CN110296701A - Inertia and satellite combined guidance system gradation type failure recall fault-tolerance approach - Google Patents

Inertia and satellite combined guidance system gradation type failure recall fault-tolerance approach Download PDF

Info

Publication number
CN110296701A
CN110296701A CN201910612635.XA CN201910612635A CN110296701A CN 110296701 A CN110296701 A CN 110296701A CN 201910612635 A CN201910612635 A CN 201910612635A CN 110296701 A CN110296701 A CN 110296701A
Authority
CN
China
Prior art keywords
information
navigation
fault
satellite
backtracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910612635.XA
Other languages
Chinese (zh)
Other versions
CN110296701B (en
Inventor
奔粤阳
王坤
赵玉新
吴磊
李倩
周广涛
姜南
陈海南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201910612635.XA priority Critical patent/CN110296701B/en
Publication of CN110296701A publication Critical patent/CN110296701A/en
Application granted granted Critical
Publication of CN110296701B publication Critical patent/CN110296701B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

本发明提供的是一种惯性与卫星组合导航系统渐变型故障回溯容错方法。进行惯导系统初始对准;采集并滑动存储传感器数据;利用状态卡方和残差卡方混合检测方法对卫星导航位置信息进行渐变型故障检测和辨识,当卫星导航无故障时,切入惯性/卫星组合导航模式,对卫星导航输出信息进行融合;当卫星导航处于渐变型故障时,进行惯导回溯算法和卡尔曼回溯算法,得未融合第k‑1时刻卫星渐变型故障信息的姿态矩阵、速度和位置;回溯到卫星导航故障点,进行纯惯导追溯解算,递推到第k采样时刻,输出隔离卫星历史故障信息后的姿态、速度和位置信息。本发明能够有效判断卫星导航渐变型故障,并进行惯导和卡尔曼回溯算法对故障进行容错处理,避免历史故障信息污染。

The invention provides a gradual fault backtracking fault tolerance method of an inertial and satellite integrated navigation system. Carry out the initial alignment of the inertial navigation system; collect and slide the sensor data; use the state chi-square and residual chi-square hybrid detection method to detect and identify the gradual fault of the satellite navigation position information, when the satellite navigation has no fault, switch to inertial/ In the satellite integrated navigation mode, the satellite navigation output information is fused; when the satellite navigation is in a gradual failure, the inertial navigation backtracking algorithm and the Kalman backtracking algorithm are performed to obtain the attitude matrix, Speed and position; go back to the satellite navigation fault point, perform pure inertial navigation retrospective calculation, recurse to the kth sampling time, and output the attitude, speed and position information after isolating the historical fault information of the satellite. The invention can effectively judge the gradual failure of satellite navigation, and perform fault-tolerant processing on the failure by the inertial navigation and Kalman backtracking algorithm, so as to avoid the pollution of historical failure information.

Description

惯性与卫星组合导航系统渐变型故障回溯容错方法Gradual fault backtracking fault tolerance method for inertial and satellite integrated navigation system

技术领域technical field

本发明涉及的是一种惯性组合导航系统故障容错方法,具体地说是一种惯性/卫星组合导航系统渐故障容错方法。The invention relates to a fault tolerance method of an inertial integrated navigation system, in particular to a gradual fault tolerance method of an inertial/satellite integrated navigation system.

背景技术Background technique

惯性组合导航系统由于融合多种传感器信息,所以其传感器信息的精度决定了系统精度。故障容错技术的主要任务是在外界参考信息出现故障时,能够快速隔离故障器件,但由于是渐变型故障,所以系统会短时间受到历史故障信息的污染,本发明研究一种在卫星导航出现渐变型故障时,利用存储的陀螺仪和加速度计信息,进行惯导回溯和卡尔曼回溯算法,在剔除掉历史故障信息后进行纯惯导快速追溯处理,有效的对卫星导航历史渐变型故障信息进行容错,提高了导航结果的精度和可靠性。The inertial integrated navigation system integrates various sensor information, so the accuracy of the sensor information determines the system accuracy. The main task of the fault tolerance technology is to quickly isolate the faulty device when the external reference information fails, but because it is a gradual fault, the system will be polluted by historical fault information in a short time. When the fault occurs, the stored gyroscope and accelerometer information is used to perform the inertial navigation and Kalman retrospective algorithms, and after the historical fault information is eliminated, the pure inertial navigation rapid retrospective processing is carried out, and the historical gradual fault information of satellite navigation is effectively processed. Fault-tolerant, improving the accuracy and reliability of navigation results.

在已发表的文章中,如在2018年《导航与控制》中第17卷第4期的殷德全、熊智、杨菁华和闵艳玲的一篇《SINS/BD紧组合导航系统故障检测算法研究与实现》文章中,提到了改进后的卡方故障检测算法,利用新息动态变化特性来辩识渐变型故障,并对其故障卫星进行实时隔离,从而有效减少故障信息对惯导精度的影响。根据其仿真结果能够得出,该方法能够快速监测故障卫星,通过设定不同的预警阈值,快速避免故障信息的污染,但其只能对渐变型故障进行实时隔离,不能对历史故障信息做进一步处理,无法剔除历史渐变型故障信息对系统的影响。Among the published articles, such as "Research and Implementation of Fault Detection Algorithm for SINS/BD Tight Integrated Navigation System" by Yin Dequan, Xiong Zhi, Yang Jinghua and Min Yanling in "Navigation and Control", Volume 17, Issue 4, 2018 "In the article, an improved chi-square fault detection algorithm is mentioned, which uses the dynamic change characteristics of innovative information to identify gradual faults, and isolates the faulty satellites in real time, thereby effectively reducing the impact of fault information on inertial navigation accuracy. According to its simulation results, it can be concluded that this method can quickly monitor faulty satellites, and quickly avoid the pollution of fault information by setting different warning thresholds, but it can only isolate gradual faults in real time, and cannot further improve historical fault information. processing, the influence of historical gradual fault information on the system cannot be eliminated.

还有张华强、李东兴、张国强在《中国惯性技术学报》上发表的《混合χ2检测法在组合导航系统故障检测中的应用》文章中提出一种混合χ2检测法,即利用双状态χ2检测法并行运算检测传感器信息渐变型故障,组合导航系统的故障诊断结果由并行运算结果共同决定,能够有效降低虚警率,对渐变型故障信息进行准确隔离,有效提高组合导航系统故障诊断结果,提高系统可靠性。从作者的仿真结果能够看出,容错处理时的组合导航系统在卫星导航信息仿真出现故障100~110s之后,由于故障信息的引入,虽然能够有效检测出卫星导航信息渐变型故障,但在检测出该故障后,没有对之前融合的历史渐变型故障信息做进一步容错处理,系统在一定时间段内仍然受故障信息的污染,无法剔除历史渐变型故障对之后系统的稳态影响。Also Zhang Huaqiang, Li Dongxing and Zhang Guoqiang put forward a hybrid χ 2 detection method in the article "Application of Hybrid χ 2 Detection Method in Integrated Navigation System Fault Detection" published in "Chinese Journal of Inertial Technology". The χ 2 detection method uses parallel operation to detect gradual faults of sensor information, and the fault diagnosis result of the integrated navigation system is jointly determined by the results of the parallel operation, which can effectively reduce the false alarm rate, accurately isolate the gradual fault information, and effectively improve the fault diagnosis of the integrated navigation system. As a result, system reliability is improved. From the author's simulation results, it can be seen that the integrated navigation system in fault-tolerant processing can effectively detect the gradual failure of satellite navigation information due to the introduction of fault information after 100-110 s after the failure of satellite navigation information simulation. After the fault, no further fault-tolerant processing is performed on the previously fused historical gradual fault information, and the system is still polluted by the fault information within a certain period of time, and the steady-state impact of the historical gradual fault on the subsequent system cannot be eliminated.

以上已发表的文章都对组合导航系统的渐变型故障容错进行了叙述和探究,但是没有同时达到在检测出渐变型故障后,对历史故障信息进行进一步容错处理,因此研究一种可靠而又快速的剔除历史故障重新计算故障时段内导航信息的方法具有创新性和实际工程价值。The above published articles have all described and explored the gradual fault tolerance of the integrated navigation system, but they have not achieved the further fault tolerance processing of the historical fault information after the gradual fault is detected. The method of eliminating historical faults and recalculating the navigation information in the fault period has innovative and practical engineering value.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种能够有效判断卫星导航渐变型故障,对故障进行容错处理,避免历史故障信息污染系统的惯性与卫星组合导航系统渐变型故障回溯容错方法。The purpose of the present invention is to provide an inertial and satellite integrated navigation system gradual fault retrospective fault tolerance method that can effectively judge satellite navigation gradual faults, perform fault-tolerant processing on the faults, and avoid historical fault information contaminating the system.

本发明的目的是这样实现的:The object of the present invention is achieved in this way:

步骤1,惯性组合导航系统,装订初始导航参数,进行惯导系统初始对准;Step 1, the inertial integrated navigation system, binding the initial navigation parameters, and performing the initial alignment of the inertial navigation system;

步骤2,采集传感器数据,并滑动存储[tk-M,tk],M=h/T时间段内的传感器数据,主要有陀螺仪信息ωb、加速度计信息fb和卫星导航纬度、经度、高度信息其中,tk为第k采样时刻,M为回溯个数,h为回溯时间,Ts为采样周期,b代表载体坐标系;Step 2, collect sensor data, and slide and store the sensor data in the [t kM ,t k ], M=h/T time period, mainly including gyroscope information ω b , accelerometer information f b and satellite navigation latitude, longitude, altitude information Among them, t k is the kth sampling time, M is the number of backtracking, h is the backtracking time, T s is the sampling period, and b represents the carrier coordinate system;

步骤3,根据卫星导航位置信息,利用状态卡方和残差卡方混合检测方法进行数据分析处理,对渐变型故障进行检测和辨识,当卫星导航无渐变型故障时,进行步骤4;当卫星导航处于渐变型故障时,进行步骤5;Step 3, according to the satellite navigation position information, use the state chi-square and residual chi-square mixed detection method to perform data analysis and processing, to detect and identify the gradual fault, when the satellite navigation has no gradual fault, go to step 4; When the navigation is in a gradual failure, go to step 5;

步骤4,系统切入惯性/卫星组合导航模式,利用卡尔曼滤波算法进行时间更新和量测更新,对第k采样时刻的卫星导航信息进行融合,输出校正后的机体位置、速度和姿态信息;Step 4, the system switches into the inertial/satellite integrated navigation mode, uses the Kalman filter algorithm to update the time and measurement, and updates the satellite navigation information at the kth sampling time. Fusion is performed to output the corrected body position, velocity and attitude information;

步骤5,由惯导系统第k采样时刻载体坐标系b到导航坐标系n的姿态矩阵速度信息和位置信息利用滑动存储的第k采样时刻陀螺仪信息和加速度计信息进行惯导回溯算法,得第k-1采样时刻的机体姿态矩阵速度和位置 Step 5, the attitude matrix from the carrier coordinate system b to the navigation coordinate system n at the kth sampling time of the inertial navigation system speed information and location information Use the gyroscope information stored at the k-th sampling time in sliding and accelerometer information Carry out the inertial navigation backtracking algorithm to obtain the body attitude matrix at the k-1 sampling time speed and location

步骤6,进行卡尔曼滤波器回溯算法,由第k-1采样时刻惯导解算的位置信息利用滑动存储的第k-1采样时刻的卫星导航的位置信息得第k-1采样时刻的卡尔曼回溯量测信息:Step 6, perform the Kalman filter backtracking algorithm, and use the position information calculated by the inertial navigation at the k-1 sampling time Utilize the position information of the satellite navigation stored at the k-1th sampling time by sliding Obtain the Kalman backtracking measurement information at the k-1 sampling time:

步骤7,由第k采样时刻卡尔曼滤波器的状态估计和状态估计均方误差Pk,进行时间回溯更新,递推第k-1采样时刻的状态一步预测和状态一步预测均方误差Pk-1/kStep 7, estimate the state of the Kalman filter at the kth sampling time and the mean square error of the state estimate P k , perform time retrospective update, and recursively predict the state at the k-1th sampling time by one step and state one-step prediction mean square error P k-1/k :

其中,Φk/k-1为第k-1采样时刻到第k采样时刻的卡尔曼滤波器的状态一步转移矩阵;Γk-1为第k-1采样时刻系统噪声驱动矩阵;Qk-1为第k-1采样时刻系统噪声矩阵;in, Φ k/k-1 is the state one-step transition matrix of the Kalman filter from the k-1th sampling time to the kth sampling time; Γ k-1 is the system noise driving matrix at the k-1 sampling time; Q k-1 is the system noise matrix at the k-1 sampling time;

步骤8,由回溯量测信息和时间回溯更新,进行卡尔曼量测回溯更新:Step 8: Backward updating of the Kalman measurement is performed based on the retrospective measurement information and time retrospective update:

Pk-1=(I-Kk-1Hk-1)Pk-1/k P k-1 =(IK k-1 H k-1 )P k-1/k

其中,Kk-1为第k-1采样时刻滤波增益矩阵;Hk-1为第k-1采样时刻量测矩阵;Rk-1为第k-1采样时刻量测噪声矩阵;I为单位矩阵;Among them, K k-1 is the filter gain matrix at the k-1 sampling time; H k-1 is the measurement matrix at the k-1 sampling time; R k-1 is the measurement noise matrix at the k-1 sampling time; I is the identity matrix;

步骤9,根据卡尔曼回溯算法得到的误差估计量对惯导回溯解算的第k-1采样时刻对应位置信息进行反馈,得到未融合第k-1采样时刻卫星渐变型故障信息的姿态矩阵速度和位置 Step 9, according to the error estimator obtained by the Kalman backtracking algorithm Feedback the position information corresponding to the k-1 sampling time of the inertial navigation backtracking solution, and obtain the attitude matrix without fusion of the satellite gradual fault information at the k-1 sampling time. speed and location

步骤10,回溯到卫星导航故障点,利用存储在[tk-M,tk]时间段内故障点到第k采样时刻的陀螺仪和加速度计信息,进行纯惯导正向追溯解算,递推到第k采样时刻,输出隔离卫星历史故障信息后的机体姿态、速度和位置信息。Step 10: Go back to the satellite navigation fault point, use the gyroscope and accelerometer information stored from the fault point to the kth sampling time in the [t kM ,t k ] time period to perform pure inertial navigation forward retrospective calculation, recursive At the kth sampling time, the body attitude, speed and position information after isolating the historical fault information of the satellite are output.

本发明提供了一种适用于惯性组合导航系统,能够有效判断卫星导航渐变型故障,并进行惯导和卡尔曼回溯算法,对故障进行容错处理,避免历史故障信息污染系统的新方法。The present invention provides a new method suitable for inertial integrated navigation system, capable of effectively judging satellite navigation gradual faults, and performing inertial navigation and Kalman backtracking algorithms to perform fault-tolerant processing on faults and avoid historical fault information contaminating the system.

本发明的优点主要体现在:The advantages of the present invention are mainly reflected in:

针对惯性/卫星组合导航系统渐变型故障的问题,本发明提供了一种适用于渐变型故障容错处理的惯导和卡尔曼回溯算法,能够有效剔除历史故障信息,有效提高组合导航系统的精度和可靠性。Aiming at the problem of gradual faults in the inertial/satellite integrated navigation system, the present invention provides an inertial navigation and Kalman backtracking algorithm suitable for fault-tolerant processing of gradual faults, which can effectively eliminate historical fault information and effectively improve the precision and accuracy of the integrated navigation system. reliability.

附图说明Description of drawings

图1为本发明的适用于惯性/卫星组合导航系统渐变型故障回溯容错方法流程图。FIG. 1 is a flow chart of a fault-tolerance method for gradual fault backtracking applicable to an inertial/satellite integrated navigation system according to the present invention.

具体实施方式Detailed ways

下面举例对本发明做更详细的描述。The present invention will be described in more detail with examples below.

步骤1,启动惯性组合导航系统,装订初始导航参数:惯性测量器件陀螺仪的常值偏移εxyz和加速度计的常值偏移▽x,▽y,▽z,卫星导航位置量测误差初始纬度初始经度λ0,初始高度h0;进行惯导系统初始对准;Step 1, start the inertial integrated navigation system, and bind the initial navigation parameters: the constant offset ε xyz of the inertial measurement device gyroscope and the constant offset ▽ x ,▽ y ,▽ z of the accelerometer, satellite Navigation position measurement error initial latitude Initial longitude λ 0 , initial height h 0 ; perform the initial alignment of the inertial navigation system;

步骤2,采集传感器数据,并滑动存储[tk-M,tk],(M=h/Ts)时间段内的传感器数据,主要有陀螺仪信息ωb、加速度计信息fb和卫星导航纬度、经度、高度信息其中,tk为第k采样时刻,M为回溯个数,h为回溯时间,Ts为采样周期,b代表载体坐标系;Step 2: Collect sensor data, and store the sensor data in the time period of [t kM ,t k ], (M=h/T s ), mainly including gyroscope information ω b , accelerometer information f b and satellite navigation latitude , longitude, altitude information Among them, t k is the kth sampling time, M is the number of backtracking, h is the backtracking time, T s is the sampling period, and b represents the carrier coordinate system;

步骤3,根据卫星导航位置信息,利用状态卡方和残差卡方混合检测方法进行数据分析处理,对渐变型故障进行检测和辨识,当卫星导航无故障时,进行步骤4;当卫星导航处于渐变型故障时,进行步骤5;Step 3, according to the satellite navigation position information, use the state chi-square and residual chi-square mixed detection method to perform data analysis and processing, to detect and identify the gradual fault, when the satellite navigation has no fault, go to step 4; when the satellite navigation is in In case of gradual failure, go to step 5;

步骤4,系统切入惯性/卫星组合导航模式,利用卡尔曼滤波算法进行时间更新和量测更新,对第k采样时刻的卫星导航输出信息进行融合,输出校正后的机体位置、速度和姿态信息;Step 4, the system switches into the inertial/satellite integrated navigation mode, uses the Kalman filter algorithm to update the time and measurement, and outputs information for the satellite navigation at the kth sampling time. Fusion is performed to output the corrected body position, velocity and attitude information;

步骤5,由惯导系统第k采样时刻载体坐标系b到导航坐标系n的姿态矩阵速度信息和位置信息利用滑动存储的第k采样时刻的陀螺仪信息加速度计信息对惯导姿态进行回溯,得第k-1采样时刻的姿态矩阵:Step 5, the attitude matrix from the carrier coordinate system b to the navigation coordinate system n at the kth sampling time of the inertial navigation system speed information and location information Use the gyroscope information at the k-th sampling moment stored by sliding Accelerometer information Backtracking the inertial navigation attitude, get the attitude matrix at the k-1 sampling time:

其中,×代表的是的反对称矩阵,为第k采样时刻载体坐标系b相对于导航坐标系n的转动角速率在载体坐标系b下的投影;为第k采样时刻地球自转角速率在导航坐标系n下的投影;为第k采样时刻导航坐标系n相对于地球坐标系e的转动角速度在导航坐标系n下的投影;RM为当地地球子午圈主曲率半径;RN为当地地球卯酉圈主曲率半径;为第k采样时刻机体速度在导航坐标系n下东向、北向和天向的投影;in, × stands for The antisymmetric matrix of , is the projection of the rotational angular rate of the carrier coordinate system b relative to the navigation coordinate system n under the carrier coordinate system b at the kth sampling time; is the projection of the earth's rotation angular rate at the kth sampling time under the navigation coordinate system n; is the projection of the rotational angular velocity of the navigation coordinate system n relative to the earth coordinate system e at the k-th sampling time under the navigation coordinate system n; R M is the main radius of curvature of the local earth meridian; R N is the main radius of curvature of the local earth's meridian circle; is the projection of the airframe velocity in the navigation coordinate system n in the east, north and sky directions at the kth sampling time;

步骤6,由得到的第k-1采样时刻的姿态矩阵回溯计算第k-1采样时刻的机体速度:Step 6, get the attitude matrix at the k-1 sampling time Backtrack to calculate the body speed at the k-1 sampling time:

其中,为第k采样时刻当地重力加速度在导航坐标系n下的投影;in, is the projection of the local gravitational acceleration under the navigation coordinate system n at the kth sampling time;

步骤7,由第k-1采样时刻的速度信息回溯计算第k-1采样时刻的机体位置:Step 7, from the speed information of the k-1 sampling time Backtrack to calculate the position of the body at the k-1 sampling time:

步骤8,进行卡尔曼滤波回溯算法,由第k-1采样时刻惯导回溯解算的位置信息利用滑动存储的第k-1采样时刻的卫星导航的位置信息得第k-1采样时刻的卡尔曼回溯量测信息:Step 8, carry out the Kalman filter backtracking algorithm, the position information calculated by the inertial navigation backtracking at the k-1th sampling time Utilize the position information of the satellite navigation stored at the k-1th sampling time by sliding Obtain the Kalman backtracking measurement information at the k-1 sampling time:

步骤9,由第k采样时刻卡尔曼滤波器的状态估计和状态估计均方误差Pk,进行时间回溯更新,递推第k-1采样时刻的状态一步预测和状态一步预测均方误差Pk-1/kStep 9, estimate the state of the Kalman filter at the kth sampling time and the mean square error of the state estimate P k , perform time retrospective update, and recursively predict the state at the k-1th sampling time by one step and state one-step prediction mean square error P k-1/k :

其中,Φk/k-1为第k-1采样时刻到第k采样时刻的卡尔曼滤波器的状态一步转移矩阵;Γk-1为第k-1采样时刻系统噪声驱动矩阵;Qk-1为第k-1采样时刻系统噪声矩阵,Qk-1=Qk=…=Q0为常值矩阵;in, Φ k/k-1 is the state one-step transition matrix of the Kalman filter from the k-1th sampling time to the kth sampling time; Γ k-1 is the system noise driving matrix at the k-1 sampling time; Q k-1 is the system noise matrix at the k-1 sampling time, and Q k-1 =Q k =...=Q 0 is a constant value matrix;

步骤10,由回溯量测信息和时间回溯更新,进行卡尔曼量测回溯更新:Step 10, perform the Kalman measurement retrospective update based on the retrospective measurement information and time retrospective update:

Pk-1=(I-Kk-1Hk-1)Pk-1/k (13)P k-1 = (IK k-1 H k-1 )P k-1/k (13)

其中,Kk-1为第k-1采样时刻滤波增益矩阵;Hk-1为第k-1采样时刻量测矩阵;Rk-1为第k-1采样时刻量测噪声矩阵,Rk-1=Rk=…=R0为常值矩阵;I为单位矩阵;Among them, K k-1 is the filter gain matrix at the k-1 sampling time; H k-1 is the measurement matrix at the k-1 sampling time; R k-1 is the measurement noise matrix at the k-1 sampling time, and R k -1 =R k =...=R 0 is a constant value matrix; I is a unit matrix;

步骤11,根据卡尔曼回溯算法得到的误差估计量对惯导回溯解算的第k-1采样时刻对应位置信息进行反馈,得到未融合第k-1采样时刻卫星渐变型故障信息的姿态矩阵速度和位置 Step 11, according to the error estimator obtained by the Kalman backtracking algorithm Feedback the position information corresponding to the k-1 sampling time of the inertial navigation backtracking solution, and obtain the attitude matrix without fusion of the satellite gradual fault information at the k-1 sampling time. speed and location

步骤12,交替进行惯导和卡尔曼回溯算法,回溯到卫星导航故障点;利用存储在[tk-M,tk]时间段内故障点到第k采样时刻的陀螺仪和加速度计信息,进行纯惯导正向追溯解算,递推到第k采样时刻,输出隔离卫星历史故障信息后的机体姿态、速度和位置信息,完成了对卫星导航渐变型历史故障的容错处理。Step 12: Alternately perform inertial navigation and Kalman backtracking algorithms to backtrack to the satellite navigation fault point; use the gyroscope and accelerometer information stored from the fault point to the kth sampling time in the [t kM ,t k ] time period to perform pure The inertial navigation forward retrospective solution, recursively to the kth sampling time, outputs the body attitude, speed and position information after isolating the historical fault information of the satellite, and completes the fault-tolerant processing of the gradual historical fault of the satellite navigation.

所述的适用于惯性/卫星组合导航系统渐变型故障回溯容错方法,采用混合卡方检测方法,能够快速有效的检测出卫星导航的渐变型故障信息,采用惯导回溯和卡尔曼回溯算法,剔除系统中的历史故障信息,进一步提高系统的可靠性。The described fault-tolerance method for gradual fault backtracking suitable for inertial/satellite integrated navigation systems adopts the hybrid chi-square detection method, which can quickly and effectively detect the gradual fault information of satellite navigation. The inertial navigation backtracking and Kalman backtracking algorithms are used to eliminate the The historical fault information in the system further improves the reliability of the system.

本方法利用滑动存储方式对惯导的关键数据进行存储,有效的节约了存储空间,并利用纯惯导追溯方法,在避免卫星历史故障信息的污染的同时,能够快速输出机体导航信息,提高了工程的实用性。The method uses the sliding storage method to store the key data of the inertial navigation, which effectively saves the storage space, and uses the pure inertial navigation retrospective method, which can quickly output the navigation information of the airframe while avoiding the pollution of the historical fault information of the satellite. practicality of the project.

Claims (1)

1. A gradual-change fault backtracking fault-tolerant method for an inertia and satellite integrated navigation system is characterized by comprising the following steps:
step 1, an inertial integrated navigation system binds initial navigation parameters and performs initial alignment of the inertial navigation system;
step 2, collecting sensor data, and storing [ t ] in a sliding mannerk-M,tk]The sensor data in the h/T time period mainly includes gyroscope information ωbAccelerometer information fbAnd satellite navigation latitude, longitude, altitude informationWherein, tkIs the kth sampling time, M is the backtracking number, h is the backtracking time, TsB represents a carrier coordinate system for a sampling period;
step 3, according to the satellite navigation position information, data analysis processing is carried out by using a state chi-square and residual chi-square mixed detection method, detection and identification are carried out on the gradual-change type fault, and when the satellite navigation has no gradual-change type fault, the step 4 is carried out; when the satellite navigation is in the gradual change type fault, performing step 5;
step 4, the system is switched into an inertia/satellite integrated navigation mode, time updating and measurement updating are carried out by using a Kalman filtering algorithm, and satellite navigation information of the kth sampling moment is subjected toFusing, and outputting the corrected body position, speed and posture information;
step 5, an attitude matrix from the k sampling moment carrier coordinate system b of the inertial navigation system to the navigation coordinate system nSpeed informationAnd location informationGyroscope information at kth sampling time stored by slidingAnd accelerometer informationPerforming inertial navigation backtracking algorithm to obtain an organism attitude matrix at the k-1 sampling momentSpeed of rotationAnd position
Step 6, performing a Kalman filter backtracking algorithm, and resolving position information by inertial navigation at the k-1 th sampling momentPosition information of satellite navigation using sliding stored k-1 th sampling timeObtaining Kalman backtracking measurement information at the k-1 sampling moment:
step 7, estimating the state of the Kalman filter at the kth sampling momentSum state estimation mean square error PkPerforming time backtracking update, and recurrently predicting the state at the k-1 th sampling moment by one stepSum-state one-step prediction mean square error Pk-1/k
Wherein,Φk/k-1a state one-step transition matrix of the Kalman filter from the k-1 sampling moment to the k sampling moment is obtained;Γk-1driving a matrix for the system noise at the k-1 th sampling moment; qk-1A system noise matrix at the k-1 sampling moment;
and 8, performing Kalman measurement backtracking update by backtracking measurement information and time backtracking update:
Pk-1=(I-Kk-1Hk-1)Pk-1/k
wherein, Kk-1Filtering a gain matrix at the k-1 th sampling moment; hk-1A k-1 sampling moment measurement matrix is obtained; rk-1Measuring a noise matrix at the k-1 sampling moment; i is an identity matrix;
step 9, obtaining error estimator according to Kalman backtracking algorithmFeeding back the position information corresponding to the k-1 sampling moment of inertial navigation backtracking calculation to obtain an attitude matrix which is not fused with the gradual change type fault information of the satellite at the k-1 sampling momentSpeed of rotationAnd position
Step 10, backtracking to the satellite navigation fault point, and storing the fault point in [ t ]k-M,tk]And (3) carrying out forward tracing resolving on the information of the gyroscope and the accelerometer from the fault point to the kth sampling time in the time period, recurrently obtaining the information of the gyroscope and the accelerometer to the kth sampling time, and outputting the body attitude, the speed and the position information after isolating the historical fault information of the satellite.
CN201910612635.XA 2019-07-09 2019-07-09 Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System Active CN110296701B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910612635.XA CN110296701B (en) 2019-07-09 2019-07-09 Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910612635.XA CN110296701B (en) 2019-07-09 2019-07-09 Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System

Publications (2)

Publication Number Publication Date
CN110296701A true CN110296701A (en) 2019-10-01
CN110296701B CN110296701B (en) 2022-12-13

Family

ID=68030571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910612635.XA Active CN110296701B (en) 2019-07-09 2019-07-09 Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System

Country Status (1)

Country Link
CN (1) CN110296701B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337025A (en) * 2020-04-28 2020-06-26 中国人民解放军国防科技大学 Positioning and orientating instrument hole positioning method suitable for long-distance horizontal core drilling machine
CN111999747A (en) * 2020-08-28 2020-11-27 大连海事大学 Robust fault detection method for inertial navigation-satellite combined navigation system
CN112179347A (en) * 2020-09-18 2021-01-05 西北工业大学 An Integrated Navigation Method Based on Spectral Redshift Error Observation Equation
CN113432604A (en) * 2021-06-29 2021-09-24 广东工业大学 IMU/GPS combined navigation method capable of sensitively detecting fault
CN113514064A (en) * 2021-04-23 2021-10-19 南京航空航天大学 Robust factor graph multi-source fault-tolerant navigation method
CN115727846A (en) * 2023-01-09 2023-03-03 中国人民解放军国防科技大学 A multi-thread backtracking combined navigation method for strapdown inertial navigation and satellite navigation
CN116736358A (en) * 2023-08-09 2023-09-12 北京理工大学 A long-baseline carrier phase differential positioning method suitable for satellite navigation

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464152A (en) * 2009-01-09 2009-06-24 哈尔滨工程大学 Adaptive filtering method for SINS/GPS combined navigation system
CN101464935A (en) * 2009-01-09 2009-06-24 哈尔滨工程大学 AUV intelligent fault-tolerance combined navigation simulation system based on network
CN101477488A (en) * 2009-01-16 2009-07-08 哈尔滨工程大学 Key service system oriented system repentance recovery method and system
CN101865693A (en) * 2010-06-03 2010-10-20 天津职业技术师范大学 Aviation multi-sensor integrated navigation system
CN102176031A (en) * 2011-01-06 2011-09-07 中国科学院国家授时中心 System time difference based receiver completeness failure detection method in dual-mode navigation system
RU2012104402A (en) * 2009-07-10 2013-08-20 Сагем Дефенс Секьюрите METHOD FOR DETERMINING CARRIER NAVIGATION PARAMETERS AND HYBRIDIZATION DEVICE RELATED TO THE PANK OF CALMAN FILTERS
CN103434610A (en) * 2013-09-03 2013-12-11 哈尔滨工程大学 Docking positioning guiding method for offshore oil drilling platform
CN104181574A (en) * 2013-05-25 2014-12-03 成都国星通信有限公司 Strapdown inertial navigation system/global navigation satellite system combined based navigation filter system and method
CN104422948A (en) * 2013-09-11 2015-03-18 南京理工大学 Embedded type combined navigation system and method thereof
CN105637437A (en) * 2013-10-11 2016-06-01 斯奈克玛 Monitoring of an aircraft engine to anticipate maintenance operations
CN106289249A (en) * 2015-05-22 2017-01-04 应美盛股份有限公司 For synthesizing the system and method that sensor signal generates
CN106595652A (en) * 2016-11-30 2017-04-26 西北工业大学 Vehicle MCA (motion constraints aided) backtracking type aligning-on-the-move method
CN107894232A (en) * 2017-09-29 2018-04-10 湖南航天机电设备与特种材料研究所 A kind of accurate method for locating speed measurement of GNSS/SINS integrated navigations and system
CN108106635A (en) * 2017-12-15 2018-06-01 中国船舶重工集团公司第七0七研究所 Inertia defends the anti-interference posture course calibration method of long endurance for leading integrated navigation system
CN108291813A (en) * 2015-10-09 2018-07-17 大众汽车有限公司 It is merged by the position data of posture figure
CN108802780A (en) * 2018-03-09 2018-11-13 东南大学 Bias property analysis method between a kind of GPS/BDS differential systems
US20180375939A1 (en) * 2017-06-26 2018-12-27 Veniam, Inc. Systems and methods for self-organized fleets of autonomous vehicles for optimal and adaptive transport and offload of massive amounts of data
CN109163735A (en) * 2018-09-29 2019-01-08 苏州大学 A kind of positive-positive backtracking Initial Alignment Method of swaying base
CN109373999A (en) * 2018-10-23 2019-02-22 哈尔滨工程大学 Integrated Navigation Method Based on Fault Tolerant Kalman Filter
CN109471146A (en) * 2018-12-04 2019-03-15 北京壹氢科技有限公司 A kind of self-adapted tolerance GPS/INS Combinated navigation method based on LS-SVM
US20190094288A1 (en) * 2017-09-22 2019-03-28 Schweitzer Engineering Laboratories, Inc. Accuracy of event locating on powerlines based on field data
CN109737959A (en) * 2019-03-20 2019-05-10 哈尔滨工程大学 A multi-source information fusion navigation method in polar region based on federated filtering
CN109813342A (en) * 2019-02-28 2019-05-28 北京讯腾智慧科技股份有限公司 A kind of fault detection method and system of inertial navigation-satellite combined guidance system
CN109974697A (en) * 2019-03-21 2019-07-05 中国船舶重工集团公司第七0七研究所 A kind of high-precision mapping method based on inertia system
CN109975851A (en) * 2019-04-04 2019-07-05 河南思维轨道交通技术研究院有限公司 A kind of train line fault point accurate positioning method and system

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464935A (en) * 2009-01-09 2009-06-24 哈尔滨工程大学 AUV intelligent fault-tolerance combined navigation simulation system based on network
CN101464152A (en) * 2009-01-09 2009-06-24 哈尔滨工程大学 Adaptive filtering method for SINS/GPS combined navigation system
CN101477488A (en) * 2009-01-16 2009-07-08 哈尔滨工程大学 Key service system oriented system repentance recovery method and system
RU2012104402A (en) * 2009-07-10 2013-08-20 Сагем Дефенс Секьюрите METHOD FOR DETERMINING CARRIER NAVIGATION PARAMETERS AND HYBRIDIZATION DEVICE RELATED TO THE PANK OF CALMAN FILTERS
CN101865693A (en) * 2010-06-03 2010-10-20 天津职业技术师范大学 Aviation multi-sensor integrated navigation system
CN102176031A (en) * 2011-01-06 2011-09-07 中国科学院国家授时中心 System time difference based receiver completeness failure detection method in dual-mode navigation system
CN104181574A (en) * 2013-05-25 2014-12-03 成都国星通信有限公司 Strapdown inertial navigation system/global navigation satellite system combined based navigation filter system and method
CN103434610A (en) * 2013-09-03 2013-12-11 哈尔滨工程大学 Docking positioning guiding method for offshore oil drilling platform
CN104422948A (en) * 2013-09-11 2015-03-18 南京理工大学 Embedded type combined navigation system and method thereof
CN105637437A (en) * 2013-10-11 2016-06-01 斯奈克玛 Monitoring of an aircraft engine to anticipate maintenance operations
CN106289249A (en) * 2015-05-22 2017-01-04 应美盛股份有限公司 For synthesizing the system and method that sensor signal generates
CN108291813A (en) * 2015-10-09 2018-07-17 大众汽车有限公司 It is merged by the position data of posture figure
CN106595652A (en) * 2016-11-30 2017-04-26 西北工业大学 Vehicle MCA (motion constraints aided) backtracking type aligning-on-the-move method
US20180375939A1 (en) * 2017-06-26 2018-12-27 Veniam, Inc. Systems and methods for self-organized fleets of autonomous vehicles for optimal and adaptive transport and offload of massive amounts of data
US20190094288A1 (en) * 2017-09-22 2019-03-28 Schweitzer Engineering Laboratories, Inc. Accuracy of event locating on powerlines based on field data
CN107894232A (en) * 2017-09-29 2018-04-10 湖南航天机电设备与特种材料研究所 A kind of accurate method for locating speed measurement of GNSS/SINS integrated navigations and system
CN108106635A (en) * 2017-12-15 2018-06-01 中国船舶重工集团公司第七0七研究所 Inertia defends the anti-interference posture course calibration method of long endurance for leading integrated navigation system
CN108802780A (en) * 2018-03-09 2018-11-13 东南大学 Bias property analysis method between a kind of GPS/BDS differential systems
CN109163735A (en) * 2018-09-29 2019-01-08 苏州大学 A kind of positive-positive backtracking Initial Alignment Method of swaying base
CN109373999A (en) * 2018-10-23 2019-02-22 哈尔滨工程大学 Integrated Navigation Method Based on Fault Tolerant Kalman Filter
CN109471146A (en) * 2018-12-04 2019-03-15 北京壹氢科技有限公司 A kind of self-adapted tolerance GPS/INS Combinated navigation method based on LS-SVM
CN109813342A (en) * 2019-02-28 2019-05-28 北京讯腾智慧科技股份有限公司 A kind of fault detection method and system of inertial navigation-satellite combined guidance system
CN109737959A (en) * 2019-03-20 2019-05-10 哈尔滨工程大学 A multi-source information fusion navigation method in polar region based on federated filtering
CN109974697A (en) * 2019-03-21 2019-07-05 中国船舶重工集团公司第七0七研究所 A kind of high-precision mapping method based on inertia system
CN109975851A (en) * 2019-04-04 2019-07-05 河南思维轨道交通技术研究院有限公司 A kind of train line fault point accurate positioning method and system

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
SHENG BAO等: "Aerodynamic model/INS/GPS failure-tolerant navigation method for multirotor UAVs based on federated Kalman Filter", 《2017 CHINESE AUTOMATION CONGRESS (CAC)》, 1 January 2018 (2018-01-01), pages 1121 - 1125 *
YIDING SUN等: "In-Motion Attitude and Position Alignment for Odometer-Aided SINS Based on Backtracking Scheme", 《IEEE ACCESS》, 1 January 2019 (2019-01-01), pages 20211 - 20224 *
ZHAO LONG: "Study on fault-tolerant SINS/GPS integrated navigation system", 《IEEE INTERNATIONAL CONFERENCE MECHATRONICS AND AUTOMATION, 2005》, 8 May 2006 (2006-05-08), pages 1 - 4 *
丁宏升: "一种组合导航系统的故障检测方法仿真研究", 《航空计算技术》 *
丁宏升: "一种组合导航系统的故障检测方法仿真研究", 《航空计算技术》, vol. 48, no. 1, 25 January 2018 (2018-01-25), pages 79 - 81 *
宋丽杰: "GPS/INS紧组合导航系统的故障诊断方法研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》, 15 March 2018 (2018-03-15), pages 136 - 1554 *
成研等: "单轴旋转捷联惯导系统回溯式对准方法", 《航空精密制造技术》, vol. 54, no. 1, 15 February 2018 (2018-02-15), pages 16 - 20 *
车宁宇: "联邦滤波算法在INS/GPS/CNS组合导航系统中应用的研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》, 15 June 2018 (2018-06-15), pages 136 - 965 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337025A (en) * 2020-04-28 2020-06-26 中国人民解放军国防科技大学 Positioning and orientating instrument hole positioning method suitable for long-distance horizontal core drilling machine
CN111999747A (en) * 2020-08-28 2020-11-27 大连海事大学 Robust fault detection method for inertial navigation-satellite combined navigation system
CN111999747B (en) * 2020-08-28 2023-06-20 大连海事大学 Robust fault detection method for inertial navigation-satellite integrated navigation system
CN112179347A (en) * 2020-09-18 2021-01-05 西北工业大学 An Integrated Navigation Method Based on Spectral Redshift Error Observation Equation
CN113514064A (en) * 2021-04-23 2021-10-19 南京航空航天大学 Robust factor graph multi-source fault-tolerant navigation method
CN113514064B (en) * 2021-04-23 2024-01-30 南京航空航天大学 Multi-source fault-tolerant navigation method for robust factor graph
CN113432604A (en) * 2021-06-29 2021-09-24 广东工业大学 IMU/GPS combined navigation method capable of sensitively detecting fault
CN113432604B (en) * 2021-06-29 2023-05-19 广东工业大学 An IMU/GPS integrated navigation method capable of sensitive fault detection
CN115727846A (en) * 2023-01-09 2023-03-03 中国人民解放军国防科技大学 A multi-thread backtracking combined navigation method for strapdown inertial navigation and satellite navigation
CN116736358A (en) * 2023-08-09 2023-09-12 北京理工大学 A long-baseline carrier phase differential positioning method suitable for satellite navigation
CN116736358B (en) * 2023-08-09 2023-11-03 北京理工大学 A long-baseline carrier phase differential positioning method suitable for satellite navigation

Also Published As

Publication number Publication date
CN110296701B (en) 2022-12-13

Similar Documents

Publication Publication Date Title
CN110296701B (en) Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System
CN109373999B (en) Integrated navigation method based on fault-tolerant Kalman filtering
CN108106635A (en) Inertia defends the anti-interference posture course calibration method of long endurance for leading integrated navigation system
CN106814753B (en) Target position correction method, device and system
US7860651B2 (en) Enhanced inertial system performance
CN110426032B (en) An Analytical Redundant Fault-tolerant Navigation Estimation Method for Aircraft
CN110196049A (en) The detection of four gyro redundance type Strapdown Inertial Navigation System hard faults and partition method under a kind of dynamic environment
CN108168509B (en) An error-tolerant estimation method for quadrotor aircraft height assisted by lift model
CN108981708B (en) Four-rotor torque model/heading gyro/magnetic sensor fault-tolerant integrated navigation method
CN110763253A (en) A Fault Diagnosis Method of Integrated Navigation System Based on SVR
CN108981709B (en) Four-rotor-wing roll angle and pitch angle fault-tolerant estimation method based on moment model assistance
CN110567457B (en) Inertial navigation self-detection system based on redundancy
CN107990901B (en) User direction positioning method based on sensor
CN109677508B (en) Vehicle motion data acquisition method, device, equipment and storage medium
JP6841857B2 (en) Magnetic inertia global positioning system
Chang-Siu et al. Time-varying complementary filtering for attitude estimation
CN113008229B (en) Distributed autonomous integrated navigation method based on low-cost vehicle-mounted sensor
Kanhere et al. Integrity for GPS/LiDAR fusion utilizing a RAIM framework
Kumar et al. Estimation of attitudes from a low-cost miniaturized inertial platform using Kalman Filter-based sensor fusion algorithm
CN114147717B (en) Robot motion track estimation method, device, controller and storage medium
Hao et al. Rapid transfer alignment based on unscented Kalman filter
Xiao et al. Asymmetric Dual Redundant Inertial Sensors: A Method for F ault Detection and Diagnosis
CN116046020A (en) Zero offset value determining method and device
Setlak et al. MEMS electromechanical microsystem as a support system for the position determining process with the use of the inertial navigation system INS and kalman filter
CN106199660B (en) The modification method and device of location data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant