CN110296701A - Inertia and satellite combined guidance system gradation type failure recall fault-tolerance approach - Google Patents
Inertia and satellite combined guidance system gradation type failure recall fault-tolerance approach Download PDFInfo
- Publication number
- CN110296701A CN110296701A CN201910612635.XA CN201910612635A CN110296701A CN 110296701 A CN110296701 A CN 110296701A CN 201910612635 A CN201910612635 A CN 201910612635A CN 110296701 A CN110296701 A CN 110296701A
- Authority
- CN
- China
- Prior art keywords
- information
- navigation
- fault
- satellite
- backtracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005070 sampling Methods 0.000 claims abstract description 76
- 239000011159 matrix material Substances 0.000 claims abstract description 35
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 238000004364 calculation method Methods 0.000 claims abstract description 3
- 238000005259 measurement Methods 0.000 claims description 19
- 238000007405 data analysis Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims 2
- 230000004927 fusion Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/23—Testing, monitoring, correcting or calibrating of receiver elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/46—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
Abstract
本发明提供的是一种惯性与卫星组合导航系统渐变型故障回溯容错方法。进行惯导系统初始对准;采集并滑动存储传感器数据;利用状态卡方和残差卡方混合检测方法对卫星导航位置信息进行渐变型故障检测和辨识,当卫星导航无故障时,切入惯性/卫星组合导航模式,对卫星导航输出信息进行融合;当卫星导航处于渐变型故障时,进行惯导回溯算法和卡尔曼回溯算法,得未融合第k‑1时刻卫星渐变型故障信息的姿态矩阵、速度和位置;回溯到卫星导航故障点,进行纯惯导追溯解算,递推到第k采样时刻,输出隔离卫星历史故障信息后的姿态、速度和位置信息。本发明能够有效判断卫星导航渐变型故障,并进行惯导和卡尔曼回溯算法对故障进行容错处理,避免历史故障信息污染。
The invention provides a gradual fault backtracking fault tolerance method of an inertial and satellite integrated navigation system. Carry out the initial alignment of the inertial navigation system; collect and slide the sensor data; use the state chi-square and residual chi-square hybrid detection method to detect and identify the gradual fault of the satellite navigation position information, when the satellite navigation has no fault, switch to inertial/ In the satellite integrated navigation mode, the satellite navigation output information is fused; when the satellite navigation is in a gradual failure, the inertial navigation backtracking algorithm and the Kalman backtracking algorithm are performed to obtain the attitude matrix, Speed and position; go back to the satellite navigation fault point, perform pure inertial navigation retrospective calculation, recurse to the kth sampling time, and output the attitude, speed and position information after isolating the historical fault information of the satellite. The invention can effectively judge the gradual failure of satellite navigation, and perform fault-tolerant processing on the failure by the inertial navigation and Kalman backtracking algorithm, so as to avoid the pollution of historical failure information.
Description
技术领域technical field
本发明涉及的是一种惯性组合导航系统故障容错方法,具体地说是一种惯性/卫星组合导航系统渐故障容错方法。The invention relates to a fault tolerance method of an inertial integrated navigation system, in particular to a gradual fault tolerance method of an inertial/satellite integrated navigation system.
背景技术Background technique
惯性组合导航系统由于融合多种传感器信息,所以其传感器信息的精度决定了系统精度。故障容错技术的主要任务是在外界参考信息出现故障时,能够快速隔离故障器件,但由于是渐变型故障,所以系统会短时间受到历史故障信息的污染,本发明研究一种在卫星导航出现渐变型故障时,利用存储的陀螺仪和加速度计信息,进行惯导回溯和卡尔曼回溯算法,在剔除掉历史故障信息后进行纯惯导快速追溯处理,有效的对卫星导航历史渐变型故障信息进行容错,提高了导航结果的精度和可靠性。The inertial integrated navigation system integrates various sensor information, so the accuracy of the sensor information determines the system accuracy. The main task of the fault tolerance technology is to quickly isolate the faulty device when the external reference information fails, but because it is a gradual fault, the system will be polluted by historical fault information in a short time. When the fault occurs, the stored gyroscope and accelerometer information is used to perform the inertial navigation and Kalman retrospective algorithms, and after the historical fault information is eliminated, the pure inertial navigation rapid retrospective processing is carried out, and the historical gradual fault information of satellite navigation is effectively processed. Fault-tolerant, improving the accuracy and reliability of navigation results.
在已发表的文章中,如在2018年《导航与控制》中第17卷第4期的殷德全、熊智、杨菁华和闵艳玲的一篇《SINS/BD紧组合导航系统故障检测算法研究与实现》文章中,提到了改进后的卡方故障检测算法,利用新息动态变化特性来辩识渐变型故障,并对其故障卫星进行实时隔离,从而有效减少故障信息对惯导精度的影响。根据其仿真结果能够得出,该方法能够快速监测故障卫星,通过设定不同的预警阈值,快速避免故障信息的污染,但其只能对渐变型故障进行实时隔离,不能对历史故障信息做进一步处理,无法剔除历史渐变型故障信息对系统的影响。Among the published articles, such as "Research and Implementation of Fault Detection Algorithm for SINS/BD Tight Integrated Navigation System" by Yin Dequan, Xiong Zhi, Yang Jinghua and Min Yanling in "Navigation and Control", Volume 17, Issue 4, 2018 "In the article, an improved chi-square fault detection algorithm is mentioned, which uses the dynamic change characteristics of innovative information to identify gradual faults, and isolates the faulty satellites in real time, thereby effectively reducing the impact of fault information on inertial navigation accuracy. According to its simulation results, it can be concluded that this method can quickly monitor faulty satellites, and quickly avoid the pollution of fault information by setting different warning thresholds, but it can only isolate gradual faults in real time, and cannot further improve historical fault information. processing, the influence of historical gradual fault information on the system cannot be eliminated.
还有张华强、李东兴、张国强在《中国惯性技术学报》上发表的《混合χ2检测法在组合导航系统故障检测中的应用》文章中提出一种混合χ2检测法,即利用双状态χ2检测法并行运算检测传感器信息渐变型故障,组合导航系统的故障诊断结果由并行运算结果共同决定,能够有效降低虚警率,对渐变型故障信息进行准确隔离,有效提高组合导航系统故障诊断结果,提高系统可靠性。从作者的仿真结果能够看出,容错处理时的组合导航系统在卫星导航信息仿真出现故障100~110s之后,由于故障信息的引入,虽然能够有效检测出卫星导航信息渐变型故障,但在检测出该故障后,没有对之前融合的历史渐变型故障信息做进一步容错处理,系统在一定时间段内仍然受故障信息的污染,无法剔除历史渐变型故障对之后系统的稳态影响。Also Zhang Huaqiang, Li Dongxing and Zhang Guoqiang put forward a hybrid χ 2 detection method in the article "Application of Hybrid χ 2 Detection Method in Integrated Navigation System Fault Detection" published in "Chinese Journal of Inertial Technology". The χ 2 detection method uses parallel operation to detect gradual faults of sensor information, and the fault diagnosis result of the integrated navigation system is jointly determined by the results of the parallel operation, which can effectively reduce the false alarm rate, accurately isolate the gradual fault information, and effectively improve the fault diagnosis of the integrated navigation system. As a result, system reliability is improved. From the author's simulation results, it can be seen that the integrated navigation system in fault-tolerant processing can effectively detect the gradual failure of satellite navigation information due to the introduction of fault information after 100-110 s after the failure of satellite navigation information simulation. After the fault, no further fault-tolerant processing is performed on the previously fused historical gradual fault information, and the system is still polluted by the fault information within a certain period of time, and the steady-state impact of the historical gradual fault on the subsequent system cannot be eliminated.
以上已发表的文章都对组合导航系统的渐变型故障容错进行了叙述和探究,但是没有同时达到在检测出渐变型故障后,对历史故障信息进行进一步容错处理,因此研究一种可靠而又快速的剔除历史故障重新计算故障时段内导航信息的方法具有创新性和实际工程价值。The above published articles have all described and explored the gradual fault tolerance of the integrated navigation system, but they have not achieved the further fault tolerance processing of the historical fault information after the gradual fault is detected. The method of eliminating historical faults and recalculating the navigation information in the fault period has innovative and practical engineering value.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种能够有效判断卫星导航渐变型故障,对故障进行容错处理,避免历史故障信息污染系统的惯性与卫星组合导航系统渐变型故障回溯容错方法。The purpose of the present invention is to provide an inertial and satellite integrated navigation system gradual fault retrospective fault tolerance method that can effectively judge satellite navigation gradual faults, perform fault-tolerant processing on the faults, and avoid historical fault information contaminating the system.
本发明的目的是这样实现的:The object of the present invention is achieved in this way:
步骤1,惯性组合导航系统,装订初始导航参数,进行惯导系统初始对准;Step 1, the inertial integrated navigation system, binding the initial navigation parameters, and performing the initial alignment of the inertial navigation system;
步骤2,采集传感器数据,并滑动存储[tk-M,tk],M=h/T时间段内的传感器数据,主要有陀螺仪信息ωb、加速度计信息fb和卫星导航纬度、经度、高度信息其中,tk为第k采样时刻,M为回溯个数,h为回溯时间,Ts为采样周期,b代表载体坐标系;Step 2, collect sensor data, and slide and store the sensor data in the [t kM ,t k ], M=h/T time period, mainly including gyroscope information ω b , accelerometer information f b and satellite navigation latitude, longitude, altitude information Among them, t k is the kth sampling time, M is the number of backtracking, h is the backtracking time, T s is the sampling period, and b represents the carrier coordinate system;
步骤3,根据卫星导航位置信息,利用状态卡方和残差卡方混合检测方法进行数据分析处理,对渐变型故障进行检测和辨识,当卫星导航无渐变型故障时,进行步骤4;当卫星导航处于渐变型故障时,进行步骤5;Step 3, according to the satellite navigation position information, use the state chi-square and residual chi-square mixed detection method to perform data analysis and processing, to detect and identify the gradual fault, when the satellite navigation has no gradual fault, go to step 4; When the navigation is in a gradual failure, go to step 5;
步骤4,系统切入惯性/卫星组合导航模式,利用卡尔曼滤波算法进行时间更新和量测更新,对第k采样时刻的卫星导航信息进行融合,输出校正后的机体位置、速度和姿态信息;Step 4, the system switches into the inertial/satellite integrated navigation mode, uses the Kalman filter algorithm to update the time and measurement, and updates the satellite navigation information at the kth sampling time. Fusion is performed to output the corrected body position, velocity and attitude information;
步骤5,由惯导系统第k采样时刻载体坐标系b到导航坐标系n的姿态矩阵速度信息和位置信息利用滑动存储的第k采样时刻陀螺仪信息和加速度计信息进行惯导回溯算法,得第k-1采样时刻的机体姿态矩阵速度和位置 Step 5, the attitude matrix from the carrier coordinate system b to the navigation coordinate system n at the kth sampling time of the inertial navigation system speed information and location information Use the gyroscope information stored at the k-th sampling time in sliding and accelerometer information Carry out the inertial navigation backtracking algorithm to obtain the body attitude matrix at the k-1 sampling time speed and location
步骤6,进行卡尔曼滤波器回溯算法,由第k-1采样时刻惯导解算的位置信息利用滑动存储的第k-1采样时刻的卫星导航的位置信息得第k-1采样时刻的卡尔曼回溯量测信息:Step 6, perform the Kalman filter backtracking algorithm, and use the position information calculated by the inertial navigation at the k-1 sampling time Utilize the position information of the satellite navigation stored at the k-1th sampling time by sliding Obtain the Kalman backtracking measurement information at the k-1 sampling time:
步骤7,由第k采样时刻卡尔曼滤波器的状态估计和状态估计均方误差Pk,进行时间回溯更新,递推第k-1采样时刻的状态一步预测和状态一步预测均方误差Pk-1/k:Step 7, estimate the state of the Kalman filter at the kth sampling time and the mean square error of the state estimate P k , perform time retrospective update, and recursively predict the state at the k-1th sampling time by one step and state one-step prediction mean square error P k-1/k :
其中,Φk/k-1为第k-1采样时刻到第k采样时刻的卡尔曼滤波器的状态一步转移矩阵;Γk-1为第k-1采样时刻系统噪声驱动矩阵;Qk-1为第k-1采样时刻系统噪声矩阵;in, Φ k/k-1 is the state one-step transition matrix of the Kalman filter from the k-1th sampling time to the kth sampling time; Γ k-1 is the system noise driving matrix at the k-1 sampling time; Q k-1 is the system noise matrix at the k-1 sampling time;
步骤8,由回溯量测信息和时间回溯更新,进行卡尔曼量测回溯更新:Step 8: Backward updating of the Kalman measurement is performed based on the retrospective measurement information and time retrospective update:
Pk-1=(I-Kk-1Hk-1)Pk-1/k P k-1 =(IK k-1 H k-1 )P k-1/k
其中,Kk-1为第k-1采样时刻滤波增益矩阵;Hk-1为第k-1采样时刻量测矩阵;Rk-1为第k-1采样时刻量测噪声矩阵;I为单位矩阵;Among them, K k-1 is the filter gain matrix at the k-1 sampling time; H k-1 is the measurement matrix at the k-1 sampling time; R k-1 is the measurement noise matrix at the k-1 sampling time; I is the identity matrix;
步骤9,根据卡尔曼回溯算法得到的误差估计量对惯导回溯解算的第k-1采样时刻对应位置信息进行反馈,得到未融合第k-1采样时刻卫星渐变型故障信息的姿态矩阵速度和位置 Step 9, according to the error estimator obtained by the Kalman backtracking algorithm Feedback the position information corresponding to the k-1 sampling time of the inertial navigation backtracking solution, and obtain the attitude matrix without fusion of the satellite gradual fault information at the k-1 sampling time. speed and location
步骤10,回溯到卫星导航故障点,利用存储在[tk-M,tk]时间段内故障点到第k采样时刻的陀螺仪和加速度计信息,进行纯惯导正向追溯解算,递推到第k采样时刻,输出隔离卫星历史故障信息后的机体姿态、速度和位置信息。Step 10: Go back to the satellite navigation fault point, use the gyroscope and accelerometer information stored from the fault point to the kth sampling time in the [t kM ,t k ] time period to perform pure inertial navigation forward retrospective calculation, recursive At the kth sampling time, the body attitude, speed and position information after isolating the historical fault information of the satellite are output.
本发明提供了一种适用于惯性组合导航系统,能够有效判断卫星导航渐变型故障,并进行惯导和卡尔曼回溯算法,对故障进行容错处理,避免历史故障信息污染系统的新方法。The present invention provides a new method suitable for inertial integrated navigation system, capable of effectively judging satellite navigation gradual faults, and performing inertial navigation and Kalman backtracking algorithms to perform fault-tolerant processing on faults and avoid historical fault information contaminating the system.
本发明的优点主要体现在:The advantages of the present invention are mainly reflected in:
针对惯性/卫星组合导航系统渐变型故障的问题,本发明提供了一种适用于渐变型故障容错处理的惯导和卡尔曼回溯算法,能够有效剔除历史故障信息,有效提高组合导航系统的精度和可靠性。Aiming at the problem of gradual faults in the inertial/satellite integrated navigation system, the present invention provides an inertial navigation and Kalman backtracking algorithm suitable for fault-tolerant processing of gradual faults, which can effectively eliminate historical fault information and effectively improve the precision and accuracy of the integrated navigation system. reliability.
附图说明Description of drawings
图1为本发明的适用于惯性/卫星组合导航系统渐变型故障回溯容错方法流程图。FIG. 1 is a flow chart of a fault-tolerance method for gradual fault backtracking applicable to an inertial/satellite integrated navigation system according to the present invention.
具体实施方式Detailed ways
下面举例对本发明做更详细的描述。The present invention will be described in more detail with examples below.
步骤1,启动惯性组合导航系统,装订初始导航参数:惯性测量器件陀螺仪的常值偏移εx,εy,εz和加速度计的常值偏移▽x,▽y,▽z,卫星导航位置量测误差初始纬度初始经度λ0,初始高度h0;进行惯导系统初始对准;Step 1, start the inertial integrated navigation system, and bind the initial navigation parameters: the constant offset ε x ,ε y ,ε z of the inertial measurement device gyroscope and the constant offset ▽ x ,▽ y ,▽ z of the accelerometer, satellite Navigation position measurement error initial latitude Initial longitude λ 0 , initial height h 0 ; perform the initial alignment of the inertial navigation system;
步骤2,采集传感器数据,并滑动存储[tk-M,tk],(M=h/Ts)时间段内的传感器数据,主要有陀螺仪信息ωb、加速度计信息fb和卫星导航纬度、经度、高度信息其中,tk为第k采样时刻,M为回溯个数,h为回溯时间,Ts为采样周期,b代表载体坐标系;Step 2: Collect sensor data, and store the sensor data in the time period of [t kM ,t k ], (M=h/T s ), mainly including gyroscope information ω b , accelerometer information f b and satellite navigation latitude , longitude, altitude information Among them, t k is the kth sampling time, M is the number of backtracking, h is the backtracking time, T s is the sampling period, and b represents the carrier coordinate system;
步骤3,根据卫星导航位置信息,利用状态卡方和残差卡方混合检测方法进行数据分析处理,对渐变型故障进行检测和辨识,当卫星导航无故障时,进行步骤4;当卫星导航处于渐变型故障时,进行步骤5;Step 3, according to the satellite navigation position information, use the state chi-square and residual chi-square mixed detection method to perform data analysis and processing, to detect and identify the gradual fault, when the satellite navigation has no fault, go to step 4; when the satellite navigation is in In case of gradual failure, go to step 5;
步骤4,系统切入惯性/卫星组合导航模式,利用卡尔曼滤波算法进行时间更新和量测更新,对第k采样时刻的卫星导航输出信息进行融合,输出校正后的机体位置、速度和姿态信息;Step 4, the system switches into the inertial/satellite integrated navigation mode, uses the Kalman filter algorithm to update the time and measurement, and outputs information for the satellite navigation at the kth sampling time. Fusion is performed to output the corrected body position, velocity and attitude information;
步骤5,由惯导系统第k采样时刻载体坐标系b到导航坐标系n的姿态矩阵速度信息和位置信息利用滑动存储的第k采样时刻的陀螺仪信息加速度计信息对惯导姿态进行回溯,得第k-1采样时刻的姿态矩阵:Step 5, the attitude matrix from the carrier coordinate system b to the navigation coordinate system n at the kth sampling time of the inertial navigation system speed information and location information Use the gyroscope information at the k-th sampling moment stored by sliding Accelerometer information Backtracking the inertial navigation attitude, get the attitude matrix at the k-1 sampling time:
其中,×代表的是的反对称矩阵,为第k采样时刻载体坐标系b相对于导航坐标系n的转动角速率在载体坐标系b下的投影;为第k采样时刻地球自转角速率在导航坐标系n下的投影;为第k采样时刻导航坐标系n相对于地球坐标系e的转动角速度在导航坐标系n下的投影;RM为当地地球子午圈主曲率半径;RN为当地地球卯酉圈主曲率半径;为第k采样时刻机体速度在导航坐标系n下东向、北向和天向的投影;in, × stands for The antisymmetric matrix of , is the projection of the rotational angular rate of the carrier coordinate system b relative to the navigation coordinate system n under the carrier coordinate system b at the kth sampling time; is the projection of the earth's rotation angular rate at the kth sampling time under the navigation coordinate system n; is the projection of the rotational angular velocity of the navigation coordinate system n relative to the earth coordinate system e at the k-th sampling time under the navigation coordinate system n; R M is the main radius of curvature of the local earth meridian; R N is the main radius of curvature of the local earth's meridian circle; is the projection of the airframe velocity in the navigation coordinate system n in the east, north and sky directions at the kth sampling time;
步骤6,由得到的第k-1采样时刻的姿态矩阵回溯计算第k-1采样时刻的机体速度:Step 6, get the attitude matrix at the k-1 sampling time Backtrack to calculate the body speed at the k-1 sampling time:
其中,为第k采样时刻当地重力加速度在导航坐标系n下的投影;in, is the projection of the local gravitational acceleration under the navigation coordinate system n at the kth sampling time;
步骤7,由第k-1采样时刻的速度信息回溯计算第k-1采样时刻的机体位置:Step 7, from the speed information of the k-1 sampling time Backtrack to calculate the position of the body at the k-1 sampling time:
步骤8,进行卡尔曼滤波回溯算法,由第k-1采样时刻惯导回溯解算的位置信息利用滑动存储的第k-1采样时刻的卫星导航的位置信息得第k-1采样时刻的卡尔曼回溯量测信息:Step 8, carry out the Kalman filter backtracking algorithm, the position information calculated by the inertial navigation backtracking at the k-1th sampling time Utilize the position information of the satellite navigation stored at the k-1th sampling time by sliding Obtain the Kalman backtracking measurement information at the k-1 sampling time:
步骤9,由第k采样时刻卡尔曼滤波器的状态估计和状态估计均方误差Pk,进行时间回溯更新,递推第k-1采样时刻的状态一步预测和状态一步预测均方误差Pk-1/k:Step 9, estimate the state of the Kalman filter at the kth sampling time and the mean square error of the state estimate P k , perform time retrospective update, and recursively predict the state at the k-1th sampling time by one step and state one-step prediction mean square error P k-1/k :
其中,Φk/k-1为第k-1采样时刻到第k采样时刻的卡尔曼滤波器的状态一步转移矩阵;Γk-1为第k-1采样时刻系统噪声驱动矩阵;Qk-1为第k-1采样时刻系统噪声矩阵,Qk-1=Qk=…=Q0为常值矩阵;in, Φ k/k-1 is the state one-step transition matrix of the Kalman filter from the k-1th sampling time to the kth sampling time; Γ k-1 is the system noise driving matrix at the k-1 sampling time; Q k-1 is the system noise matrix at the k-1 sampling time, and Q k-1 =Q k =...=Q 0 is a constant value matrix;
步骤10,由回溯量测信息和时间回溯更新,进行卡尔曼量测回溯更新:Step 10, perform the Kalman measurement retrospective update based on the retrospective measurement information and time retrospective update:
Pk-1=(I-Kk-1Hk-1)Pk-1/k (13)P k-1 = (IK k-1 H k-1 )P k-1/k (13)
其中,Kk-1为第k-1采样时刻滤波增益矩阵;Hk-1为第k-1采样时刻量测矩阵;Rk-1为第k-1采样时刻量测噪声矩阵,Rk-1=Rk=…=R0为常值矩阵;I为单位矩阵;Among them, K k-1 is the filter gain matrix at the k-1 sampling time; H k-1 is the measurement matrix at the k-1 sampling time; R k-1 is the measurement noise matrix at the k-1 sampling time, and R k -1 =R k =...=R 0 is a constant value matrix; I is a unit matrix;
步骤11,根据卡尔曼回溯算法得到的误差估计量对惯导回溯解算的第k-1采样时刻对应位置信息进行反馈,得到未融合第k-1采样时刻卫星渐变型故障信息的姿态矩阵速度和位置 Step 11, according to the error estimator obtained by the Kalman backtracking algorithm Feedback the position information corresponding to the k-1 sampling time of the inertial navigation backtracking solution, and obtain the attitude matrix without fusion of the satellite gradual fault information at the k-1 sampling time. speed and location
步骤12,交替进行惯导和卡尔曼回溯算法,回溯到卫星导航故障点;利用存储在[tk-M,tk]时间段内故障点到第k采样时刻的陀螺仪和加速度计信息,进行纯惯导正向追溯解算,递推到第k采样时刻,输出隔离卫星历史故障信息后的机体姿态、速度和位置信息,完成了对卫星导航渐变型历史故障的容错处理。Step 12: Alternately perform inertial navigation and Kalman backtracking algorithms to backtrack to the satellite navigation fault point; use the gyroscope and accelerometer information stored from the fault point to the kth sampling time in the [t kM ,t k ] time period to perform pure The inertial navigation forward retrospective solution, recursively to the kth sampling time, outputs the body attitude, speed and position information after isolating the historical fault information of the satellite, and completes the fault-tolerant processing of the gradual historical fault of the satellite navigation.
所述的适用于惯性/卫星组合导航系统渐变型故障回溯容错方法,采用混合卡方检测方法,能够快速有效的检测出卫星导航的渐变型故障信息,采用惯导回溯和卡尔曼回溯算法,剔除系统中的历史故障信息,进一步提高系统的可靠性。The described fault-tolerance method for gradual fault backtracking suitable for inertial/satellite integrated navigation systems adopts the hybrid chi-square detection method, which can quickly and effectively detect the gradual fault information of satellite navigation. The inertial navigation backtracking and Kalman backtracking algorithms are used to eliminate the The historical fault information in the system further improves the reliability of the system.
本方法利用滑动存储方式对惯导的关键数据进行存储,有效的节约了存储空间,并利用纯惯导追溯方法,在避免卫星历史故障信息的污染的同时,能够快速输出机体导航信息,提高了工程的实用性。The method uses the sliding storage method to store the key data of the inertial navigation, which effectively saves the storage space, and uses the pure inertial navigation retrospective method, which can quickly output the navigation information of the airframe while avoiding the pollution of the historical fault information of the satellite. practicality of the project.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910612635.XA CN110296701B (en) | 2019-07-09 | 2019-07-09 | Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910612635.XA CN110296701B (en) | 2019-07-09 | 2019-07-09 | Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110296701A true CN110296701A (en) | 2019-10-01 |
CN110296701B CN110296701B (en) | 2022-12-13 |
Family
ID=68030571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910612635.XA Active CN110296701B (en) | 2019-07-09 | 2019-07-09 | Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110296701B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111337025A (en) * | 2020-04-28 | 2020-06-26 | 中国人民解放军国防科技大学 | Positioning and orientating instrument hole positioning method suitable for long-distance horizontal core drilling machine |
CN111999747A (en) * | 2020-08-28 | 2020-11-27 | 大连海事大学 | Robust fault detection method for inertial navigation-satellite combined navigation system |
CN112179347A (en) * | 2020-09-18 | 2021-01-05 | 西北工业大学 | An Integrated Navigation Method Based on Spectral Redshift Error Observation Equation |
CN113432604A (en) * | 2021-06-29 | 2021-09-24 | 广东工业大学 | IMU/GPS combined navigation method capable of sensitively detecting fault |
CN113514064A (en) * | 2021-04-23 | 2021-10-19 | 南京航空航天大学 | Robust factor graph multi-source fault-tolerant navigation method |
CN115727846A (en) * | 2023-01-09 | 2023-03-03 | 中国人民解放军国防科技大学 | A multi-thread backtracking combined navigation method for strapdown inertial navigation and satellite navigation |
CN116736358A (en) * | 2023-08-09 | 2023-09-12 | 北京理工大学 | A long-baseline carrier phase differential positioning method suitable for satellite navigation |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101464152A (en) * | 2009-01-09 | 2009-06-24 | 哈尔滨工程大学 | Adaptive filtering method for SINS/GPS combined navigation system |
CN101464935A (en) * | 2009-01-09 | 2009-06-24 | 哈尔滨工程大学 | AUV intelligent fault-tolerance combined navigation simulation system based on network |
CN101477488A (en) * | 2009-01-16 | 2009-07-08 | 哈尔滨工程大学 | Key service system oriented system repentance recovery method and system |
CN101865693A (en) * | 2010-06-03 | 2010-10-20 | 天津职业技术师范大学 | Aviation multi-sensor integrated navigation system |
CN102176031A (en) * | 2011-01-06 | 2011-09-07 | 中国科学院国家授时中心 | System time difference based receiver completeness failure detection method in dual-mode navigation system |
RU2012104402A (en) * | 2009-07-10 | 2013-08-20 | Сагем Дефенс Секьюрите | METHOD FOR DETERMINING CARRIER NAVIGATION PARAMETERS AND HYBRIDIZATION DEVICE RELATED TO THE PANK OF CALMAN FILTERS |
CN103434610A (en) * | 2013-09-03 | 2013-12-11 | 哈尔滨工程大学 | Docking positioning guiding method for offshore oil drilling platform |
CN104181574A (en) * | 2013-05-25 | 2014-12-03 | 成都国星通信有限公司 | Strapdown inertial navigation system/global navigation satellite system combined based navigation filter system and method |
CN104422948A (en) * | 2013-09-11 | 2015-03-18 | 南京理工大学 | Embedded type combined navigation system and method thereof |
CN105637437A (en) * | 2013-10-11 | 2016-06-01 | 斯奈克玛 | Monitoring of an aircraft engine to anticipate maintenance operations |
CN106289249A (en) * | 2015-05-22 | 2017-01-04 | 应美盛股份有限公司 | For synthesizing the system and method that sensor signal generates |
CN106595652A (en) * | 2016-11-30 | 2017-04-26 | 西北工业大学 | Vehicle MCA (motion constraints aided) backtracking type aligning-on-the-move method |
CN107894232A (en) * | 2017-09-29 | 2018-04-10 | 湖南航天机电设备与特种材料研究所 | A kind of accurate method for locating speed measurement of GNSS/SINS integrated navigations and system |
CN108106635A (en) * | 2017-12-15 | 2018-06-01 | 中国船舶重工集团公司第七0七研究所 | Inertia defends the anti-interference posture course calibration method of long endurance for leading integrated navigation system |
CN108291813A (en) * | 2015-10-09 | 2018-07-17 | 大众汽车有限公司 | It is merged by the position data of posture figure |
CN108802780A (en) * | 2018-03-09 | 2018-11-13 | 东南大学 | Bias property analysis method between a kind of GPS/BDS differential systems |
US20180375939A1 (en) * | 2017-06-26 | 2018-12-27 | Veniam, Inc. | Systems and methods for self-organized fleets of autonomous vehicles for optimal and adaptive transport and offload of massive amounts of data |
CN109163735A (en) * | 2018-09-29 | 2019-01-08 | 苏州大学 | A kind of positive-positive backtracking Initial Alignment Method of swaying base |
CN109373999A (en) * | 2018-10-23 | 2019-02-22 | 哈尔滨工程大学 | Integrated Navigation Method Based on Fault Tolerant Kalman Filter |
CN109471146A (en) * | 2018-12-04 | 2019-03-15 | 北京壹氢科技有限公司 | A kind of self-adapted tolerance GPS/INS Combinated navigation method based on LS-SVM |
US20190094288A1 (en) * | 2017-09-22 | 2019-03-28 | Schweitzer Engineering Laboratories, Inc. | Accuracy of event locating on powerlines based on field data |
CN109737959A (en) * | 2019-03-20 | 2019-05-10 | 哈尔滨工程大学 | A multi-source information fusion navigation method in polar region based on federated filtering |
CN109813342A (en) * | 2019-02-28 | 2019-05-28 | 北京讯腾智慧科技股份有限公司 | A kind of fault detection method and system of inertial navigation-satellite combined guidance system |
CN109974697A (en) * | 2019-03-21 | 2019-07-05 | 中国船舶重工集团公司第七0七研究所 | A kind of high-precision mapping method based on inertia system |
CN109975851A (en) * | 2019-04-04 | 2019-07-05 | 河南思维轨道交通技术研究院有限公司 | A kind of train line fault point accurate positioning method and system |
-
2019
- 2019-07-09 CN CN201910612635.XA patent/CN110296701B/en active Active
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101464935A (en) * | 2009-01-09 | 2009-06-24 | 哈尔滨工程大学 | AUV intelligent fault-tolerance combined navigation simulation system based on network |
CN101464152A (en) * | 2009-01-09 | 2009-06-24 | 哈尔滨工程大学 | Adaptive filtering method for SINS/GPS combined navigation system |
CN101477488A (en) * | 2009-01-16 | 2009-07-08 | 哈尔滨工程大学 | Key service system oriented system repentance recovery method and system |
RU2012104402A (en) * | 2009-07-10 | 2013-08-20 | Сагем Дефенс Секьюрите | METHOD FOR DETERMINING CARRIER NAVIGATION PARAMETERS AND HYBRIDIZATION DEVICE RELATED TO THE PANK OF CALMAN FILTERS |
CN101865693A (en) * | 2010-06-03 | 2010-10-20 | 天津职业技术师范大学 | Aviation multi-sensor integrated navigation system |
CN102176031A (en) * | 2011-01-06 | 2011-09-07 | 中国科学院国家授时中心 | System time difference based receiver completeness failure detection method in dual-mode navigation system |
CN104181574A (en) * | 2013-05-25 | 2014-12-03 | 成都国星通信有限公司 | Strapdown inertial navigation system/global navigation satellite system combined based navigation filter system and method |
CN103434610A (en) * | 2013-09-03 | 2013-12-11 | 哈尔滨工程大学 | Docking positioning guiding method for offshore oil drilling platform |
CN104422948A (en) * | 2013-09-11 | 2015-03-18 | 南京理工大学 | Embedded type combined navigation system and method thereof |
CN105637437A (en) * | 2013-10-11 | 2016-06-01 | 斯奈克玛 | Monitoring of an aircraft engine to anticipate maintenance operations |
CN106289249A (en) * | 2015-05-22 | 2017-01-04 | 应美盛股份有限公司 | For synthesizing the system and method that sensor signal generates |
CN108291813A (en) * | 2015-10-09 | 2018-07-17 | 大众汽车有限公司 | It is merged by the position data of posture figure |
CN106595652A (en) * | 2016-11-30 | 2017-04-26 | 西北工业大学 | Vehicle MCA (motion constraints aided) backtracking type aligning-on-the-move method |
US20180375939A1 (en) * | 2017-06-26 | 2018-12-27 | Veniam, Inc. | Systems and methods for self-organized fleets of autonomous vehicles for optimal and adaptive transport and offload of massive amounts of data |
US20190094288A1 (en) * | 2017-09-22 | 2019-03-28 | Schweitzer Engineering Laboratories, Inc. | Accuracy of event locating on powerlines based on field data |
CN107894232A (en) * | 2017-09-29 | 2018-04-10 | 湖南航天机电设备与特种材料研究所 | A kind of accurate method for locating speed measurement of GNSS/SINS integrated navigations and system |
CN108106635A (en) * | 2017-12-15 | 2018-06-01 | 中国船舶重工集团公司第七0七研究所 | Inertia defends the anti-interference posture course calibration method of long endurance for leading integrated navigation system |
CN108802780A (en) * | 2018-03-09 | 2018-11-13 | 东南大学 | Bias property analysis method between a kind of GPS/BDS differential systems |
CN109163735A (en) * | 2018-09-29 | 2019-01-08 | 苏州大学 | A kind of positive-positive backtracking Initial Alignment Method of swaying base |
CN109373999A (en) * | 2018-10-23 | 2019-02-22 | 哈尔滨工程大学 | Integrated Navigation Method Based on Fault Tolerant Kalman Filter |
CN109471146A (en) * | 2018-12-04 | 2019-03-15 | 北京壹氢科技有限公司 | A kind of self-adapted tolerance GPS/INS Combinated navigation method based on LS-SVM |
CN109813342A (en) * | 2019-02-28 | 2019-05-28 | 北京讯腾智慧科技股份有限公司 | A kind of fault detection method and system of inertial navigation-satellite combined guidance system |
CN109737959A (en) * | 2019-03-20 | 2019-05-10 | 哈尔滨工程大学 | A multi-source information fusion navigation method in polar region based on federated filtering |
CN109974697A (en) * | 2019-03-21 | 2019-07-05 | 中国船舶重工集团公司第七0七研究所 | A kind of high-precision mapping method based on inertia system |
CN109975851A (en) * | 2019-04-04 | 2019-07-05 | 河南思维轨道交通技术研究院有限公司 | A kind of train line fault point accurate positioning method and system |
Non-Patent Citations (8)
Title |
---|
SHENG BAO等: "Aerodynamic model/INS/GPS failure-tolerant navigation method for multirotor UAVs based on federated Kalman Filter", 《2017 CHINESE AUTOMATION CONGRESS (CAC)》, 1 January 2018 (2018-01-01), pages 1121 - 1125 * |
YIDING SUN等: "In-Motion Attitude and Position Alignment for Odometer-Aided SINS Based on Backtracking Scheme", 《IEEE ACCESS》, 1 January 2019 (2019-01-01), pages 20211 - 20224 * |
ZHAO LONG: "Study on fault-tolerant SINS/GPS integrated navigation system", 《IEEE INTERNATIONAL CONFERENCE MECHATRONICS AND AUTOMATION, 2005》, 8 May 2006 (2006-05-08), pages 1 - 4 * |
丁宏升: "一种组合导航系统的故障检测方法仿真研究", 《航空计算技术》 * |
丁宏升: "一种组合导航系统的故障检测方法仿真研究", 《航空计算技术》, vol. 48, no. 1, 25 January 2018 (2018-01-25), pages 79 - 81 * |
宋丽杰: "GPS/INS紧组合导航系统的故障诊断方法研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》, 15 March 2018 (2018-03-15), pages 136 - 1554 * |
成研等: "单轴旋转捷联惯导系统回溯式对准方法", 《航空精密制造技术》, vol. 54, no. 1, 15 February 2018 (2018-02-15), pages 16 - 20 * |
车宁宇: "联邦滤波算法在INS/GPS/CNS组合导航系统中应用的研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》, 15 June 2018 (2018-06-15), pages 136 - 965 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111337025A (en) * | 2020-04-28 | 2020-06-26 | 中国人民解放军国防科技大学 | Positioning and orientating instrument hole positioning method suitable for long-distance horizontal core drilling machine |
CN111999747A (en) * | 2020-08-28 | 2020-11-27 | 大连海事大学 | Robust fault detection method for inertial navigation-satellite combined navigation system |
CN111999747B (en) * | 2020-08-28 | 2023-06-20 | 大连海事大学 | Robust fault detection method for inertial navigation-satellite integrated navigation system |
CN112179347A (en) * | 2020-09-18 | 2021-01-05 | 西北工业大学 | An Integrated Navigation Method Based on Spectral Redshift Error Observation Equation |
CN113514064A (en) * | 2021-04-23 | 2021-10-19 | 南京航空航天大学 | Robust factor graph multi-source fault-tolerant navigation method |
CN113514064B (en) * | 2021-04-23 | 2024-01-30 | 南京航空航天大学 | Multi-source fault-tolerant navigation method for robust factor graph |
CN113432604A (en) * | 2021-06-29 | 2021-09-24 | 广东工业大学 | IMU/GPS combined navigation method capable of sensitively detecting fault |
CN113432604B (en) * | 2021-06-29 | 2023-05-19 | 广东工业大学 | An IMU/GPS integrated navigation method capable of sensitive fault detection |
CN115727846A (en) * | 2023-01-09 | 2023-03-03 | 中国人民解放军国防科技大学 | A multi-thread backtracking combined navigation method for strapdown inertial navigation and satellite navigation |
CN116736358A (en) * | 2023-08-09 | 2023-09-12 | 北京理工大学 | A long-baseline carrier phase differential positioning method suitable for satellite navigation |
CN116736358B (en) * | 2023-08-09 | 2023-11-03 | 北京理工大学 | A long-baseline carrier phase differential positioning method suitable for satellite navigation |
Also Published As
Publication number | Publication date |
---|---|
CN110296701B (en) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110296701B (en) | Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System | |
CN109373999B (en) | Integrated navigation method based on fault-tolerant Kalman filtering | |
CN108106635A (en) | Inertia defends the anti-interference posture course calibration method of long endurance for leading integrated navigation system | |
CN106814753B (en) | Target position correction method, device and system | |
US7860651B2 (en) | Enhanced inertial system performance | |
CN110426032B (en) | An Analytical Redundant Fault-tolerant Navigation Estimation Method for Aircraft | |
CN110196049A (en) | The detection of four gyro redundance type Strapdown Inertial Navigation System hard faults and partition method under a kind of dynamic environment | |
CN108168509B (en) | An error-tolerant estimation method for quadrotor aircraft height assisted by lift model | |
CN108981708B (en) | Four-rotor torque model/heading gyro/magnetic sensor fault-tolerant integrated navigation method | |
CN110763253A (en) | A Fault Diagnosis Method of Integrated Navigation System Based on SVR | |
CN108981709B (en) | Four-rotor-wing roll angle and pitch angle fault-tolerant estimation method based on moment model assistance | |
CN110567457B (en) | Inertial navigation self-detection system based on redundancy | |
CN107990901B (en) | User direction positioning method based on sensor | |
CN109677508B (en) | Vehicle motion data acquisition method, device, equipment and storage medium | |
JP6841857B2 (en) | Magnetic inertia global positioning system | |
Chang-Siu et al. | Time-varying complementary filtering for attitude estimation | |
CN113008229B (en) | Distributed autonomous integrated navigation method based on low-cost vehicle-mounted sensor | |
Kanhere et al. | Integrity for GPS/LiDAR fusion utilizing a RAIM framework | |
Kumar et al. | Estimation of attitudes from a low-cost miniaturized inertial platform using Kalman Filter-based sensor fusion algorithm | |
CN114147717B (en) | Robot motion track estimation method, device, controller and storage medium | |
Hao et al. | Rapid transfer alignment based on unscented Kalman filter | |
Xiao et al. | Asymmetric Dual Redundant Inertial Sensors: A Method for F ault Detection and Diagnosis | |
CN116046020A (en) | Zero offset value determining method and device | |
Setlak et al. | MEMS electromechanical microsystem as a support system for the position determining process with the use of the inertial navigation system INS and kalman filter | |
CN106199660B (en) | The modification method and device of location data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |