not limited. Therefore, it has important research and reference value for the development of celadon production technology.
发明内容Contents of the invention
针对于背景技术中存在的问题,本发明提供了一种基于SD-OCT图像的青瓷釉层厚度测量方法,实现实时精确的测量青瓷釉层的厚度,同时配合青瓷施釉的方法,为有效提高青瓷品质,提高青瓷成品率奠定了技术基础。Aiming at the problems existing in the background technology, the present invention provides a method for measuring the thickness of the celadon glaze layer based on SD-OCT images to realize real-time and accurate measurement of the thickness of the celadon glaze layer. Quality, improve the yield of celadon has laid a technical foundation.
本发明通过对青瓷釉层的SD-OCT图像进行降噪和二值化处理,检测图像中包含像素最多目标的位置,将此目标每一列最上部的像素作为釉层上边界像素点,并通过拉格朗日插值法优化所定位的釉层上边界。分离图像背景与目标并对进行图像扁平化处理。通过增强扁平化图像的灰度对比度,结合形态学操作定位釉层下边界。通过OCT系统测量釉层厚度定标不同类型青瓷釉层SD-OCT图像的像素轴向分辨率。青瓷釉层上下边界之间的像素距离与所对应类型青瓷釉层SD-OCT图像的像素轴向分辨率之积即为青瓷釉层厚度。关键在于计算出的不同类型青瓷釉层SD-OCT图像的像素轴向分辨率、软件算法及整个流程的逻辑。The present invention performs noise reduction and binarization processing on the SD-OCT image of the celadon glaze layer, detects the position of the target with the most pixels in the image, uses the uppermost pixel of each column of the target as the upper boundary pixel of the glaze layer, and passes Lagrangian interpolation optimizes the located upper boundary of the glaze layer. Separate image background and target and perform image flattening. By enhancing the grayscale contrast of the flattened image, combined with morphological operations, the lower boundary of the glaze layer is located. The pixel axial resolution of SD-OCT images of different types of celadon glaze layers was calibrated by measuring the thickness of the glaze layer with the OCT system. The product of the pixel distance between the upper and lower boundaries of the celadon glaze layer and the pixel axial resolution of the SD-OCT image of the corresponding type of celadon glaze layer is the thickness of the celadon glaze layer. The key lies in the calculated pixel axial resolution of SD-OCT images of different types of celadon glaze layers, software algorithms and the logic of the entire process.
本发明采用的技术方案包括以下步骤:The technical scheme adopted in the present invention comprises the following steps:
步骤1)采集不同类型的青瓷釉层的SD-OCT图像;Step 1) collecting SD-OCT images of different types of celadon glaze layers;
步骤2)对步骤1)采集的青瓷釉层SD-OCT图像进行降噪;Step 2) denoising the celadon glaze layer SD-OCT image collected in step 1);
步骤3)定位采集的青瓷釉层SD-OCT图像中的釉层上边界;Step 3) positioning the upper boundary of the glaze layer in the celadon glaze layer SD-OCT image collected;
步骤4)将青瓷釉层SD-OCT图像进行背景分离及图像扁平化处理;Step 4) performing background separation and image flattening on the SD-OCT image of the celadon glaze layer;
步骤5)定位采集的青瓷釉层SD-OCT图像中的釉层下边界;Step 5) positioning the lower boundary of the glaze layer in the celadon glaze layer SD-OCT image collected;
步骤6)定标不同类型的青瓷釉层SD-OCT图像的像素轴向分辨率;Step 6) calibrating the pixel axial resolution of different types of celadon glaze layer SD-OCT images;
步骤7)计算釉层厚度。Step 7) Calculate the thickness of the glaze layer.
所述步骤2)具体为:使用大小为3×5的模板对步骤1)采集的青瓷釉层SD-OCT图像进行中值滤波。The step 2) specifically includes: using a template with a size of 3×5 to perform median filtering on the SD-OCT image of the celadon glaze layer collected in step 1).
所述步骤3)具体为:The step 3) is specifically:
3.1)使用OSTU法计算青瓷釉层SD-OCT图像的二值化阈值t,将二值化阈值t作为canny算子的阈值对步骤2)降噪处理后的SD-OCT图像进行边缘检测,得到二值图像Bw;3.1) Use the OSTU method to calculate the binarization threshold t of the SD-OCT image of the celadon glaze layer, and use the binarization threshold t as the threshold of the canny operator to perform edge detection on the SD-OCT image after step 2) denoising, and obtain binary image Bw;
3.2)定义一个半径为5像素长度的圆形结构元se,使用结构元se对二值图像Bw进行形态学闭运算,得到图像fc,计算如下:3.2) Define a circular structural element se with a radius of 5 pixels, and use the structural element se to perform morphological closing operation on the binary image Bw to obtain the image fc, which is calculated as follows:
式中,符号表示形态学膨胀操作,完成“增长”或“粗化”二值图像Bw中的物体;符号Θ表示形态学腐蚀操作,完成“收缩”或“细化”二值图像Bw中的物体;In the formula, the symbol Indicates the morphological expansion operation, which completes the "growth" or "coarsening" of the object in the binary image Bw; the symbol Θ represents the morphological erosion operation, and completes the "shrinkage" or "thinning" of the object in the binary image Bw;
3.3)自上而下搜索图像fc中每一列出现的第一个灰度值为1的像素点并记录此点作为待拟合像素点,并记录每一列的待拟合像素点的行位置Top(i),其中i表示待拟合像素点所在的列位置;3.3) Search from top to bottom for the first pixel with a gray value of 1 appearing in each column of the image fc and record this point as the pixel to be fitted, and record the row position Top of the pixel to be fitted in each column (i), wherein i represents the column position where the pixel point to be fitted is located;
将位于像素个数最多的连通域内的待拟合像素点作为青瓷釉层的上边界像素;若待拟合像素点不属于青瓷釉层的上边界像素,则使用拉格朗日插值法更新行位置Top(i)的值,计算如下:Use the pixel to be fitted in the connected domain with the largest number of pixels as the upper boundary pixel of the celadon glaze layer; if the pixel to be fitted does not belong to the upper boundary pixel of the celadon glaze layer, use the Lagrangian interpolation method to update the row The value of position Top(i), calculated as follows:
Top(i)=2×Top(x)-Top(y)Top(i)=2×Top(x)-Top(y)
其中,i表示待拟合像素点的列位置;Among them, i represents the column position of the pixel to be fitted;
若第i列左右两边的列存在青瓷釉层的上边界像素,则x表示距离第i列最近的存在上边界像素的左列,y表示距离第i列最近的釉层上边界像素的右列;若第i列左边的列存在上边界像素,右边的列不存在上边界像素,则x表示距离第i列最近的存在上边界像素的左列,y表示距离第i列次近的存在上边界像素的左列;若第i列左边的列不存在釉层上边界像素,右边的列存在釉层上边界像素,则x表示距离第i列最近的存在釉层上边界像素的右列,y表示距离第i列次近的存在釉层上边界像素的右列。If there are upper boundary pixels of the celadon glaze layer in the columns on the left and right sides of the i column, then x indicates the left column with the upper boundary pixels closest to the i column, and y indicates the right column of the glaze layer upper boundary pixels closest to the i column ; If there is an upper boundary pixel in the column to the left of the ith column, and there is no upper boundary pixel in the right column, then x indicates the left column with the upper boundary pixel that is closest to the i column, and y indicates the upper boundary pixel that is closest to the i column The left column of the boundary pixels; if there is no boundary pixel on the glaze layer in the left column of the i-th column, and there is an upper boundary pixel on the glaze layer in the right column, then x represents the right column that has the boundary pixel on the glaze layer closest to the i-th column, y represents the right column of the border pixel on the glaze layer that is the closest to the i-th column.
所述步骤4)具体为:Described step 4) specifically is:
4.1)对于经中值滤波后图像,将图像中每一列行位置小于Top(i)的像素的灰度值清零,分离图像背景;4.1) For the image after median filtering, clear the gray value of the pixel whose position in each column and row in the image is smaller than Top(i), and separate the image background;
4.2)以Top(i)中的最小值作为青瓷釉层的上边界基准,通过向上平移每一列像素的位置,使所有上边界像素的行位置都处在同一水平线上,从而得到扁平化图像fl,同时将Top(i)中的最小值作为釉层上边界的位置U,用于青瓷釉层厚度的测量。4.2) Take the minimum value in Top(i) as the upper boundary reference of the celadon glaze layer, and shift the position of each column of pixels upward so that the row positions of all upper boundary pixels are on the same horizontal line, thereby obtaining a flattened image fl , and the minimum value in Top(i) is used as the position U of the upper boundary of the glaze layer for the measurement of the thickness of the celadon glaze layer.
所述步骤5)所述具体为:The step 5) is specifically described as:
5.1)使用对比度受限自适应直方图均衡化法增强扁平化图像fl的灰度对比度,得到灰度对比度增强后的图像fa,接着使用结构元se对图像fa进行形态学开运算,得到图像fo,形态学开运算的计算如下:5.1) Use the contrast-limited adaptive histogram equalization method to enhance the gray contrast of the flattened image fl to obtain the image fa after gray contrast enhancement, and then use the structural element se to perform morphological opening operations on the image fa to obtain the image fo , the calculation of the morphological opening operation is as follows:
式中,符号表示形态学膨胀操作,符号Θ表示形态学腐蚀操作;In the formula, the symbol Indicates the morphological expansion operation, and the symbol Θ indicates the morphological erosion operation;
5.2)将扁平化图像fl作为掩模,对图像fo进行连续的膨胀操作,完成形态学图像重建,得到图像fr;5.2) Use the flattened image fl as a mask, perform continuous expansion operations on the image fo, complete the morphological image reconstruction, and obtain the image fr;
5.3)定义一个半径为3像素长度的圆形结构元,使用此圆形结构元对图像fr进行形态学膨胀操作,得到图像fd;5.3) Define a circular structural element with a radius of 3 pixels, and use this circular structural element to perform morphological expansion operation on image fr to obtain image fd;
5.4)使用OSTU法对图像fd进行二值化处理,以行为单位从经过二值化处理的图像fd中釉层的最底部开始遍历,由下至上遍历每一行,直至所遍历的行不包含釉层所在区域的像素,则停止遍历并记录此行为停止遍历行,统计每一列中位于停止遍历行下方的行位置最小的像素点所在的行数,并求出所有列中行数的平均值B,将B作为SD-OCT图像的釉层下边界的行位置,用于青瓷釉层厚度的测量。5.4) Use the OSTU method to binarize the image fd, start traversing from the bottom of the glaze layer in the binarized image fd in row units, and traverse each row from bottom to top until the traversed row does not contain glaze Stop traversing the pixels in the region where the layer is located, and record this behavior Stop traversing the row, count the number of rows in each column where the pixel point with the smallest row position below the row where the traversal is stopped, and calculate the average value B of the number of rows in all columns, B is used as the row position of the lower boundary of the glaze layer in the SD-OCT image for the measurement of the thickness of the celadon glaze layer.
所述步骤6)具体为:The step 6) is specifically:
6.1)分别扫描不同类型的青瓷碎片,获取青瓷碎片的截面SD-OCT图像;6.1) Scan different types of celadon fragments respectively to obtain cross-sectional SD-OCT images of the celadon fragments;
6.2)使用SD-OCT系统的卡尺测量青瓷碎片的截面SD-OCT图像中釉层的厚度Tx;6.2) use the caliper of the SD-OCT system to measure the thickness T x of the glaze layer in the cross-sectional SD-OCT image of the celadon fragment;
6.3)扫描与青瓷碎片的截面SD-OCT图像同一区域的青瓷釉层SD-OCT图像,同时按步骤(2)-步骤(5)的方法定位青瓷釉层的上下边界并求出上下边界之间的像素距离D,计算如下:6.3) scan the SD-OCT image of the celadon glaze layer in the same area as the cross-sectional SD-OCT image of the celadon fragments, and simultaneously locate the upper and lower boundaries of the celadon glaze layer according to the method of steps (2)-step (5) and obtain the distance between the upper and lower boundaries. The pixel distance D of is calculated as follows:
D=B-UD=B-U
其中,B为釉层下边界,U为釉层上边界;Among them, B is the lower boundary of the glaze layer, and U is the upper boundary of the glaze layer;
6.4)采用以下公式分别求出不同类型的青瓷釉层SD-OCT图像的像素轴向分辨率Prx:6.4) Calculate the pixel axial resolution Pr x of SD-OCT images of different types of celadon glaze layers by using the following formulas:
所述步骤7)具体为:根据以下公式计算步骤1)扫描的青瓷釉层SD-OCT图像中釉层上下边界之间的像素距离D:The step 7) is specifically: calculate the pixel distance D between the upper and lower boundaries of the glaze layer in the celadon glaze layer SD-OCT image of the scanned celadon glaze layer SD-OCT image according to the following formula:
D=B-UD=B-U
其中,B为釉层下边界,U为釉层上边界;Among them, B is the lower boundary of the glaze layer, and U is the upper boundary of the glaze layer;
在步骤6)选取与步骤1)扫描的青瓷釉层类型相同的青瓷釉层SD-OCT图像的像素轴向分辨率Prx,采用以下公式计算不同类型的青瓷釉层厚度Tx:In step 6), select the pixel axial resolution Pr x of the celadon glaze layer SD-OCT image of the same type as the celadon glaze layer scanned in step 1 ), and use the following formula to calculate the thickness Tx of different types of celadon glaze layers:
其中,Prx为步骤1)扫描的青瓷釉层SD-OCT图像的像素轴向分辨率,D为釉层上下边界之间的像素距离D。Among them, Pr x is the pixel axial resolution of the SD-OCT image of the celadon glaze layer scanned in step 1), and D is the pixel distance D between the upper and lower boundaries of the glaze layer.
本发明的有益效果是:The beneficial effects of the present invention are:
1)本发明可以实时无损的精确测量出不同类型青瓷的任意位置的釉层厚度,摆脱了只有通过施釉次数才能判断青瓷施釉均匀度的问题。1) The present invention can accurately measure the thickness of the glaze layer at any position of different types of celadon in real time and non-destructively, and gets rid of the problem that the celadon glazing uniformity can only be judged by the number of times of glazing.
2)本发明精确定位青瓷釉层上下边界在图像中的位置,通过对图像进行扁平化处理,克服了曲率测量造成的误差问题,保证了测量的精确性和鲁棒性,同时对不同类型青瓷釉层SD-OCT图像的像素轴向分辨率进行定标,完成了不同类型青瓷釉层的厚度测量,提高本发明方法对青瓷釉层厚度测量的普适性。2) The present invention accurately locates the position of the upper and lower boundaries of the celadon glaze layer in the image, and by flattening the image, it overcomes the error problem caused by the curvature measurement, ensures the accuracy and robustness of the measurement, and simultaneously measures different types of celadon The pixel axial resolution of the SD-OCT image of the enamel layer is calibrated, and the thickness measurement of different types of celadon glaze layers is completed, and the universality of the method of the present invention for measuring the thickness of the celadon glaze layers is improved.
附图说明Description of drawings
图1是本发明方法的流程图。Figure 1 is a flow chart of the method of the present invention.
图2是待测釉层厚度的青瓷样本实物图,(a)-(f)分别对应一种样本。Fig. 2 is the physical picture of the celadon samples whose thickness of the glaze layer is to be measured, and (a)-(f) respectively correspond to a kind of samples.
图3是待测釉层厚度的青瓷样本SD-OCT图像,(a)-(f)依次对应图2中的(a)-(f)。Figure 3 is the SD-OCT image of the celadon sample whose thickness of the glaze layer is to be measured, and (a)-(f) correspond to (a)-(f) in Figure 2 in turn.
图4是实施例背景分离及图像扁平化的SD-OCT图像,(a)-(f)依次对应图3中的(a)-(f)。Fig. 4 is the SD-OCT image of the embodiment of background separation and image flattening, and (a)-(f) correspond to (a)-(f) in Fig. 3 in turn.
图5是实施例青瓷釉层截面图及对应的SD-OCT图像,(a)是青瓷釉层截面图,(b)是青瓷釉层截面的SD-OCT图像。Fig. 5 is the cross-sectional view of the celadon glaze layer and the corresponding SD-OCT image of the embodiment, (a) is the cross-sectional view of the celadon glaze layer, and (b) is the SD-OCT image of the celadon glaze layer cross-section.
图6是实施例青瓷釉层上下边界的提取效果图,(a)-(f)依次对应图3中的(a)-(f)。Fig. 6 is an extraction effect diagram of the upper and lower boundaries of the celadon glaze layer of the embodiment, and (a)-(f) correspond to (a)-(f) in Fig. 3 in turn.
具体实施方式Detailed ways
下面结合附图及实施例对本发明进行进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
具体实施例:Specific examples:
一种基于SD-OCT图像的青瓷釉层厚度测量方法,包括以下步骤:A method for measuring the thickness of a celadon glaze layer based on an SD-OCT image, comprising the following steps:
1)采集不同类型的青瓷釉层的SD-OCT图像;1) collecting SD-OCT images of different types of celadon glaze layers;
使用Lumedica公司生产的OQ LabScope系统采集不同类型青瓷釉层的SD-OCT图像,扫描范围设置为3.5mm,所采集的图像尺寸为512pixel*512pixel。图2是待测釉层厚度的青瓷样本实物图,(a)-(f)分别对应一种样本;图3是待测釉层厚度的青瓷釉层SD-OCT图像,(a)-(f)依次对应图2中的(a)-(f)。The OQ LabScope system produced by Lumedica was used to collect SD-OCT images of different types of celadon glaze layers, the scanning range was set to 3.5mm, and the size of the collected images was 512pixel*512pixel. Fig. 2 is the physical picture of the celadon sample of the thickness of the glaze layer to be measured, (a)-(f) correspond to a sample respectively; Fig. 3 is the SD-OCT image of the celadon glaze layer of the thickness of the glaze layer to be measured, (a)-(f) ) corresponds to (a)-(f) in Figure 2 in turn.
2)对采集的青瓷釉层SD-OCT图像进行降噪:使用大小为3×5的模板对步骤1)的青瓷釉层SD-OCT图像进行中值滤波。2) Denoise the collected SD-OCT image of the celadon glaze layer: use a template with a size of 3×5 to perform median filtering on the SD-OCT image of the celadon glaze layer in step 1).
3)定位采集的青瓷釉层SD-OCT图像中的釉层上边界;3) positioning the upper boundary of the glaze layer in the celadon glaze layer SD-OCT image collected;
3.1)使用OSTU法计算青瓷釉层SD-OCT图像的二值化阈值t,将二值化阈值t作为canny算子的阈值对步骤2)降噪处理后的SD-OCT图像进行边缘检测,得到二值图像Bw;3.1) Use the OSTU method to calculate the binarization threshold t of the SD-OCT image of the celadon glaze layer, and use the binarization threshold t as the threshold of the canny operator to perform edge detection on the SD-OCT image after step 2) denoising, and obtain binary image Bw;
3.2)定义一个半径为5像素长度的圆形结构元se,使用结构元se对二值图像Bw进行形态学闭运算,得到图像fc,计算如下:3.2) Define a circular structural element se with a radius of 5 pixels, and use the structural element se to perform morphological closing operation on the binary image Bw to obtain the image fc, which is calculated as follows:
式中,符号表示形态学膨胀操作,完成“增长”或“粗化”二值图像Bw中的物体;符号Θ表示形态学腐蚀操作,完成“收缩”或“细化”二值图像Bw中的物体;In the formula, the symbol Indicates the morphological expansion operation, which completes the "growth" or "coarsening" of the object in the binary image Bw; the symbol Θ represents the morphological erosion operation, and completes the "shrinkage" or "thinning" of the object in the binary image Bw;
3.3)自上而下搜索图像fc中每一列出现的第一个灰度值为1的像素点并记录此点作为待拟合像素点,并记录每一列的待拟合像素点的行位置Top(i),其中i表示待拟合像素点所在的列位置;3.3) Search from top to bottom for the first pixel with a gray value of 1 appearing in each column of the image fc and record this point as the pixel to be fitted, and record the row position Top of the pixel to be fitted in each column (i), wherein i represents the column position where the pixel point to be fitted is located;
3.4)以八联通区域方式搜寻各个相邻的像素点组成连通域,获得图像中所有连通域;3.4) Search for each adjacent pixel to form a connected domain in the form of eight connected regions, and obtain all connected domains in the image;
3.5)将位于像素个数最多的连通域内的待拟合像素点作为青瓷釉层的上边界像素;若待拟合像素点不属于青瓷釉层的上边界像素,则使用拉格朗日插值法更新该待拟合像素点的行位置Top(i)的值,计算如下:3.5) Use the pixel to be fitted in the connected domain with the largest number of pixels as the upper boundary pixel of the celadon glaze layer; if the pixel to be fitted does not belong to the upper boundary pixel of the celadon glaze layer, use the Lagrangian interpolation method Update the value of the row position Top(i) of the pixel to be fitted, calculated as follows:
Top(i)=2×Top(x)-Top(y)Top(i)=2×Top(x)-Top(y)
其中,i表示待拟合像素点的列位置;Among them, i represents the column position of the pixel to be fitted;
若第i列左右两边的列存在青瓷釉层的上边界像素,则x表示距离第i列最近的存在上边界像素的左列,y表示距离第i列最近的釉层上边界像素的右列;若第i列左边的列存在上边界像素,右边的列不存在上边界像素,则x表示距离第i列最近的存在上边界像素的左列,y表示距离第i列次近的存在上边界像素的左列;若第i列左边的列不存在釉层上边界像素,右边的列存在釉层上边界像素,则x表示距离第i列最近的存在釉层上边界像素的右列,y表示距离第i列次近的存在釉层上边界像素的右列。If there are upper boundary pixels of the celadon glaze layer in the columns on the left and right sides of the i column, then x indicates the left column with the upper boundary pixels closest to the i column, and y indicates the right column of the glaze layer upper boundary pixels closest to the i column ; If there is an upper boundary pixel in the column to the left of the ith column, and there is no upper boundary pixel in the right column, then x indicates the left column with the upper boundary pixel that is closest to the i column, and y indicates the upper boundary pixel that is closest to the i column The left column of the boundary pixels; if there is no boundary pixel on the glaze layer in the left column of the i-th column, and there is an upper boundary pixel on the glaze layer in the right column, then x represents the right column that has the boundary pixel on the glaze layer closest to the i-th column, y represents the right column of the border pixel on the glaze layer that is the closest to the i-th column.
4)将青瓷釉层SD-OCT图像进行背景分离及图像扁平化处理;4) Perform background separation and image flattening on the SD-OCT image of the celadon glaze layer;
4.1)将Top(i)的值对应到经中值滤波后的图像中,将图像中每一列行位置小于Top(i)的像素的灰度值清零,分离图像背景;4.1) Corresponding the value of Top(i) to the image after median filtering, clearing the gray value of each column and row position in the image smaller than the pixel of Top(i), and separating the image background;
4.2)以Top(i)中的最小值作为青瓷釉层的上边界基准,通过向上平移每一列像素的位置,使所有上边界像素的行位置都处在同一水平线上,从而得到扁平化图像fl,同时将Top(i)中的最小值作为釉层上边界的位置U,用于青瓷釉层厚度的测量。图4是背景分离及图像扁平化处理后的SD-OCT图像,(a)-(f)依次对应图3中的(a)-(f)。4.2) Take the minimum value in Top(i) as the upper boundary reference of the celadon glaze layer, and shift the position of each column of pixels upward so that the row positions of all upper boundary pixels are on the same horizontal line, thereby obtaining a flattened image fl , and the minimum value in Top(i) is used as the position U of the upper boundary of the glaze layer for the measurement of the thickness of the celadon glaze layer. Figure 4 is the SD-OCT image after background separation and image flattening, and (a)-(f) correspond to (a)-(f) in Figure 3 in turn.
5)定位青瓷釉层SD-OCT图像的釉层下边界;5) Locate the lower boundary of the glaze layer of the celadon glaze layer SD-OCT image;
5.1)使用对比度受限自适应直方图均衡化法增强扁平化图像fl的灰度对比度,得到灰度对比度增强后的图像fa,接着使用结构元se对图像fa进行形态学开运算,得到图像fo,形态学开运算的计算如下:5.1) Use the contrast-limited adaptive histogram equalization method to enhance the gray contrast of the flattened image fl to obtain the image fa after gray contrast enhancement, and then use the structural element se to perform morphological opening operations on the image fa to obtain the image fo , the calculation of the morphological opening operation is as follows:
式中,符号表示形态学膨胀操作,符号Θ表示形态学腐蚀操作;In the formula, the symbol Indicates the morphological expansion operation, and the symbol Θ indicates the morphological erosion operation;
5.2)将扁平化图像fl作为掩模,对图像fo进行连续的膨胀操作,完成形态学图像重建,得到图像fr;5.2) Use the flattened image fl as a mask, perform continuous expansion operations on the image fo, complete the morphological image reconstruction, and obtain the image fr;
5.3)定义一个半径为3像素长度的圆形结构元,使用此圆形结构元对图像fr进行形态学膨胀操作,得到图像fd;5.3) Define a circular structural element with a radius of 3 pixels, and use this circular structural element to perform morphological expansion operation on image fr to obtain image fd;
5.4)使用OSTU法对图像fd进行二值化处理,以行为单位从经过二值化处理的图像fd中釉层的最底部开始遍历,由下至上遍历每一行,直至所遍历的行不包含釉层所在区域的像素,则停止遍历并记录此行为停止遍历行,统计每一列中位于停止遍历行下方的行位置最小的像素点所在的行数,并求出所有列中行数的平均值B,将B作为SD-OCT图像的釉层下边界的行位置,用于青瓷釉层厚度的测量。5.4) Use the OSTU method to binarize the image fd, start traversing from the bottom of the glaze layer in the binarized image fd in row units, and traverse each row from bottom to top until the traversed row does not contain glaze Stop traversing the pixels in the region where the layer is located, and record this behavior Stop traversing the row, count the number of rows in each column where the pixel point with the smallest row position below the row where the traversal is stopped, and calculate the average value B of the number of rows in all columns, B is used as the row position of the lower boundary of the glaze layer in the SD-OCT image for the measurement of the thickness of the celadon glaze layer.
6)定标不同类型的青瓷釉层SD-OCT图像的像素轴向分辨率;6) Calibrate the pixel axial resolution of SD-OCT images of different types of celadon glaze layers;
6.1)设置Lumedica公司生产的OQ LabScope系统的扫描参数:横向扫描范围3.5mm,输出图像尺寸512pixel*512pixel,分别扫描不同类型的青瓷碎片,获取碎片的截面SD-OCT图像。图5是实施例青瓷釉层截面图及对应的SD-OCT图像,(a)是青瓷釉层截面图,(b)是青瓷釉层截面的SD-OCT图像;6.1) Set the scanning parameters of the OQ LabScope system produced by Lumedica: the horizontal scanning range is 3.5mm, the output image size is 512pixel*512pixel, and different types of celadon fragments are scanned respectively to obtain cross-sectional SD-OCT images of the fragments. Fig. 5 is embodiment celadon glaze layer sectional view and corresponding SD-OCT image, (a) is celadon glaze layer sectional view, (b) is the SD-OCT image of celadon glaze layer cross section;
6.2)使用SD-OCT系统的自带卡尺测量不同类型青瓷釉层的厚度Tx;6.2) Use the built-in caliper of the SD-OCT system to measure the thickness T x of different types of celadon glaze layers;
6.3)对于所扫描的青瓷碎片截面SD-OCT图像的同一区域,按照步骤(1)扫描青瓷釉层的SD-OCT图像,同时按照(2)-(5)所述步骤定位釉层上下边界并求出上下边界之间的像素距离D,计算如下:6.3) For the same area of the scanned celadon fragment section SD-OCT image, scan the SD-OCT image of the celadon glaze layer according to step (1), and at the same time locate the upper and lower boundaries of the glaze layer according to the steps described in (2)-(5) and Find the pixel distance D between the upper and lower boundaries, calculated as follows:
D=B-UD=B-U
其中,B为釉层下边界,U为釉层上边界;Among them, B is the lower boundary of the glaze layer, and U is the upper boundary of the glaze layer;
6.4)采用以下公式分别求出不同类型的青瓷釉层SD-OCT图像的像素轴向分辨率Prx:6.4) Calculate the pixel axial resolution Pr x of SD-OCT images of different types of celadon glaze layers by using the following formulas:
7)计算釉层厚度。7) Calculate the thickness of the glaze layer.
计算步骤1)采集的青瓷釉层SD-OCT图像中青瓷釉层的上下边界之间的像素距离D,结合步骤6)中所扫描类型的青瓷釉层SD-OCT图像的像素轴向分辨率,采用步骤6.4)所述公式计算不同类型的青瓷釉层厚度Tx。图6是青瓷釉层上下边界的提取效果图,(a)-(f)依次对应图3中的(a)-(f)。Calculation step 1) the pixel distance D between the upper and lower boundaries of the celadon glaze layer in the celadon glaze layer SD-OCT image collected, in conjunction with the pixel axial resolution of the celadon glaze layer SD-OCT image of the scanned type in step 6), Use the formula described in step 6.4) to calculate the thickness T x of different types of celadon glaze layers. Figure 6 is an extraction effect diagram of the upper and lower boundaries of the celadon glaze layer, and (a)-(f) correspond to (a)-(f) in Figure 3 in turn.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910576067.2A CN110298857B (en) | 2019-06-28 | 2019-06-28 | Automatic celadon glaze layer thickness measuring method based on SD-OCT image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910576067.2A CN110298857B (en) | 2019-06-28 | 2019-06-28 | Automatic celadon glaze layer thickness measuring method based on SD-OCT image |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110298857A true CN110298857A (en) | 2019-10-01 |
CN110298857B CN110298857B (en) | 2021-06-04 |
Family
ID=68029410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910576067.2A Active CN110298857B (en) | 2019-06-28 | 2019-06-28 | Automatic celadon glaze layer thickness measuring method based on SD-OCT image |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110298857B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113284133A (en) * | 2021-06-16 | 2021-08-20 | 北京瑞莱智慧科技有限公司 | Method, device and equipment for determining photovoltaic cell piece spacing and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110137611A (en) * | 2010-06-17 | 2011-12-23 | 한국해양연구원 | Vertical contact measurement method of model ice thickness |
CN108519059A (en) * | 2018-04-20 | 2018-09-11 | 中国矿业大学 | Multilayer Thickness Detection Method of Thermal Barrier Coating Based on Reflective Terahertz Time-Domain Spectroscopy |
CN109859199A (en) * | 2019-02-14 | 2019-06-07 | 浙江科技学院 | A kind of method of the fresh water pipless pearl quality testing of SD-OCT image |
CN110196021A (en) * | 2019-01-16 | 2019-09-03 | 苏州大学 | Coating layer thickness and its application are measured based on Optical coherence tomography technology |
-
2019
- 2019-06-28 CN CN201910576067.2A patent/CN110298857B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110137611A (en) * | 2010-06-17 | 2011-12-23 | 한국해양연구원 | Vertical contact measurement method of model ice thickness |
CN108519059A (en) * | 2018-04-20 | 2018-09-11 | 中国矿业大学 | Multilayer Thickness Detection Method of Thermal Barrier Coating Based on Reflective Terahertz Time-Domain Spectroscopy |
CN110196021A (en) * | 2019-01-16 | 2019-09-03 | 苏州大学 | Coating layer thickness and its application are measured based on Optical coherence tomography technology |
CN109859199A (en) * | 2019-02-14 | 2019-06-07 | 浙江科技学院 | A kind of method of the fresh water pipless pearl quality testing of SD-OCT image |
Non-Patent Citations (3)
Title |
---|
M.-L.YANG 等: "USING OPTICAL COHERENCE TOMOGRAPHY TO EXAMINE THE SUBSURFACE MORPHOLOGY OF CHINESE GLAZES", 《ARCHAEOMETRY》 * |
陈俊红 等: "基于光学相干层析图像的珍珠质厚度自动测量算法", 《黑龙江大学自然科学学报》 * |
高阳 等: "光学相干层析成像图像中角膜厚度的自动测量方法", 《光学学报》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113284133A (en) * | 2021-06-16 | 2021-08-20 | 北京瑞莱智慧科技有限公司 | Method, device and equipment for determining photovoltaic cell piece spacing and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN110298857B (en) | 2021-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113592861B (en) | Bridge crack detection method based on dynamic threshold | |
CN102175700B (en) | Method for detecting welding seam segmentation and defects of digital X-ray images | |
CN108564124A (en) | A kind of magnaporthe grisea spore microimage detection recognition methods based on support vector machines | |
CN105427324B (en) | The magneto-optic image defects detection method searched for automatically based on binary-state threshold | |
CN110838117B (en) | Rock face porosity recognition method based on hole wall image | |
CN106097368B (en) | A kind of recognition methods in veneer crack | |
CN114549446B (en) | Cylinder liner defect mark detection method based on deep learning | |
CN108846397A (en) | A kind of cable semi-conductive layer automatic testing method based on image procossing | |
WO2011022783A1 (en) | Feature detection and measurement in retinal images | |
CN108765388B (en) | Method and system for automatic segmentation of esophageal endoscopic OCT image hierarchy | |
CN109540925B (en) | Complex ceramic tile surface defect detection method based on difference method and local variance measurement operator | |
CN111551350A (en) | A method for detecting scratches on optical lens surface based on U_Net network | |
CN108682012A (en) | A kind of 3D bend glass profile pattern defect inspection methods for sweeping laser based on line | |
CN106296670A (en) | A kind of Edge detection of infrared image based on Retinex watershed Canny operator | |
CN117115161B (en) | Plastic defect inspection method | |
CN117315289A (en) | Aeroengine blade contour edge detection method based on image processing | |
CN110298857A (en) | A kind of celadon glazed thickness method for automatic measurement based on SD-OCT image | |
CN110136196A (en) | An automatic measurement method of bridge crack width | |
CN113076959A (en) | Concrete structure surface microcrack feature extraction method based on convolutional neural network | |
CN110146027B (en) | Method for measuring thickness of celadon glaze layer of SD-OCT image | |
CN113744263B (en) | Method for rapidly detecting surface defects of small-size mosaic ceramic | |
CN107657620A (en) | A kind of method and system of textured metal freezing region recognition | |
CN113096099B (en) | Color channel combination-based permeable asphalt mixture communication gap identification method | |
CN107239761B (en) | Fruit tree branch pulling effect evaluation method based on skeleton angular point detection | |
CN114359251A (en) | Automatic identification method for concrete surface damage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |