CN110298501A - 基于长短时记忆神经网络的电负荷预测方法 - Google Patents

基于长短时记忆神经网络的电负荷预测方法 Download PDF

Info

Publication number
CN110298501A
CN110298501A CN201910543204.2A CN201910543204A CN110298501A CN 110298501 A CN110298501 A CN 110298501A CN 201910543204 A CN201910543204 A CN 201910543204A CN 110298501 A CN110298501 A CN 110298501A
Authority
CN
China
Prior art keywords
data
electric load
input
factor
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910543204.2A
Other languages
English (en)
Other versions
CN110298501B (zh
Inventor
王笑雨
蔡昌春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tianzheng Industrial Intelligent Technology Research Institute Co ltd
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN201910543204.2A priority Critical patent/CN110298501B/zh
Publication of CN110298501A publication Critical patent/CN110298501A/zh
Application granted granted Critical
Publication of CN110298501B publication Critical patent/CN110298501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Strategic Management (AREA)
  • Artificial Intelligence (AREA)
  • Human Resources & Organizations (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于长短时记忆神经网络的电力负荷预测方法,包括以下步骤:通过输入历史时刻的电力负荷数据、区域特征因素以及所要求预测的指定时间段;采用LSTM网络对历史时刻的电力负荷数据和区域特征因素进行训练建模,生成电负荷预测的神经网络模型;通过已建立的神经网络模型对电负荷进行预测;最后通过输出单元输出该区域指定时间的电负荷预测结果。优点:能够根据历年数据和建筑特征因素搭建神经网络模型,精准预测出指定时间段的用电负荷,有效提高电负荷预测的准确度。

Description

基于长短时记忆神经网络的电负荷预测方法
技术领域
本发明涉及一种基于长短时记忆神经网络的电负荷预测方法,属于电力系统负荷预测技术领域。
背景技术
保证电网负荷预测的准确度对减少电网经济损损失、保证电网安全运行至关重要。多年来,提高电负荷预测精度一直是人们研究的重点。但由于电网内部能源种类多样,能源利用方式各有不同,导致电网负荷数据波动性、随机性较大,造成负荷预测精度较低,很难准确拟合负荷数据的分布。
随着电网智能化速度的不断加快,数据量的增大以及数据的波动性、随机性等使得传统的负荷预测方法越来越不能满足实际应用的需求。目前,电负荷预测有多种方法,如人工神经网络(Artificial Neural,ANN)、支持向量机(Support Vector Machine,SVM)、高斯过程回归(Gaussion Process Regression,GPR)、自回归移动平均模型(AutoregressiveInterrated Moving Average Model,ARIMA)等,上述电负荷预测方法存在的主要问题为无法对含有各种不确定因素的影响的模型进行精确预测。
目前的负荷预测应用,大多需要在构建模型之前,对预测样本进行筛选。利用相似性筛选出训练样本,将导致未被选中样本所包含信息的丢失。预测结果的精度在很大程度上受所筛选样本的影响,当筛选样本不准确时,会导致预测精度下降。并且,目前的负荷预测方法对历史负荷数据依赖较强,即在预测时需输入历史负荷数据,适用于时间步长较短的负荷预测。由于负荷数据分布变化较快,暂时无法利用历史负荷值,去预测时间步长较远的负荷值。而常见的神经网络利用机器学习的方法寻找负荷影响因素与负荷之间的非线性映射关系,忽略了连续负荷样本之间的序列数据的相关关系。负荷数据作为典型的时间序列,具有非线性与相关性,传统方法仅对单个样本的输入特征和输出功率建立非线性关系,丢失了连续序列样本间的强相关性,其预测精度有限。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种基于长短时记忆神经网络的电负荷预测方法。
为解决上述技术问题,本发明提供一种基于长短时神经网络的电负荷预测方法,其特征在于,包括以下步骤:
1)通过输入单元接收输入的历史时刻的电力负荷数据、区域特征因素、指定预测时间段,并将经过处理后的上述数据传递至LSTM网络的输入层;
2)将LSTM网络的输入层接收的数据导入LSTM网络层,并进行训练建模,得到LSTM预测模型;
3)利用现有数据对LSTM预测模型进行检验,计算累计误差,若所得的累计误差在最大可允许累计误差范围内,则保留LSTM预测模型,反之则进行迭代修改;
4)通过已建立的LSTM预测模型对指定时间段进行电负荷预测并产生电负荷预测结果;
5)通过输出单元输出该区域指定时间的电负荷预测结果。
进一步的,所述区域特征因素包括以下关键因素:节假日因素、建筑物因素、季节因素、降水量因素。
进一步的,在获取历史时刻的电力负荷数据之后,需进行预处理,分为数据异常处理与归一化处理。
进一步的,所述数据异常处理为:
a)进行异常值检测,Dn,i=f(time,historical,factor),若Dn,i>3σ,则判定Dn,i为异常数据,删除异常数据;若Dn,i≤3σ,则为正常数据,保留正常数据;
其中Dn,i为第n天第i时刻的电力负荷数据,n∈[1,365]为一年中的天数,i∈[1,24]为一天中的小时数,σ为数据集标准差且 为总体电力负荷数据平均值且N为电力负荷数据总个数,I表示一天24小时被划分的时间段总数,f(time,historical,factor)表示所预测的电力负荷数据只与time、historical、factor有关,其中time为指定预测时间段、factor为区域特征因素,historical为与该时刻相关的历史数据;
b)异常值检测后通过进行异常数据修改,其中为第n天第i时刻的修正数据,α1、α2、α3表示各数据所占的权重,且α1=α2=α3,Dn±2,i为修正点前后两天相同时刻的电负荷数据,为距离修正点前后两时刻的电负荷数据。
进一步的,所述归一化处理为:
数据异常处理后,通过使数据集合矩阵D,经归一化处理后变为矩阵归一化处理后负荷数据值均在0~1之间,矩阵D为原始数据矩阵,矩阵DN为进行归一化处理后的数据矩阵。
其中,Dn,i为第n天第i时刻的电力负荷数据,表示第n天第i时刻的进行归一化处理后电力负荷数据,n∈[1,365]为一年中的天数,i∈[1,24]为一天中的小时数,min{D}为数据集最小值,max{D}为数据集最大值,max{D}-min{D}为数据集极值。
进一步的,每个LSTM网络的记忆单元包括3个控制门,分别为输入门it、输出门ot和遗忘门ft,所述遗忘门ft控制LSTM网络层对信息的遗忘,所述输入门it控制LSTM网络层的信息更新,所述输出门ot控制信息的输出;
所述LSTM网络在时刻t的输入值为xt,输出值为ht,记忆单元的候选状态为ct,记忆单元状态值为隐藏层输出值为ht
进一步的,所述输入门用于控制当前输入数据输入到记忆单元,由t时刻输入值xt和t-1时刻隐层输出ht-1共同决定,输入门it的计算公式为:
it=Φ(ω[ht-1,ht]+bi)
其中,ωi为t时刻输入门it的权值矩阵,bi为输入门偏置量,Φ表示ReLU函数;
所述输出门用于判断记忆单元状态值是否需要输出,由xt和ht-1共同决定,输出门ot的计算公式为:
ot=Φ(ω0×[ht-1,ht]+b0)
其中,ω0为t时刻输出门ot的权值矩阵,b0为偏置量;
所述遗忘门取决于从记忆单元状态中需要遗忘多少信息,由xt和ht-1共同决定,遗忘门ft的计算公式为:
ft=Φ(ωf×[ht-1,ht]+bf)
其中,ωf为t时刻遗忘门ft的权值矩阵,bf为偏置量;
所述记忆单元的候选状态ct的计算公式为:
ct=tanh(ωc×[ht-1,ht]+bc)
其中,ωc为t时刻候选状态ct的权值矩阵,bc为偏置量,tanh为双曲正切函数。
进一步的,所述输出值
进一步的,设定最大可允许误差为∑M,对所述电负荷预测结果进行分析,并判断所述电负荷也测结果是否满足准确度要求,若则不对神经网络模型进行更改,若则进行迭代权重调整比例,计算误差使用以下公式:
其中,为计算所得累计误差,为预测值,Dn,i为真实值,N_s样本天数,I_s为样本时刻点。
一种基于长短时记忆神经网络的电负荷预测系统,包括
信息处理模块:用于通过输入单元接收输入的历史时刻的电力负荷数据、区域特征因素、指定预测时间段,并将上述数据经过处理后传递至所述LSTM网络的输入层;
模型建立模块:用于将所述LSTM网络输入层接收的历史时刻电力负荷数据、区域特征因素、指定预测时间段导入所述LSTM网络层,并通过所述LSTM网络对上述数据进行训练建模,训练生成神经网络负荷预测模型;
电力预测模块:用于利用已建立的神经网络模型对电负荷进行预测并产生指定时间段内的电负荷预测结果;
结果输出模块:用于通过输出单元输出该区域指定预测时间段的电负荷预测结果。
本发明所达到的有益效果:
根据本发明实施的基于LSTM网络(长短时记忆神经网络)的电负荷预测方法,根据所输入数据生成训练样本,通过该训练样本训练得到LSTM预测模型,并通过将区域特征因素、指定预测时间段信息输入该LSTM预测模型得到电网负荷预测结果后,可对电网负荷预测精度进行分析,若不满足准确度要求,则对LSTM预测模型进行迭代更新,反之保留LSTM预测模型。该模型对数据进行异常值检测与异常值修改,可避免异常数据对预测结果产生的误差影响,并且保证了数据的完整性;该方法基于LSTM的结构特点,能够充分利用时间序列的历史关系,能够预测更大时间步长的负荷数据;通过对LSTM预测模型的不断训练与迭代修改,能够提高预测精度,避免因重新训练而加大计算量,提高了预测的实时性。
附图说明
图1为LSTM结构图;
图2为电负荷预测方法流程图;
图3为基于LSTM网络的电负荷预测方法的示意图;
图4为训练次数-误差曲线。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图2所示,一种基于长短时记忆神经网络的电负荷预测系统,其特征在于,包括:
信息处理模块:用于通过输入单元接收输入的历史时刻的电力负荷数据、区域特征因素、指定预测时间段,并将上述数据经过处理后传递至所述LSTM网络的输入层;
模型建立模块:用于将所述LSTM网络输入层接收的历史时刻电力负荷数据、区域特征因素、指定预测时间段导入所述LSTM网络层,并通过所述LSTM网络对上述数据进行训练建模,训练生成神经网络负荷预测模型;
电力预测模块:用于利用已建立的神经网络模型对电负荷进行预测并产生指定时间段内的电负荷预测结果;
结果输出模块:用于通过输出单元输出该区域指定预测时间段的电负荷预测结果。
如图1和3所示,本发明一种基于长短时记忆神经网络的电负荷预测方法,包括以下步骤:
S1、获取所需数据
S1.1、所需数据为历史时刻的电力负荷数据、区域特征因素、指定预测时间段。历史时刻的电力负荷数据可由历史数据表格中读取得到或人为输入得到,本例中利用xlsread函数由表格进行读入,且n=365,i=24;区域特征因素由人为进行选择,不同的区域特征因素对于不同的建筑,区域特征因素表现为用电周期、周电时间、用电量等不同;指定预测时间段由人为进行选择,为需要进行预测的时间段。
S2.2、在获取待预测的电网历史信息之后,需进行预处理,包括异常数据处理与归一化处理。所述异常数据处理通过判断Dn,i>3σ进行异常数据检测,通过进行异常数据修改。
本例中所述归一化处理,通过使数据集合矩阵变换为矩阵归一化处理后负荷数据值均在0~1之间。
S1.3、将上述数据经过处理后传递至所述LSTM网络的输入层。本例中于函数LSTM_data_process()中进行数据处理,将处理后的数据调用至main()函数中进行训练建模。
S2.对数据进行训练建模得到LSTM预测模型
S2.1、将所述LSTM网络的输入层接收的数据导入所述LSTM网络层,并通过所述LSTM网络对数据进行训练建模,得到LSTM的预测模型;
S2.2、每个LSTM记忆单元中含有3个控制门,分别是输入门it、输出门ot和遗忘门ft
S2.3、所述遗忘门ft控制LSTM网络层对信息的遗忘,所述输入门it控制LSTM网络层的信息更新,所述输出门ot控制信息的输出。具体建模公式如下:
it=Φ(ωi×[ht-1,ht]+bi)
ot=Φ(ω0×[ht-1,ht]+b0)
ft=Φ(ωf×[ht-1,ht]+bf)
ct=tanh(ωc×[ht-1,ht]+bc)
其中,LSTM在时刻t的输入数据为xt,输出值为ht,记忆状态为ct,记忆单元状态值为ct,隐藏层输出值为ht,Φ表示ReLU函数。
S3.检验LSTM预测模型
S3.1、设定系统的训练次数、最大误差及迭代权重调整比例,本例中设置训练次数为3000次,最大可允许误差为∑M为1e-6,每次权重调整比例γ=0.01。
S3.2、训练完成后,对所述电负荷预测结果进行分析,根据已有数据所述电负荷预测结果进行判断,若所得预测数据在误差范围内,则保留LSTM模型,反之进行迭代修改。本例中利用weight_preh_h,weight_outputgate_x,weight_inputgate_x等函数对权重系数进行更新。
S3.3、预测结果误差评估利用累计误差公式进行计算,即:
S3.4、绘制误差与训练次数的关系曲线,由附图4可见,本例中所设置训练次数为3000,当训练停止时,即LSTM网络模型符合要求。
S4.输出预测结果,通过输出单元输出该区域指定时间的电负荷预测结果。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的得同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种基于长短时神经网络的电负荷预测方法,其特征在于,包括以下步骤:
1)通过输入单元接收输入的历史时刻的电力负荷数据、区域特征因素、指定预测时间段,并将经过处理后的上述数据传递至LSTM网络的输入层;
2)将LSTM网络的输入层接收的数据导入LSTM网络层,并进行训练建模,得到LSTM预测模型;
3)利用现有数据对LSTM预测模型进行检验,计算累计误差,若所得的累计误差在最大可允许累计误差范围内,则保留LSTM预测模型,反之则进行迭代修改;
4)通过已建立的LSTM预测模型对指定时间段进行电负荷预测并产生电负荷预测结果;
5)通过输出单元输出该区域指定时间的电负荷预测结果。
2.根据权利要求1所述的基于长短时神经网络的电负荷预测方法,其特征在于,所述区域特征因素包括以下关键因素:节假日因素、建筑物因素、季节因素、降水量因素。
3.根据权利要求1所述的基于长短时神经网络的电负荷预测方法,其特征在于,在获取历史时刻的电力负荷数据之后,需进行预处理,分为数据异常处理与归一化处理。
4.根据权利要求3所述的基于长短时神经网络的电负荷预测方法,其特征在于,所述数据异常处理为:
a)进行异常值检测,Dn,i=f(time,historical,factor),若Dn,i>3σ,则判定Dn,i为异常数据,删除异常数据;若Dn,i≤3σ,则为正常数据,保留正常数据;
其中Dn,i为第n天第i时刻的电力负荷数据,n∈[1,365]为一年中的天数,i∈[1,24]为一天中的小时数,σ为数据集标准差且 为总体电力负荷数据平均值且N为电力负荷数据总个数,I表示一天24小时被划分的时间段总数,f(time,historical,factor)表示所预测的电力负荷数据只与time、historical、factor有关,其中time为指定预测时间段、factor为区域特征因素,historical为与该时刻相关的历史数据;
b)异常值检测后通过进行异常数据修改,其中为第n天第i时刻的修正数据,α1、α2、α3表示各数据所占的权重,且α1=α2=α3,Dn±2,i为修正点前后两天相同时刻的电负荷数据,为距离修正点前后两时刻的电负荷数据。
5.根据权利要求3所述的基于长短时神经网络的电负荷预测方法,其特征在于,所述归一化处理为:
数据异常处理后,通过使数据集合矩阵D,经归一化处理后变为矩阵归一化处理后负荷数据值均在0~1之间,矩阵D为原始数据矩阵,矩阵DN为进行归一化处理后的数据矩阵。
其中,Dn,i为第n天第i时刻的电力负荷数据,表示第n天第i时刻的进行归一化处理后电力负荷数据,n∈[1,365]为一年中的天数,i∈[1,24]为一天中的小时数,min{D}为数据集最小值,max{D}为数据集最大值,max{D}-min{D}为数据集极值。
6.根据权利要求1所述的基于长短时神经网络的电负荷预测方法,其特征在于,每个LSTM网络的记忆单元包括3个控制门,分别为输入门it、输出门ot和遗忘门ft,所述遗忘门ft控制LSTM网络层对信息的遗忘,所述输入门it控制LSTM网络层的信息更新,所述输出门ot控制信息的输出;
所述LSTM网络在时刻t的输入值为xt,输出值为ht,记忆单元的候选状态为ct,记忆单元状态值为隐藏层输出值为ht
7.根据权利要求6所述的基于长短时神经网络的电负荷预测方法,其特征在于,
所述输入门用于控制当前输入数据输入到记忆单元,由t时刻输入值xt和t-1时刻隐层输出ht-1共同决定,输入门it的计算公式为:
it=Φ(ωi×[ht-1,ht]+bi)
其中,ωi为t时刻输入门it的权值矩阵,bi为输入门偏置量,Φ表示ReLU函数;
所述输出门用于判断记忆单元状态值是否需要输出,由xt和ht-1共同决定,输出门ot的计算公式为:
ot=Φ(ω0×[ht-1,ht]+b0)
其中,ω0为t时刻输出门ot的权值矩阵,b0为偏置量;
所述遗忘门取决于从记忆单元状态中需要遗忘多少信息,由xt和ht-1共同决定,遗忘门ft的计算公式为:
ft=Φ(ωf×[ht-1,ht]+bf)
其中,ωf为t时刻遗忘门ft的权值矩阵,bf为偏置量;
所述记忆单元的候选状态ct的计算公式为:
ct=tanh(ωc×[ht-1,ht]+bc)
其中,ωc为t时刻候选状态ct的权值矩阵,bc为偏置量,tanh为双曲正切函数。
8.根据权利要求6所述的基于长短时神经网络的电负荷预测方法,其特征在于,所述输出值
9.根据权利要求6所述的基于长短时神经网络的电负荷预测方法,其特征在于,设定最大可允许误差为∑M,对所述电负荷预测结果进行分析,并判断所述电负荷也测结果是否满足准确度要求,若则不对神经网络模型进行更改,若则进行迭代权重调整比例,计算误差使用以下公式:
其中,为计算所得累计误差,为预测值,Dn,i为真实值,N_s样本天数,I_s为样本时刻点。
10.一种基于长短时记忆神经网络的电负荷预测系统,其特征在于,包括
信息处理模块:用于通过输入单元接收输入的历史时刻的电力负荷数据、区域特征因素、指定预测时间段,并将上述数据经过处理后传递至所述LSTM网络的输入层;
模型建立模块:用于将所述LSTM网络输入层接收的历史时刻电力负荷数据、区域特征因素、指定预测时间段导入所述LSTM网络层,并通过所述LSTM网络对上述数据进行训练建模,训练生成神经网络负荷预测模型;
电力预测模块:用于利用已建立的神经网络模型对电负荷进行预测并产生指定时间段内的电负荷预测结果;
结果输出模块:用于通过输出单元输出该区域指定预测时间段的电负荷预测结果。
CN201910543204.2A 2019-06-21 2019-06-21 基于长短时记忆神经网络的电负荷预测方法 Active CN110298501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910543204.2A CN110298501B (zh) 2019-06-21 2019-06-21 基于长短时记忆神经网络的电负荷预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910543204.2A CN110298501B (zh) 2019-06-21 2019-06-21 基于长短时记忆神经网络的电负荷预测方法

Publications (2)

Publication Number Publication Date
CN110298501A true CN110298501A (zh) 2019-10-01
CN110298501B CN110298501B (zh) 2022-08-16

Family

ID=68028424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910543204.2A Active CN110298501B (zh) 2019-06-21 2019-06-21 基于长短时记忆神经网络的电负荷预测方法

Country Status (1)

Country Link
CN (1) CN110298501B (zh)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110889535A (zh) * 2019-10-28 2020-03-17 国网江西省电力有限公司电力科学研究院 一种基于卷积循环神经网络的风电场内多点位风速预测方法
CN111080472A (zh) * 2019-11-12 2020-04-28 国网山西省电力公司晋中供电公司 一种电力系统负荷预测和分析方法
CN111080002A (zh) * 2019-12-10 2020-04-28 华南理工大学 基于深度学习的建筑用电负荷多步预测方法及系统
CN111144654A (zh) * 2019-12-27 2020-05-12 深圳供电局有限公司 一种基于物联网的园区能源管理配置方法及装置
CN111160659A (zh) * 2019-12-31 2020-05-15 国家电网公司西南分部 一种考虑温度模糊化的电力负荷预测方法
CN111200531A (zh) * 2020-01-02 2020-05-26 国网冀北电力有限公司信息通信分公司 一种通信网流量预测方法、装置与电子设备
CN111210091A (zh) * 2020-02-25 2020-05-29 上海积成能源科技有限公司 一种基于递归神经网络的长短期记忆模型来预测短期电力负荷的系统模型
CN111276977A (zh) * 2020-03-28 2020-06-12 福建华电万安能源有限公司 一种电力系统扰动后的功率缺额预测方法
CN111340300A (zh) * 2020-02-29 2020-06-26 上海电力大学 一种基于faf-lstm深度神经网络的居民负荷预测方法及系统
CN111563610A (zh) * 2020-03-30 2020-08-21 山东电力工程咨询院有限公司 一种基于lstm神经网络的建筑物电负荷综合预测方法及系统
CN111582943A (zh) * 2020-05-13 2020-08-25 江南大学 基于cnn和lstm的电力系统负荷预测方法
CN111682593A (zh) * 2020-05-29 2020-09-18 黑龙江苑博信息技术有限公司 基于神经网络模型状态观测器的火电机组协调优化方法
CN111861039A (zh) * 2020-07-31 2020-10-30 广东电网有限责任公司广州供电局 基于lstm和广义预测控制算法的电力负荷预测方法、系统、设备及存储介质
CN111985719A (zh) * 2020-08-27 2020-11-24 华中科技大学 一种基于改进的长短期记忆网络的电力负荷预测方法
CN112084717A (zh) * 2020-09-15 2020-12-15 复旦大学 紫外发光二极管性能退化预测模型构建及寿命预测方法
CN112446537A (zh) * 2020-11-20 2021-03-05 国网浙江省电力有限公司宁波供电公司 基于深度长短期记忆网络的短期负荷预测方法
CN112529283A (zh) * 2020-12-04 2021-03-19 天津天大求实电力新技术股份有限公司 基于注意力机制的综合能源系统短期负荷预测方法
CN112712189A (zh) * 2019-10-25 2021-04-27 北京市热力集团有限责任公司 一种供热需求负荷预测方法
CN112733457A (zh) * 2021-01-18 2021-04-30 武汉大学 一种改进双层长短期记忆网络的负荷用电特性建模方法
CN112766537A (zh) * 2020-12-24 2021-05-07 沈阳工程学院 一种短期电负荷预测方法
CN112766598A (zh) * 2021-01-29 2021-05-07 上海工程技术大学 一种基于lstm神经网络的电能质量稳态指标预测与预警方法
CN112801388A (zh) * 2021-02-04 2021-05-14 天津德尔塔科技有限公司 一种基于非线性时间序列算法的电力负荷预测方法及系统
CN112832744A (zh) * 2021-01-07 2021-05-25 中国石油大学(华东) 一种基于lstm神经网络的抽油机井检泵周期预测方法
CN112926774A (zh) * 2021-02-23 2021-06-08 中国石油大学(华东) 基于长短时记忆神经网络的地热产能预测方法及系统
CN113011630A (zh) * 2021-01-25 2021-06-22 国网浙江省电力有限公司杭州供电公司 一种大数据配电网台区时空负荷短期预测方法
CN113033898A (zh) * 2021-03-26 2021-06-25 国核电力规划设计研究院有限公司 基于k均值聚类与bi-lstm神经网络的电负荷预测方法及系统
CN113112089A (zh) * 2021-04-26 2021-07-13 燕山大学 水泥生料粉磨系统电耗预测方法及其预测系统
CN113469346A (zh) * 2021-08-31 2021-10-01 盛隆电气集团有限公司 一种预测短时区域用电情况监督方法及其装置
CN113726559A (zh) * 2021-08-09 2021-11-30 国网福建省电力有限公司 基于人工智能网络安全分析预警模型
CN113988436A (zh) * 2021-11-01 2022-01-28 广西电网有限责任公司 基于lstm神经网络和层级关系修正的用电量预测方法
CN114362249A (zh) * 2022-01-27 2022-04-15 阳光电源股份有限公司 一种源荷系统防逆流控制方法、装置及源荷系统
CN115309052A (zh) * 2022-08-19 2022-11-08 北京全应科技有限公司 一种工业实时数据时序预测结果的在线修正方法
CN115513951A (zh) * 2022-11-17 2022-12-23 山东建筑大学 一种基于概念漂移检测的电力负荷预测方法及系统
CN115994679A (zh) * 2023-03-24 2023-04-21 国网山东省电力公司青岛供电公司 一种基于负荷预测修正的区域电网主动规划方法及系统
CN113191559B (zh) * 2021-05-08 2024-04-19 苏州瑞城电力科技有限公司 一种基于自回归选择的改进神经网短期居民负荷预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930178A (zh) * 2012-11-26 2013-02-13 慈溪市供电局 一种负荷数据异常检测方法
CN106960252A (zh) * 2017-03-08 2017-07-18 深圳市景程信息科技有限公司 基于长短时记忆神经网络的电力负荷预测方法
CN108830487A (zh) * 2018-06-21 2018-11-16 王芊霖 基于长短时神经网络的电力负荷预测方法
CN109597967A (zh) * 2018-11-20 2019-04-09 江苏云上电力科技有限公司 一种电力系统配变电站负荷数据异常检测与修复方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930178A (zh) * 2012-11-26 2013-02-13 慈溪市供电局 一种负荷数据异常检测方法
CN106960252A (zh) * 2017-03-08 2017-07-18 深圳市景程信息科技有限公司 基于长短时记忆神经网络的电力负荷预测方法
CN108830487A (zh) * 2018-06-21 2018-11-16 王芊霖 基于长短时神经网络的电力负荷预测方法
CN109597967A (zh) * 2018-11-20 2019-04-09 江苏云上电力科技有限公司 一种电力系统配变电站负荷数据异常检测与修复方法

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112712189A (zh) * 2019-10-25 2021-04-27 北京市热力集团有限责任公司 一种供热需求负荷预测方法
CN110889535A (zh) * 2019-10-28 2020-03-17 国网江西省电力有限公司电力科学研究院 一种基于卷积循环神经网络的风电场内多点位风速预测方法
CN111080472A (zh) * 2019-11-12 2020-04-28 国网山西省电力公司晋中供电公司 一种电力系统负荷预测和分析方法
CN111080002A (zh) * 2019-12-10 2020-04-28 华南理工大学 基于深度学习的建筑用电负荷多步预测方法及系统
CN111144654A (zh) * 2019-12-27 2020-05-12 深圳供电局有限公司 一种基于物联网的园区能源管理配置方法及装置
CN111160659A (zh) * 2019-12-31 2020-05-15 国家电网公司西南分部 一种考虑温度模糊化的电力负荷预测方法
CN111200531B (zh) * 2020-01-02 2022-01-04 国网冀北电力有限公司信息通信分公司 一种通信网流量预测方法、装置与电子设备
CN111200531A (zh) * 2020-01-02 2020-05-26 国网冀北电力有限公司信息通信分公司 一种通信网流量预测方法、装置与电子设备
CN111210091A (zh) * 2020-02-25 2020-05-29 上海积成能源科技有限公司 一种基于递归神经网络的长短期记忆模型来预测短期电力负荷的系统模型
CN111340300A (zh) * 2020-02-29 2020-06-26 上海电力大学 一种基于faf-lstm深度神经网络的居民负荷预测方法及系统
CN111276977A (zh) * 2020-03-28 2020-06-12 福建华电万安能源有限公司 一种电力系统扰动后的功率缺额预测方法
CN111563610A (zh) * 2020-03-30 2020-08-21 山东电力工程咨询院有限公司 一种基于lstm神经网络的建筑物电负荷综合预测方法及系统
CN111563610B (zh) * 2020-03-30 2023-07-18 山东电力工程咨询院有限公司 一种基于lstm神经网络的建筑物电负荷综合预测方法及系统
CN111582943A (zh) * 2020-05-13 2020-08-25 江南大学 基于cnn和lstm的电力系统负荷预测方法
CN111582943B (zh) * 2020-05-13 2023-03-24 江南大学 基于cnn和lstm的电力系统负荷预测方法
CN111682593A (zh) * 2020-05-29 2020-09-18 黑龙江苑博信息技术有限公司 基于神经网络模型状态观测器的火电机组协调优化方法
CN111682593B (zh) * 2020-05-29 2023-04-18 黑龙江苑博信息技术有限公司 基于神经网络模型状态观测器的火电机组协调优化方法
CN111861039A (zh) * 2020-07-31 2020-10-30 广东电网有限责任公司广州供电局 基于lstm和广义预测控制算法的电力负荷预测方法、系统、设备及存储介质
CN111985719B (zh) * 2020-08-27 2023-07-25 华中科技大学 一种基于改进的长短期记忆网络的电力负荷预测方法
CN111985719A (zh) * 2020-08-27 2020-11-24 华中科技大学 一种基于改进的长短期记忆网络的电力负荷预测方法
CN112084717A (zh) * 2020-09-15 2020-12-15 复旦大学 紫外发光二极管性能退化预测模型构建及寿命预测方法
CN112446537A (zh) * 2020-11-20 2021-03-05 国网浙江省电力有限公司宁波供电公司 基于深度长短期记忆网络的短期负荷预测方法
CN112529283A (zh) * 2020-12-04 2021-03-19 天津天大求实电力新技术股份有限公司 基于注意力机制的综合能源系统短期负荷预测方法
CN112766537A (zh) * 2020-12-24 2021-05-07 沈阳工程学院 一种短期电负荷预测方法
CN112766537B (zh) * 2020-12-24 2023-06-06 沈阳工程学院 一种短期电负荷预测方法
CN112832744A (zh) * 2021-01-07 2021-05-25 中国石油大学(华东) 一种基于lstm神经网络的抽油机井检泵周期预测方法
CN112733457A (zh) * 2021-01-18 2021-04-30 武汉大学 一种改进双层长短期记忆网络的负荷用电特性建模方法
CN112733457B (zh) * 2021-01-18 2022-03-15 武汉大学 一种改进双层长短期记忆网络的负荷用电特性建模方法
CN113011630B (zh) * 2021-01-25 2024-01-23 国网浙江省电力有限公司杭州供电公司 一种大数据配电网台区时空负荷短期预测方法
CN113011630A (zh) * 2021-01-25 2021-06-22 国网浙江省电力有限公司杭州供电公司 一种大数据配电网台区时空负荷短期预测方法
CN112766598A (zh) * 2021-01-29 2021-05-07 上海工程技术大学 一种基于lstm神经网络的电能质量稳态指标预测与预警方法
CN112801388A (zh) * 2021-02-04 2021-05-14 天津德尔塔科技有限公司 一种基于非线性时间序列算法的电力负荷预测方法及系统
CN112926774A (zh) * 2021-02-23 2021-06-08 中国石油大学(华东) 基于长短时记忆神经网络的地热产能预测方法及系统
CN113033898A (zh) * 2021-03-26 2021-06-25 国核电力规划设计研究院有限公司 基于k均值聚类与bi-lstm神经网络的电负荷预测方法及系统
CN113112089A (zh) * 2021-04-26 2021-07-13 燕山大学 水泥生料粉磨系统电耗预测方法及其预测系统
CN113191559B (zh) * 2021-05-08 2024-04-19 苏州瑞城电力科技有限公司 一种基于自回归选择的改进神经网短期居民负荷预测方法
CN113726559A (zh) * 2021-08-09 2021-11-30 国网福建省电力有限公司 基于人工智能网络安全分析预警模型
CN113726559B (zh) * 2021-08-09 2023-10-27 国网福建省电力有限公司 基于人工智能网络安全分析预警系统
CN113469346A (zh) * 2021-08-31 2021-10-01 盛隆电气集团有限公司 一种预测短时区域用电情况监督方法及其装置
CN113988436A (zh) * 2021-11-01 2022-01-28 广西电网有限责任公司 基于lstm神经网络和层级关系修正的用电量预测方法
CN114362249A (zh) * 2022-01-27 2022-04-15 阳光电源股份有限公司 一种源荷系统防逆流控制方法、装置及源荷系统
CN114362249B (zh) * 2022-01-27 2024-03-26 阳光慧碳科技有限公司 一种源荷系统防逆流控制方法、装置及源荷系统
CN115309052B (zh) * 2022-08-19 2023-04-28 北京全应科技有限公司 一种工业实时数据时序预测结果的在线修正方法
CN115309052A (zh) * 2022-08-19 2022-11-08 北京全应科技有限公司 一种工业实时数据时序预测结果的在线修正方法
CN115513951A (zh) * 2022-11-17 2022-12-23 山东建筑大学 一种基于概念漂移检测的电力负荷预测方法及系统
CN115994679A (zh) * 2023-03-24 2023-04-21 国网山东省电力公司青岛供电公司 一种基于负荷预测修正的区域电网主动规划方法及系统

Also Published As

Publication number Publication date
CN110298501B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN110298501A (zh) 基于长短时记忆神经网络的电负荷预测方法
Wang et al. Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting
CN109711620B (zh) 一种基于gru神经网络和迁移学习的短期电力负荷预测方法
CN105069525B (zh) 全天候96点日负荷曲线预测及优化修正系统
CN105631483B (zh) 一种短期用电负荷预测方法及装置
CN109359786A (zh) 一种电力台区短期负荷预测方法
CN107622329A (zh) 基于多时间尺度长短时记忆神经网络的电力负荷预测方法
CN108280551A (zh) 一种利用长短期记忆网络的光伏发电功率预测方法
CN109325624A (zh) 一种基于深度学习的月度电力需求预测方法
CN108985965A (zh) 一种结合神经网络和参数估计的光伏功率区间预测方法
CN106952181A (zh) 基于长短时记忆神经网络的电力负荷预测系统
CN110046743A (zh) 基于ga-ann的公共建筑能耗预测方法和系统
CN109583565A (zh) 基于注意力模型长短时记忆网络的洪水预测方法
CN108711847A (zh) 一种基于编码解码长短期记忆网络的短期风电功率预测方法
CN109376950A (zh) 一种基于bp神经网络的多元电网负荷预测方法
CN113537582B (zh) 一种基于短波辐射修正的光伏功率超短期预测方法
CN112329990A (zh) 一种基于lstm-bp神经网络的用户用电负荷预测方法
CN109034500A (zh) 一种多时序协同的中期电力负荷预测方法
CN117977568A (zh) 基于嵌套lstm和分位数计算的电力负荷预测方法
Zou et al. Weather based day-ahead and week-ahead load forecasting using deep recurrent neural network
CN113554466A (zh) 一种短期用电量预测模型构建方法、预测方法和装置
CN116526473A (zh) 基于粒子群优化lstm的电热负荷预测方法
CN110222910A (zh) 一种有源配电网态势预测方法及预测系统
CN109214610A (zh) 一种基于长短期记忆神经网络的饱和电力负荷预测方法
CN110659775A (zh) 一种基于lstm改进的电力短时负荷预测算法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230811

Address after: No.8, Huyue East Road, Longchi street, Liuhe District, Nanjing City, Jiangsu Province

Patentee after: Nanjing Tianzheng Industrial Intelligent Technology Research Institute Co.,Ltd.

Address before: 213022, No. 200, Jinling North Road, Xinbei District, Jiangsu, Changzhou

Patentee before: CHANGZHOU CAMPUS OF HOHAI University