CN110285805A - An Adaptive Interpolation/Segmentation Processing Method for Data Holes - Google Patents
An Adaptive Interpolation/Segmentation Processing Method for Data Holes Download PDFInfo
- Publication number
- CN110285805A CN110285805A CN201910573267.2A CN201910573267A CN110285805A CN 110285805 A CN110285805 A CN 110285805A CN 201910573267 A CN201910573267 A CN 201910573267A CN 110285805 A CN110285805 A CN 110285805A
- Authority
- CN
- China
- Prior art keywords
- rem
- data
- interpolation
- error rate
- roi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title claims description 12
- 230000011218 segmentation Effects 0.000 title abstract description 14
- 230000003044 adaptive effect Effects 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000005259 measurement Methods 0.000 claims description 16
- 239000011800 void material Substances 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 13
- 238000004422 calculation algorithm Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 238000012217 deletion Methods 0.000 claims 1
- 230000037430 deletion Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011439 discrete element method Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C5/00—Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
- G01C5/005—Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels altimeters for aircraft
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Automation & Control Theory (AREA)
- Computer Graphics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Instructional Devices (AREA)
Abstract
本发明提供了一种数据空洞自适应插值/分割方案,该方法可用于含有数据空洞的REM的三维高程匹配,属于地形辅助导航领域。由于实际匹配中数据空洞是不可避免的,本发明提出了一种有效的解决方案。该发明首先包括利用基准图误差率对DEM进行分类,提取DEM中的ROI;然后利用插值误差率计算REM与ROI之间的插值误差,根据插值误差对数据空洞大小进行分类;最后利用自适应插值/分割策略对REM进行处理,降低实际匹配中数据空洞对三维高程匹配的影响。
The invention provides a data hole self-adaptive interpolation/segmentation scheme, which can be used for three-dimensional elevation matching of REM containing data holes, and belongs to the field of terrain aided navigation. Since data holes are unavoidable in actual matching, the present invention proposes an effective solution. The invention first includes classifying the DEM by using the error rate of the reference map, extracting the ROI in the DEM; then using the interpolation error rate to calculate the interpolation error between the REM and the ROI, and classifying the size of the data hole according to the interpolation error; finally using the self-adaptive interpolation The /segmentation strategy processes the REM to reduce the impact of data holes in the actual matching on the 3D elevation matching.
Description
技术领域technical field
本发明提供了一种数据空洞自适应插值/分割处理方法,该方法可用于含有数据空洞的实时高程图(Real-time Elevation Map,REM)的三维高程匹配,属于地形辅助导航领域。The invention provides a data hole adaptive interpolation/segmentation processing method, which can be used for three-dimensional elevation matching of a real-time elevation map (Real-time Elevation Map, REM) containing data holes, and belongs to the field of terrain-assisted navigation.
背景技术Background technique
完全自主的地形辅助导航系统可广泛应用于复杂电磁环境、深空探测和水下等领域,在国民经济和国防建设中起着卫星导航或其它导航无法替代的独特作用。与传统的单点和一维序列匹配相比,基于三维高程采样的三维地形匹配中由于采样点大幅度增加,大大降低了地形相似性所导致的误匹配概率;与二维景象匹配中基准图和采样的实时图的像素值均为灰度值不同,三维地形匹配中的均为地形高程,在地形起伏显著区域匹配性能更好,所以,三维高程匹配在高精度自主导航方面具有独特的优势和广阔的应用前景。The fully autonomous terrain-assisted navigation system can be widely used in complex electromagnetic environments, deep space exploration and underwater fields, and plays a unique role in the national economy and national defense construction that cannot be replaced by satellite navigation or other navigation. Compared with the traditional single-point and one-dimensional sequence matching, in the 3D terrain matching based on 3D elevation sampling, the sampling points are greatly increased, which greatly reduces the probability of false matching caused by terrain similarity; Unlike the sampled real-time map, where the pixel values are all gray values, the 3D terrain matching is all terrain elevation, and the matching performance is better in areas with significant terrain fluctuations. Therefore, 3D elevation matching has unique advantages in high-precision autonomous navigation. and broad application prospects.
三维地形辅助导航的基本工作原理如图1所示,首先将匹配区域的地形数字化,构建基于数字高程模型(Digital Elevation Model,DEM)的基准图数据库,存储在导航计算机中;当载体通过已经数字化的匹配地形区域时,利用三维高程测量传感器测量载体所在位置处的地形REM;然后,如图2所示,以惯性导航系统(Inertial Navigation System,INS)的当前位置(i,j)为中心,根据INS在经度和纬度方向位置误差估计值的较大值σ,按3σ准则,在基准图数据库中确定待匹配区域,待匹配区域总共包含I×J个DEM,中心坐标为(i,j)的DEM 记为DEM(i,j);最后,在待匹配区域内,将REM与待匹配区域所包含的DEM基准图进行匹配计算,得到匹配的位置,并将该匹配位置反馈给INS,修正INS的累积误差。The basic working principle of 3D terrain-assisted navigation is shown in Figure 1. First, the terrain in the matching area is digitized, and a reference map database based on Digital Elevation Model (DEM) is constructed and stored in the navigation computer; When matching the terrain area, use the three-dimensional elevation measurement sensor to measure the terrain REM at the position of the carrier; then, as shown in Figure 2, take the current position (i, j) of the inertial navigation system (Inertial Navigation System, INS) as the center, According to the larger value σ of the estimated position error of the INS in the longitude and latitude directions, according to the 3σ criterion, determine the area to be matched in the reference map database. The area to be matched contains a total of I×J DEMs, and the center coordinates are (i, j) The DEM of DEM is recorded as DEM (i,j) ; finally, in the area to be matched, the REM is matched with the DEM reference map contained in the area to be matched, and the matching position is obtained, and the matching position is fed back to the INS to correct Cumulative error of INS.
常用的三维高程测量传感器包括干涉合成孔径雷达(InterferometricSynthetic Aperture Radar,InSAR)、激光雷达(Light Detection and Ranging,LiDAR)、立体视觉相机、超声波测距仪和红外线测距仪等。但是,这些三维高程测量传感器在实时获取REM时,容易产生数据空洞,严重影响了地形辅助导航系统的匹配性能和可用性。本发明以InSAR为例介绍数据空洞的产生原因。Commonly used 3D elevation measurement sensors include Interferometric Synthetic Aperture Radar (InSAR), LiDAR (Light Detection and Ranging, LiDAR), stereo vision cameras, ultrasonic rangefinders, and infrared rangefinders. However, these three-dimensional elevation measurement sensors are prone to data holes when acquiring REM in real time, which seriously affects the matching performance and usability of terrain-assisted navigation systems. The present invention takes InSAR as an example to introduce the causes of data holes.
InSAR测量是近期发展起来的一项三维地形高程测量技术,是合成孔径雷达技术(Synthetic Aperture Radar,SAR)的应用延伸和扩展。InSAR测量技术利用同一地区的两幅 SAR图像作为基本处理数据,通过干涉和相位解缠等处理,得到三维地形高程图像。InSAR 测量可以全天候、全天时工作,测绘范围大,数据处理效率高。InSAR measurement is a recently developed three-dimensional terrain elevation measurement technology, which is the application extension and expansion of Synthetic Aperture Radar (SAR). InSAR measurement technology uses two SAR images of the same area as the basic processing data, and obtains a three-dimensional terrain elevation image through interference and phase unwrapping. InSAR measurement can work around the clock and all day, with a large surveying range and high data processing efficiency.
然而,如图3所示,在SAR图像中,由于成像和地面场景间的几何关系,叠掩和阴影是较为普遍存在的现象,特别是在山区或城区等地形高程起伏较大的区域。叠掩和阴影区域在相位图上对应着无法解缠的区域,导致REM中出现数据缺失,产生数据空洞,如图4所示,其中REM数据正常点的总数为P,数据空洞的个数为M,第m个数据空洞的数据缺失个数为Nm。However, as shown in Figure 3, in SAR images, due to the geometric relationship between imaging and ground scenes, overlapping and shadowing are common phenomena, especially in areas with large terrain elevation fluctuations such as mountainous areas or urban areas. Overlapping and shadow areas correspond to areas that cannot be unwrapped on the phase map, resulting in data loss in the REM and data holes, as shown in Figure 4, where the total number of normal points in the REM data is P, and the number of data holes is M, the number of missing data for the mth data hole is N m .
在地形测绘中,采用多角度测量,利用多幅图之间的互补性,消除数据空洞的影响。但是,由于应用地形辅助导航的载体只是一次性通过目标区域,无法进行多角度测量,且地形辅助导航在地形高程起伏较大的区域导航性能较好,因此,在基于InSAR测量的地形辅助导航中容易产生数据空洞。在现有的相关研究中,重点关注了三维高程地图的特征提取方法、快速计算算法和匹配算法等问题,对三维高程测量中存在的数据空洞问题尚未研究。因此,研究一种数据空洞自适应插值/分割处理方法,以降低数据空洞对三维高程地形匹配性能的影响,具有重要的应用价值。In topographic mapping, multi-angle measurement is used, and the complementarity between multiple maps is used to eliminate the influence of data holes. However, since the carrier using terrain-assisted navigation only passes through the target area once, multi-angle measurement cannot be performed, and the navigation performance of terrain-assisted navigation is better in areas with large terrain elevation fluctuations. Therefore, in terrain-assisted navigation based on InSAR measurement It is easy to generate data holes. In the existing related research, the focus is on the feature extraction method, fast calculation algorithm and matching algorithm of the 3D elevation map, but the problem of data holes in the 3D elevation measurement has not been studied. Therefore, it is of great application value to study a data hole adaptive interpolation/segmentation processing method to reduce the impact of data holes on the performance of 3D elevation terrain matching.
发明内容Contents of the invention
本发明技术解决问题:采用插值/分割策略,利用基准图误差率以及插值误差率,对数据空洞进行分类,构建数据空洞的自适应插值/分割方法,提高地形辅助导航的性能。The technology of the present invention solves the problem: adopts the interpolation/segmentation strategy, uses the error rate of the reference map and the interpolation error rate to classify data holes, constructs an adaptive interpolation/segmentation method for data holes, and improves the performance of terrain-assisted navigation.
本发明的技术要点:Technical points of the present invention:
REM的精度主要由原始数据的采集误差和高程插值误差所决定,其中,数据采集误差主要包括三维高程测量传感器误差、安装误差和数据处理误差等,高程插值误差是内插点与实际测量高程之间的偏差。本发明采用基准图误差率和插值误差率分别表示这两类误差的大小,为数据空洞的自适应插值/分割方法提供了基础。The accuracy of REM is mainly determined by the acquisition error of the original data and the elevation interpolation error. Among them, the data acquisition error mainly includes the error of the three-dimensional elevation measurement sensor, the installation error and the data processing error, etc. The elevation interpolation error is the difference between the interpolation point and the actual measured elevation. deviation between. The invention adopts the error rate of the reference image and the error rate of the interpolation to represent the sizes of the two types of errors respectively, and provides a basis for the self-adaptive interpolation/segmentation method of the data hole.
1.基准图误差率1. Reference image error rate
基准图误差率定义如下:Baseline error rate It is defined as follows:
其中:表示REM与DEM(i,j)基准图之间的基准图误差率,REM中数据正常的总数为P;fREM(p)为第p个数据正常处的REM高程值;fDEM(p)为与REM对应的第p个数据正常处的DEM高程值。in: Indicates the base map error rate between REM and DEM (i, j) reference map, the total number of normal data in REM is P; f REM (p) is the REM elevation value of the pth data normal place; f DEM (p) is the DEM elevation value at the normal position of the pth data corresponding to the REM.
遍历待匹配区域,遍历方式如图5所示,计算所有区域的基准图误差率,设定阈值K1,当基准图误差率时,判定为感兴趣区域(Region of Interest,ROI);当时,则判定为不感兴趣区域;阈值K1的选取取决于匹配算法需求,常用的阈值有0.4、0.5和0.6 等。Traverse the area to be matched, the traversal method is shown in Figure 5, calculate the error rate of the reference image in all areas, set the threshold K 1 , when the error rate of the reference image When , it is determined as a region of interest (Region of Interest, ROI); when When , it is determined to be an uninteresting region; the selection of the threshold K 1 depends on the requirements of the matching algorithm, and the commonly used thresholds are 0.4, 0.5, and 0.6.
2.插值误差率2. Interpolation error rate
设REM的数据空洞的总数为M,第m个数据空洞的数据缺失个数为Nm;共有Q个区域被判定为ROI,中心坐标为(iq,jq)的ROI记为REM第m个数据空洞与之间的空洞插值误差率定义如下:Suppose the total number of data holes in REM is M, and the number of missing data in the mth data hole is N m ; a total of Q regions are determined as ROIs, and the ROI whose center coordinates are (i q , j q ) is denoted as REM mth data hole with The hole interpolation error rate between It is defined as follows:
其中:为经过插值处理后REM的第m个数据空洞的第n个数据缺失的高程值;为与REM的第m个数据空洞的第n个数据缺失位置相对于的高程值。in: is the missing elevation value of the nth data in the mth data hole of the REM after interpolation processing; for The elevation value relative to the nth data missing location of the mth data hole in the REM.
REM与之间的插值误差率定义如下:REM and The interpolation error rate between It is defined as follows:
其中max表示取最大值。插值误差率ratioROI,定义如下:Where max means to take the maximum value. The interpolation error rate ratio ROI is defined as follows:
其中:表示REM与之间的插值误差率;min表示取最小值。设定阈值K2,当数据空洞区域ratioROI≤K2时,判定为小空洞区域;当数据空洞区域ratioROI>K2时,判定为大空洞区域;阈值K2的选取取决于该地区对数据空洞大小的容忍程度,常用的阈值有0.10、0.15 和0.20等。in: Indicates REM with The interpolation error rate between; min means take the minimum value. Set the threshold K 2 , when the data hole area ratio ROI ≤ K 2 , it is judged as a small hole area; when the data hole area ratio ROI > K 2 , it is judged as a large hole area; the selection of the threshold K 2 depends on the region’s The tolerance of the data hole size, commonly used thresholds are 0.10, 0.15, and 0.20.
3.自适应插值/分割方案3. Adaptive interpolation/segmentation scheme
针对REM中不同大小的数据空洞,利用基准图误差率和插值误差率对数据空洞进行分类,对不同大小的数据空洞,提出相应的处理方法,其中:对于较小的数据空洞,采用插值法对缺失的高程数据进行补齐;对于较大的数据空洞,采取切割处理,切割方法如图6所示,如果切割后的最大图幅REM满足最小模板要求,则继续匹配,否则,放弃匹配,常用的模板值有60×60、80×80、100×100和120×120等。Aiming at different sizes of data holes in REM, the data holes are classified by using the reference map error rate and interpolation error rate, and corresponding processing methods are proposed for data holes of different sizes, among which: for smaller data holes, the interpolation method is used to Fill in the missing elevation data; for larger data holes, adopt cutting processing, the cutting method is shown in Figure 6, if the largest image size REM after cutting meets the minimum template requirements, continue to match, otherwise, give up matching, commonly used The template values are 60×60, 80×80, 100×100, 120×120, etc.
本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:
(1)本发明充分考虑三维地形匹配在实际应用中面临的数据空洞问题,并提出解决方案,提高了地形辅助导航的性能。(1) The present invention fully considers the data void problem faced by three-dimensional terrain matching in practical applications, and proposes a solution to improve the performance of terrain-assisted navigation.
(2)本发明采用基准图误差率和插值误差率的阈值判别方法,计算简便,可靠性高,且易于工程实现。(2) The present invention adopts the threshold discrimination method of the reference image error rate and the interpolation error rate, which is simple to calculate, high in reliability, and easy to realize in engineering.
附图说明Description of drawings
图1为地形辅助导航方法的结构示意图;Fig. 1 is the structural representation of terrain aided navigation method;
图2为实时匹配中待匹配区域获取的示意图;Fig. 2 is a schematic diagram of acquisition of regions to be matched in real-time matching;
图3为数据空洞产生原理的示意图;FIG. 3 is a schematic diagram of the principle of data hole generation;
图4为REM中出现数据空洞的示意图;Figure 4 is a schematic diagram of data holes appearing in the REM;
图5为基准图误差率计算时遍历的示意图;Fig. 5 is a schematic diagram of the traversal during the calculation of the error rate of the reference map;
图6为数据空洞切割的示意图;FIG. 6 is a schematic diagram of data hole cutting;
图7为数据空洞自适应插值/分割方案流程图。Fig. 7 is a flowchart of a data hole adaptive interpolation/segmentation scheme.
具体实施方式Detailed ways
针对三维地形高程匹配中存在的数据空洞问题,本发明提出了一种数据空洞自适应插值/ 分割方法。为使本发明实施目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述:Aiming at the data hole problem existing in the three-dimensional terrain elevation matching, the present invention proposes a data hole self-adaptive interpolation/segmentation method. In order to make the implementation objectives, technical solutions and advantages of the present invention clearer, the technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings:
本发明提出的数据空洞自适应插值/分割方法中,将数据空洞分为小数据空洞与大数据空洞,对小数据空洞采用双线性插值进行缺失数据补齐处理;对大数据空洞进行分割处理,若剩余区域不小于最小模板大小,则继续匹配,否则放弃匹配。具体实施流程如图7所示,可描述如下:In the data hole self-adaptive interpolation/segmentation method proposed by the present invention, data holes are divided into small data holes and large data holes, and bilinear interpolation is used for small data holes to complete missing data processing; large data holes are segmented , if the remaining area is not smaller than the minimum template size, continue to match, otherwise give up the match. The specific implementation process is shown in Figure 7 and can be described as follows:
(A)通过三维高程测量传感器获得REM;(A) Obtaining REM through a three-dimensional elevation measurement sensor;
(B)以当前INS当前位置(i,j)为中心,在基准地形数据库中确定一个窗口,作为待匹配区域;(B) With the current INS current position (i, j) as the center, determine a window in the reference terrain database as the area to be matched;
(C)对REM进行数据空洞检测,若REM含有数据空洞,则转入步骤(D);若REM 无数据空洞,则转入步骤(G);(C) Carry out data hole detection to REM, if REM contains data hole, then go to step (D); If REM has no data hole, then go to step (G);
(D)计算REM与DEM(i,j)间的基准图误差率当时,则判定为ROI;当时,则判定为不感兴趣区域,储存所有ROI位置信息;若存在ROI区域,则转入步骤(E),反之转入步骤(H);(D) Calculate the reference image error rate between REM and DEM (i,j) when , it is judged as ROI; when , it is determined to be an area of no interest, and all ROI position information is stored; if there is an ROI area, then go to step (E), otherwise go to step (H);
(E)利用插值法对REM进行处理,计算REM与ROI间的插值误差率ratioROI,当ratioROI≤K2时,判断为小空洞区域,转入步骤(G);当ratioROI>K2时,判定为大空洞区域,转入步骤(F);(E) Process the REM with the interpolation method, and calculate the interpolation error rate ratio ROI between the REM and the ROI. When the ratio ROI ≤ K 2 , it is judged as a small cavity area, and then go to step (G); when the ratio ROI > K 2 , it is determined to be a large cavity area, and then proceed to step (F);
(F)对REM进行自适应分割处理,若分割处理后的最大图幅REM满足匹配最小模板要求,则转入步骤(D);反之,则转入步骤(H);(F) Carry out adaptive segmentation processing to REM, if the maximum frame REM after the segmentation processing meets the requirement of matching the minimum template, then proceed to step (D); otherwise, proceed to step (H);
(G)利用三维高程匹配算法进行匹配,根据所获匹配位置修正所述惯性导航位置,转入步骤(I);(G) Utilize the three-dimensional elevation matching algorithm to match, correct the inertial navigation position according to the obtained matching position, and turn to step (1);
(H)放弃本次匹配。(H) Give up this match.
(I)读取新的REM,重复上述操作,直至匹配结束。(1) read new REM, repeat above-mentioned operation, until matching ends.
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定,不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。The above embodiments are provided only for the purpose of describing the present invention, not to limit the scope of the present invention. The scope of the present invention is defined by the appended claims, and various equivalent replacements and modifications made without departing from the spirit and principle of the present invention shall fall within the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910573267.2A CN110285805A (en) | 2019-06-28 | 2019-06-28 | An Adaptive Interpolation/Segmentation Processing Method for Data Holes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910573267.2A CN110285805A (en) | 2019-06-28 | 2019-06-28 | An Adaptive Interpolation/Segmentation Processing Method for Data Holes |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110285805A true CN110285805A (en) | 2019-09-27 |
Family
ID=68020175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910573267.2A Pending CN110285805A (en) | 2019-06-28 | 2019-06-28 | An Adaptive Interpolation/Segmentation Processing Method for Data Holes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110285805A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110880202A (en) * | 2019-12-02 | 2020-03-13 | 中电科特种飞机系统工程有限公司 | Three-dimensional terrain model creating method, device, equipment and storage medium |
CN113074723A (en) * | 2020-01-03 | 2021-07-06 | 上海航空电器有限公司 | Laser height measurement based fighter terrain reference navigation positioning method |
CN113936316A (en) * | 2021-10-14 | 2022-01-14 | 北京的卢深视科技有限公司 | DOE shedding detection method, electronic device and computer-readable storage medium |
CN115063460A (en) * | 2021-12-24 | 2022-09-16 | 山东建筑大学 | High-precision self-adaptive homonymous pixel interpolation and optimization method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080019571A1 (en) * | 2006-07-20 | 2008-01-24 | Harris Corporation | Geospatial Modeling System Providing Non-Linear In painting for Voids in Geospatial Model Frequency Domain Data and Related Methods |
US8494687B2 (en) * | 2010-03-12 | 2013-07-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for enhancing a three dimensional image from a plurality of frames of flash LIDAR data |
CN103295202A (en) * | 2013-06-07 | 2013-09-11 | 中国科学院新疆生态与地理研究所 | Remote-sensing image geometrical rectification method facing high mountain regions |
CN103323013A (en) * | 2012-03-19 | 2013-09-25 | 现代摩比斯株式会社 | Appratus and method for judgment 3 dimension |
CN105069751A (en) * | 2015-07-17 | 2015-11-18 | 江西欧酷智能科技有限公司 | Depth image missing data interpolation method |
CN106017472A (en) * | 2016-05-17 | 2016-10-12 | 成都通甲优博科技有限责任公司 | Global path planning method, global path planning system and unmanned aerial vehicle |
CN106611439A (en) * | 2015-10-22 | 2017-05-03 | 中国人民解放军国防科学技术大学 | Evaluation method and apparatus for DEM reconstruction algorithm |
US10001376B1 (en) * | 2015-02-19 | 2018-06-19 | Rockwell Collins, Inc. | Aircraft position monitoring system and method |
CN109658477A (en) * | 2017-10-12 | 2019-04-19 | 西南科技大学 | A kind of DEM generating algorithm based on LIDAR data |
-
2019
- 2019-06-28 CN CN201910573267.2A patent/CN110285805A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080019571A1 (en) * | 2006-07-20 | 2008-01-24 | Harris Corporation | Geospatial Modeling System Providing Non-Linear In painting for Voids in Geospatial Model Frequency Domain Data and Related Methods |
US8494687B2 (en) * | 2010-03-12 | 2013-07-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for enhancing a three dimensional image from a plurality of frames of flash LIDAR data |
CN103323013A (en) * | 2012-03-19 | 2013-09-25 | 现代摩比斯株式会社 | Appratus and method for judgment 3 dimension |
CN103295202A (en) * | 2013-06-07 | 2013-09-11 | 中国科学院新疆生态与地理研究所 | Remote-sensing image geometrical rectification method facing high mountain regions |
US10001376B1 (en) * | 2015-02-19 | 2018-06-19 | Rockwell Collins, Inc. | Aircraft position monitoring system and method |
CN105069751A (en) * | 2015-07-17 | 2015-11-18 | 江西欧酷智能科技有限公司 | Depth image missing data interpolation method |
CN106611439A (en) * | 2015-10-22 | 2017-05-03 | 中国人民解放军国防科学技术大学 | Evaluation method and apparatus for DEM reconstruction algorithm |
CN106017472A (en) * | 2016-05-17 | 2016-10-12 | 成都通甲优博科技有限责任公司 | Global path planning method, global path planning system and unmanned aerial vehicle |
CN109658477A (en) * | 2017-10-12 | 2019-04-19 | 西南科技大学 | A kind of DEM generating algorithm based on LIDAR data |
Non-Patent Citations (4)
Title |
---|
ENDAN SUWANDANA 等: "Evaluation of ASTER GDEM2 in Comparison with GDEM1, SRTM DEM and Topographic-Map-Derived DEM Using Inundation Area Analysis and RTK-dGPS Data", 《REMOTE SENSING》 * |
WANG QIUTING 等: "3D Terrain Matching Algorithm and Performance Analysis Based on 3D Zernike Moments", 《2008 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING》 * |
张喜涛: "虚拟战场环境仿真", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
龙四春 等: "雷达地形测绘DEM空洞插补方法研究", 《雷达地形测绘DEM空洞插补方法研究》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110880202A (en) * | 2019-12-02 | 2020-03-13 | 中电科特种飞机系统工程有限公司 | Three-dimensional terrain model creating method, device, equipment and storage medium |
CN110880202B (en) * | 2019-12-02 | 2023-03-21 | 中电科特种飞机系统工程有限公司 | Three-dimensional terrain model creating method, device, equipment and storage medium |
CN113074723A (en) * | 2020-01-03 | 2021-07-06 | 上海航空电器有限公司 | Laser height measurement based fighter terrain reference navigation positioning method |
CN113936316A (en) * | 2021-10-14 | 2022-01-14 | 北京的卢深视科技有限公司 | DOE shedding detection method, electronic device and computer-readable storage medium |
CN113936316B (en) * | 2021-10-14 | 2022-03-25 | 北京的卢深视科技有限公司 | DOE (DOE-out-of-state) detection method, electronic device and computer-readable storage medium |
CN115063460A (en) * | 2021-12-24 | 2022-09-16 | 山东建筑大学 | High-precision self-adaptive homonymous pixel interpolation and optimization method |
CN115063460B (en) * | 2021-12-24 | 2024-06-25 | 山东建筑大学 | A high-precision adaptive interpolation and optimization method for pixels with the same name |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Raddet: Range-azimuth-doppler based radar object detection for dynamic road users | |
US11629962B2 (en) | Methods and systems for generating and using localization reference data | |
US11176701B2 (en) | Position estimation system and position estimation method | |
EP3519770B1 (en) | Methods and systems for generating and using localisation reference data | |
CN110686677B (en) | Global positioning method based on geometric information | |
CN108152831B (en) | Laser radar obstacle identification method and system | |
CN110285805A (en) | An Adaptive Interpolation/Segmentation Processing Method for Data Holes | |
CN110132284B (en) | A Global Positioning Method Based on Depth Information | |
WO2012086821A1 (en) | Positioning apparatus and positioning method | |
CN111080784B (en) | Ground three-dimensional reconstruction method and device based on ground image texture | |
CN110751077B (en) | Optical remote sensing picture ship detection method based on component matching and distance constraint | |
CN114359861B (en) | Intelligent vehicle obstacle recognition deep learning method based on vision and laser radar | |
CN113838129B (en) | Method, device and system for obtaining pose information | |
Jang et al. | Road lane semantic segmentation for high definition map | |
CN111256696A (en) | Autonomous navigation method for aircraft based on multi-feature and multi-level scene matching | |
CN110889899A (en) | Method and device for generating digital earth surface model | |
CN117419719A (en) | IMU-fused three-dimensional laser radar positioning and mapping method | |
CN112965076A (en) | Multi-radar positioning system and method for robot | |
Ma et al. | RoLM: Radar on LiDAR map localization | |
CN112581610B (en) | Robust optimization method and system for building maps from multibeam sonar data | |
CN113850864A (en) | GNSS/laser radar loop detection method for mobile robot | |
WO2020135325A1 (en) | Mobile device positioning method, device and system, and mobile device | |
CN115952248B (en) | Pose processing method, device, equipment, medium and product of terminal equipment | |
CN114419155B (en) | Visual image construction method based on laser radar assistance | |
CN115773747A (en) | High-precision map generation method, device, equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190927 |
|
WD01 | Invention patent application deemed withdrawn after publication |